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Abstract: Water Utilities (WU) are responsible for supplying water for residential, commercial and
industrial use guaranteeing the sanitary and quality standards established by different regulations. To
assure the satisfaction of such standards a set of quality sensors that monitor continuously the Water
Distribution System (WDS) are used. Unfortunately, those sensors require continuous maintenance
in order to guarantee their right and reliable operation. In order to program the maintenance of those
sensors taking into account the health state of the sensor, a prognosis system should be deployed.
Moreover, before proceeding with the prognosis of the sensors, the data provided with those sensors
should be validated using data from other sensors and models. This paper provides an advanced
data analytics framework that will allow us to diagnose water quality sensor faults and to detect
water quality events. Moreover, a data-driven prognosis module will be able to assess the sensitivity
degradation of the chlorine sensors estimating the remaining useful life (RUL), taking into account
uncertainty quantification, that allows us to program the maintenance actions based on the state
of health of sensors instead on a regular basis. The fault and event detection module is based on a
methodology that combines time and spatial models obtained from historical data that are integrated
with a discrete-event system and are able to distinguish between a quality event or a sensor fault. The
prognosis module analyses the quality sensor time series forecasting the degradation and therefore
providing a predictive maintenance plan avoiding unsafe situations in the WDS.

Keywords: water quality monitoring; sensor prognosis; water distribution network

1. Introduction

The quality of the drinking water, supplied by the Water Utilities (WU) to the citizens, is regulated
by different entities to ensure full protection of public health [1]. In order to accomplish these
regulations, WU monitors the Water Distribution System (WDS) placing water quality sensors and
analyzers at different strategic locations. Moreover, experts of the WU, take samples periodically
(also under regulation) at specific points of the network to analyze on-site. There are different
types of water quality sensors, sensors that are able to monitor a single water quality parameter or
multiple parameters.

The most common parameters monitored are temperature, chlorine, conductivity and pH. Other
parameters such as turbidity, or total organic carbon (TOC) are also measured commonly. Which
parameters to measure and how often is determined by the water quality department of the WU [2].
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There are several techniques to treat the water in WDS and keep it healthy for human consumption.
One common disinfection technique is the chlorination of water. This process consists of injecting
chlorine or derivatives in the water. Thus, chlorine is one of the most important parameters to monitor
because is used for disinfection purposes. The operator injects continuously a certain concentration of
chlorine in the drinking water, usually in the reservoirs, by means of an automatic controller regulated
by set-point [3]. A low concentration of chlorine can result in incomplete disinfection with consequent
danger for the citizens’ health. However, high concentrations of chlorine may produce odor and
may also increase levels of trihalomethanes (THMs) in the drinking water. Consequently, having
an accurate measure of chlorine is very important. However, it is difficult because of the injected
chlorine is consumed [4]. This consumption is related to reactions in the bulk water and in the pipe
wall generating a biofilm (a group of microorganisms adhered to the surface of the pipes).

A standard amperometric chlorine sensor has a membrane and electrolyte to control the reaction
of the chemical reduction of hypochlorous acid at the cathode. This causes a change in the current
between the anode and the cathode that is proportional to the chlorine concentration. These sensors
require a periodic maintenance plan to clean the solids that slowly accumulate in the membrane
and to replace the electrolyte. The manufacturer specifies a frequency period for each maintenance
action required.

Another important factor to consider when measuring the chlorine is the pH dependency.
The relative amount of hypochlorous acid or hypochlorite present depends on pH. Thus, to achieve
more accurate chlorine measurements, the pH measurement is required.

Taking into account the complexities mentioned, this paper is focused on developing a
methodology that forecasts chlorine sensor’s loss of sensitivity to keep the sensor producing reliable
data. This methodology allows the WU to increase data reliability reducing downtime and to establish
a predictive maintenance plan reducing corrective actions.

Quality sensors require a continuous calibration following the procedures established by the
manufacturer to produce reliable measurements. Additionally, a preventive maintenance plan
according to the manufacturer recommendations is required to guarantee data reliability.

However, even applying the recommended preventive planning, quality sensors are prone to
suffer from several problems (see Table 1). Therefore, a corrective plan is still required to address these
unexpected problems affecting the availability and reliability of the sensor.

Table 1. Problems affecting quality sensors.

Cause Consequence

Communication problem Data gap
Loss of sensitivity Flat signal or slow drift down

Electronic malfunction Noise and peaks
Miscalibration Offsets

On the other hand, there already exists quite a lot of research regarding methods to detect and
avoid contaminant injection in the water distribution networks guaranteeing the safety of the drinking
water network [5–7]. In [8], a comparison of a set of sensors (from different manufacturers) assessing
distinct quality parameters is carried out. This study examins the sensitivity of the different sensors
in the presence of several contaminants. In [9], the hydraulic data and water quality are considered
to minimize false positives numbers in the detection of quality events. In [10], several change-point
detection algorithms are used to analyze the autoregressive model residual. The sensor placement of
quality sensors is also an important issue to have a good quality monitoring performance but keeping
low operational costs [11]. In [12], artificial neural networks (ANNs) are used to model the multivariate
water quality parameters and detect possible outliers. In [13], the authors explore and compare two
models for contaminant event detection in WDS: support vector machines (SVM) and minimum
volume ellipsoid (MVE). The outputs of these two models are processed by sequence analysis to
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classify the event as a normal operation or an actual quality contaminant event. In [14], incorporates
hydraulic information to detect events applying spatial analysis to complement the local analysis
(for each sensor) with existing mutual hydraulic influences. In [15], local and spatial data analysis is
performed using the simulation of contaminant intrusions. The proposed spatial model detects trends
in the network based on finding similar and exceptional behavior in sensors that are located upstream.
In [16], spatial models considering the correlations between observations are implemented to validate
water consumption data coming from water flow sensors.

Model-based approaches, such as [7], have the main drawback that the performance depends
directly on the water network model’s accuracy. Moreover, due to the complex behavior of the
water parameters, it is unfeasible to develop an accurate physical model to describe the water
quality dynamics.

Hence, data-driven approaches are very interesting in this case and therefore widely used.
One important drawback of data-driven approaches is the assumption that data gathered from

these sensors are accurate and precise, such as data coming from simulations. However, as we have
pointed out, raw data from quality sensors could not be ready to be analyzed or to extract solid
conclusions. Unreliable water quality information is a serious problem for the WU to guarantee the
citizens safety. Thus, a data cleaning process must be performed first, as [13] points out.

Hence, the main motivation of this work is to provide a data analytics methodology for monitoring
quality sensors and events applicable to drinking water networks.

The contributions of this work are twofold. On the one hand, this work provides a procedure to
get a solid information basis, discarding unreliable data, to improve the decision making of the WU in
water quality management. On the other hand, a prognosis module estimates the remaining useful life
(RUL) of water quality sensors located in the WDS allowing the WU to apply predictive maintenance.

The proposed methodology has been satisfactorily tested on the Barcelona drinking
water network.

The structure of the paper is the following: In Section 2, the considered case study to illustrate
the proposed methodology is introduced. In Section 3, the diagnosis and prognosis methodologies
are described. In Section 4, the results obtained from three real scenarios of the considered case study
are presented and discussed. Finally, in Section 5, the conclusions are provided as well a future
research paths.

2. Case Study

To illustrate the proposed prognosis methodology a case study based on a part of the Barcelona
water network is used. The Barcelona network is a complex water distribution system with more
than 4600 km of pipes that supply drinking water to 218 sectors of demand (see Figure 1). In this
network, there are 200 quality sensors and analyzers in charge to guarantee water quality. Moreover,
a laboratory sample daily several points of the network to do more in-depth analyses.
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Figure 1. Barcelona Water Network.

This paper is focused on the zone highlighted with a rectangle in Figure 1 and depicted in Figure 2
for illustrative purposes.

The water supplied in this zone can come from two different water purification plants that extract
water from the rivers Ter and Llobregat. Since the mineral composition of these rivers is very different
water quality can vary significantly depending on which plant the water comes. The water arriving
from these plants is stored in a tank to be served to the three associated demand sectors when required.
The chlorine injection is done in this tank with an automatic system to keep the concentration at the
set-point established according to sanitary regulations. On the other hand, At each demand sector
entrance, a multi-parametric quality analyzer is available to continuously monitor the water quality
and in particular the chlorine concentration. These analyzer supply date every 15-min to the quality
monitoring center. The parameters monitored by these analyzers are temperature, conductivity, pH
and chlorine.
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Figure 2. Case study from the Barcelona Water Network.

The water quality data collected by the sensors are analyzed by the experts using visualization
software to check if there exists any quality event or problem. Then, the experts check the chlorine
concentrations measured using the sensors with the samples analyzed in the laboratory.

The methodology presented in this paper has been based on the knowledge of the experts used
to analyze. This methodology allows checking and even forecasting problems in the quality of the
water network.

3. Methodology

A diagnosis module has been designed to detect and diagnose the sensor health status. This
module is briefly detailed next, however, further details can be found in [17]. Moreover, a prognosis
methodology has been developed to forecast the loss of sensitivity in chlorine sensors of the WDS.

3.1. Diagnosis

This module is in charge of detecting and classifying events affecting the water quality parameters
by means of the analysis of local and spatial data. For each sensor, the analysis of local data is carried
using an Artificial Neural Network (ANN) to model the behavior of the water quality time series.
This model provides a prediction of the current value of the sensor based on past measurements
provides as inputs to the ANN. This model is able to detect abrupt changes in the time series, but can
not differentiate if this change is due to fault or a quality event. These two different situations can
be distinguished by using several sensors that are spatially correlated. The predecessor (PD) spatial
model checks the consistency between the sensor located downstream and the one located upstream.
In the considered case study, the upstream sensor is the chlorine analyzer located in the tank where
the chlorine is injected while the downstream ones are located at the entrance of the demand sectors.

Indeed, this is the procedure followed by the WU experts. First, they look for anomalous behaviors
in the signals and next they validate their conclusions looking for information from other sensors
hydraulically related to conclude if it is only a sensor problem or a real water quality problem.

Following a procedure similar to those used by the human experts that analyze the quality
measurement, a fault diagnosis procedure is developed. This procedure works as follows: the
consistency of each local and spatial model is checked by generating a residual that is checked
against a threshold. The consistency check generates a 0 if the residual is below the threshold and 1
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otherwise. This threshold is created by defining a lower bound τLB and upper bound τUB according
to [18] as follows:

τLB = Q1 − 3 · IQR

τUB = Q3 + 3 · IQR
(1)

where Q1 and Q3 are the first and third quartiles, respectively, and IQR is the interquartile range (the
difference between the third and first quartiles) obtained from the residuals of the training data set.

Finally, the combination of the binarized residuals are the signature of the sensor’s state according
to the Table 2.

The fault diagnosis algorithm described above can be represented as a state machine
(discrete-event system). The state diagram is presented in Figure 3. Assuming that the sensor starts
in the normal (non-faulty) state, two possible situations can occur; a sensor fault or a quality event.
In case a sensor fault occurs, after it is detected, the sensor fault state is reached. Finally, if the sensor is
deactivated enter the maintenance state. Finally, after the sensor is repaired, it returns to the normal
state. On the other hand, in case a quality event occurs, it can be caused by an intended action
(e.g., hydraulic action, chlorine reference change) or by some unexpected infiltration.

Figure 3. State diagram of a quality sensor.

Table 2. Fault signatures of diagnosis indicators (residuals).

PD ANN PDPDPD ∧∧∧ ANN Cause

1 1 0 Sensor fault
1 0 0 Sensor fault
0 1 1 Quality event
0 0 0 Normal state

According to Table 2, a sensor is in non-faulty situation when all residuals are within their
thresholds. On the other hand, a quality event can be identified when the ANN residual violates its
threshold but not the PD one. Finally, when the PD residual violates its residual, a sensor fault is
diagnosed independently of the ANN residual.

3.2. Prognosis

This module forecasts the Remaining Useful Life (RUL) based on a predetermined Failure
Threshold (FT). As proposed in [19], the RUL is given by:

RUL ∈ N | ŷ(t + RUL|t) = FT, (2)

where ŷ(t + RUL|t) is the RUL-step ahead forecast at time t of a given predictive model ŷ.
A data-driven approach is used to derive the predictive models from the data collected. Three

different methods have been considered for multi-step forecasting the chlorine decay: Brown’s double
exponential smoothing, drift and Holt’s linear filter.

The main contribution of this module is to consider the uncertainty of the models’ estimations.
In order to compute the uncertainty of each model, it is trained for a set of horizons obtaining the
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optimal parameters for each forecast horizon in order to improve the models’ forecast performance
while decreasing the residuals’ variance generated by the models.

The multi-step forecasting approach consists in fitting a model with the form

ŷ(t + h|t, θh) (3)

where θh is the vector of parameters to adjust for each forecast horizon in 1 ≤ h ≤ H with a maximum
forecast horizon H. Once a model is fitted for each horizon, a set of models are obtained for each method

Y = [ŷ1, ŷ2, ..., ŷh, ..., ŷH ] (4)

where ŷh is given by Equation (3) using a simplified notation and Y ∈ {YB, YD, YH, YNNET, YQRF, YSVM}
meaning Brown, drift, holt, artificial neural networks, quantile random forests and support vector
machines methods, respectively. These methods are detailed next.

3.3. Forecast Models

The Brown’s double exponential smoothing model can be expressed as follows:

y1(t) = αhy(t) + (1− αh)y1(t− 1) (5)

y2(t) = αhy1(t) + (1− αh)y2(t− 1) (6)

a = αh
h

1− αh
(7)

ŷh(t + h|t) = (2 + a) y1(t)− (1 + a) y2(t), (8)

where h is the forecast horizon and α is the smoothing parameter.
The unique parameter to be optimized for each horizon h is

θh = {α} (9)

The drift model provides a simple way to estimate the change over time from a set of observations.
Indeed, it estimates the drift between the first observation and the m previous one as follows

ŷh(t + h|t) = y(t) + h
(

y(t)− y(t−mh)

mh

)
, (10)

where mh is the distance between the actual observation and the previous one for a given horizon h.
The set of parameters to be optimized for this model is

θh = {m} (11)

The Holt’s linear method in the state-space form is the third considered modeling approach [20].
The state-space forecast general representation has the following form

ŷ(t + h|t) = wx(t) + εh(t), (12a)

x(t) = Fx(t− 1) + ghεh(t), (12b)

where x(t) = [l(t) b(t)] is the state vector composed by the level l(t) and the growth rate b(t),

w = [1 h], F =

[
1 1
0 1

]
, gh = [αh βh] and εh(t) is a random error with zero mean.
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The performance of the model, as showed in [20], depends directly on the initial state x(0). In this
model, the set of parameters to be optimized for each horizon h are

θh = {α, β, l(0), b(0)}. (13)

Multilayer Perceptron (MLP) Networks is a type of feedforward artificial neural network
consisting of an input layer, one or multiple hidden layers, and an output layer, i.e., the model
prediction. This work considers only single-hidden-layer feed-forward neural networks (NN) with
H hidden neurons. These kinds of networks are used to predict different continuous physical
processes [21]. Each layer is composed of one or multiple neurons and the layers are connected
one-by-one where each neuron has a direct connection to the neurons of the subsequent layer
(i.e., without cycles). The basic idea of the NN construction is to adjust the corresponding weights for
each link connection between neurons minimizing an error function of the prediction using a training
dataset. A simplification of the mathematical background of the NN expression [22] to forecast the h
ahead value at instant t is

ŷh(t + h|t) = f (x(t), wh), (14)

where x(t) = [y(t), y(t− 1), ..., y(t− N − 1)] is the vector with the N previous values of the actual
time series at time instant t and wh is the vector of the weights assigned to each neuron connection for
a forecast horizon h.

Hence, the parameters to be adjusted in the NN models are

θh = {H, w} (15)

Random Forests (RF) are a powerful and popular machine learning tool for high dimensional
classification and regression [23]. RF are a combination of tree predictors that vote for the most popular
class for classification or provide the average of the trees predictors for regression. Given an input x,
a tree predictor T(x, Θ) provides a categorical value (classification) or a continuous value (regression).
Basically, the prediction trees sub-divide the complex input space into smaller partitions, recursively,
in order to obtain small cells where a simple model or even a constant value (the average) can represent
the cell group. It starts at a root and the final cells are the leaves. How to split and which features are
involved in each split is part of the training phase. The structure of the tree is represented by Θ.

Quantile Regression Forest (QRF) is a generalization of RF, as it provides not only the conditional
mean, but also estimates the conditional quantiles [24]. The RF final prediction (in the regression form)
for a given new input x is made averaging the predictions from all the B individual regression trees

ŷh(t + h|t) = 1
Bh

Bh

∑
b=1

T(x(t); Θbh), (16)

where is the individual tree regression function and Θbh characterizes the b-th random forest tree for
a given forecast horizon h. The input vector x(t) = [y(t), y(t− 1), ..., y(t− N − 1)] is the vector with
the N previous values of the actual time series at time instant t, and Bh is the number of random
forest trees.

Hence, the QRF parameters to be tuned are

θh = {B, Θb} (17)

RF have been implemented using the R package rpart [25].
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The goal of Support Vector Machines (SVM) is to find a function f (x) given a training dataset
{(x1, y1), ..., (xm, ym)} ⊂ X ×R where X is the space of the input predictors and yi the target. In case
of a linear function f , it takes the form

f (x) = 〈w, x〉+ b, (18)

where w ∈ X , b ∈ R and 〈· , · 〉 denotes the scalar product inX . For nonlinear functions, the input space
is mapped first into a new feature space F using a mapping function Φ : X → F [26]. The forecast
expression of SVM is

ŷ(t + h|t) =
Lh

∑
i=1

(αih − α∗ih)k(xi(t), x(t)) + bh, (19)

where αi and α∗i are Lagrange multipliers and k(xi(t), x(t)) is the mapping function, known as the
kernel function, x(t) = [y(t), y(t− 1), ..., y(t− N − 1)] is the vector of the N previous values of the
actual time series and xi(t) is the element i of the input vector, i.e., y(t− i + 1).

Hence, the parameters to be adjusted in the SVM models are

θh = {L, αi, α∗i , b} (20)

3.4. Models Performance Metric

Two different metrics are used to assess the model’s performance. On the one hand, for the
linear models, the training stage finds the optimum parameter values for each model minimizing, as a
function cost, the mean absolute percentage error (MAPE) defined as

min
1
n

n

∑
t=1

∣∣∣y(t + h)− ŷ(t + h|t, θh)

y(t + h)

∣∣∣, (21)

where θh is the vector of parameters for all 1 ≤ h ≤ H of each linear model to be optimized according
to Equations (9), (11) and (13), respectively.

On the other hand, for the nonlinear models, the training stage finds the optimum parameter
values for each model minimizing the root mean square (RMSE) defined as

min

√
1
n

n

∑
t=1

[y(t + h)− ŷ(t + h|t, θh)]
2 (22)

where θh is the vector of parameters for all 1 ≤ h ≤ H of each nonlinear model to be optimized
according to Equations (15), (17) and (20), respectively.

Moreover, the training of nonlinear models is performed with k-fold cross-validation to avoid
the over-fitting of the models. K-cross-validation splits the dataset randomly into k equal subsamples.
One of these k subsamples is used for validation and testing and the rest is used for training the model.
The cross-validation is then repeated k times using each sample only once.

3.5. Prognosis Performance Evaluation

In order to evaluate the prognosis models performance, the Prognosis Horizon (PH) is
computed as

PH = tFT − i, (23)

where tFT is the time instant of FT (see Equation (2)), and i is expressed as

argmin
i
|tFT − (j + RULj)| ≤ ε, ∀j ∈ [i, tFT] (24)

and ε is the admissible error bound.
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4. Results

In this section, results based on the Barcelona case study, detailed in Section 2, are presented next
to show the performance of the methodology proposed in this work.

The methodology presented has been tested off-line using real data from several past scenarios [27].
This work addresses the methodology that will be used on-line by the WU in a medium-term future,
once the on-line requirements have been validated and analyzed.

The results presented here are focused on the prognosis module. The diagnosis module results
are already presented in [17], showing anticipation of the sensor fault detection in about 12 days
before the experts reported the sensor incidences. Thus, the data used by the prognosis module,
to generate the results presented in this section, have been previously validated and processed by the
diagnosis module.

The data used to generate the results come from the multi-parametric (chlorine, pH, temperature
and conductivity) sensors (0794, 0795 and 0801), the chlorine analyzer X127701D and the incidences
reported by the WU experts to the maintenance department (applied to the part of the Barcelona
network presented in Figure 2).

The chlorine concentration observed is around 0.5 mg/L and the minimum value allowed by
the Government of Catalonia regulation of chlorine concentration in the WDS is 0.2 mg/L. Hence,
the minimum threshold to train the models is FT = 0.2.

The scenarios analyzed are three different chlorine decay scenarios. Figure 4 shows the three
scenarios A, B and C, vertically stacked. The long-dashed blue line is the chlorine signal of VX127701D,
the transport analyzer placed in the reservoir (see Figure 2). The dashed green line is the V0795 chlorine
signal. The solid red line is the V0794 chlorine signal. As it can be noted, the chlorine decays are not
equal in velocity and linearity. Scenario A shows a slow decay till 0.2 of chlorine in tFT = 378 h (16
days) with some slumps. Scenario B shows a decay to 0.2 of chlorine in tFT = 147 h (6 days). Scenario
C shows a chlorine decay in tFT = 130 h (5 days). Scenario B presents the most linear decay of them.
While scenario C presents a slight curve at the end. As it will show next, these factors (slumps and
non-linear decays) impacts directly on the prognosis performance.
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Figure 4. Fault scenarios of chlorine sensors.

The prognosis performance metric PH, Equation (23), have been evaluated on the six models
detailed in Section 3 with ε = 0.10× H and H = 90, i.e., ε = 9. As mentioned before, the models
are trained using one scenario and evaluated with the others to avoid over-fitting and evaluate the
generalization. Figure 5 shows the PH evaluation training each model with one scenario (stacked
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vertically) and tested with the others (stacked horizontally). The bar plots in the diagonal are the
evaluation of the training data sets.
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Figure 5. Evaluation of the prognosis performance using the PH metric.

Finally, to summarize the performance results, Figure 6 shows the PH average for each testing
scenario, and again leaving out the scenarios where training and testing are both the same in order to
evaluate the generalization performance.
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Figure 6. Average PH leaving out the scenarios that are the same for training and testing.

As can be noted, ETS, QRF and SVM algorithms show a good performance when the training and
testing scenarios are both the same (see the diagonal results in Figure 5). However, the PH average
in Figure 6, shows clearly the poor performance of ETS, NN and QRF methods when are applied to
testing scenarios different than training scenarios, excluding QRF applied to scenario C. In contrast,
drift and Brown methods have the best performance with highest PH averages in Figure 6. One
relevant fact that can be observed in Figure 6 is the higher average performance obtained in scenario B
by almost any model compared against in scenarios A and C. This is because the decay of scenario B is
more linear than in A and C (see Figure 4) and therefore more predictable.

The bad performance of the models NN and QRF is due to the model construction process. These
kinds of machine learning models require a lot of data, i.e., a large set of scenarios, to train them in
order to generalize properly with new unseen scenarios. In this work, these models have been trained
with only one scenario and tested with the others, therefore obtaining worst performance than Brown
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and drift models. With the exception of the SVM model, which uses only one scenario for training,
and is able to perform similar to the Brown model.

The results of the first row of bar plots from Figure 5 are discussed below. Figures from 7 to 18
present the results obtained with the different results models trained with scenario A and applied to
the scenarios B and C.

Figures 7–9 show the drift, Brown and SVM results when trained with scenario A and applied to
scenario B. As commented before, this good performance is due to the linearity of the chlorine decay
at the end of scenario B. In contrast, scenario A has small bumps at the end and scenario C has a slight
curve leading to worse performances. Figures 10–12 show the inferior performance on scenario C by
the drift, Brown and SVM models, respectively.

As indicated before, ETS (Figures 13 and 14), NN (Figures 15 and 16) and QRF (Figures 17 and 18)
show a poor generalization.
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Figure 9. SVM model. Train scenario A and test scenario B.
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Figure 11. Brown model. Train scenario A and test scenario C.
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Figure 13. ETS model. Train scenario A and test scenario B.
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Figure 15. NN model. Train scenario A and test scenario B.
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Figure 16. NN model. Train scenario A and test scenario C.



Sensors 2020, 20, 1342 17 of 19

60 80 100 120 140

0
20

40
60

80
10

0
qrf

time index (hours)

R
U

L 
(h

ou
rs

)

●
●

●
●

●
●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

actual RUL
estimated RUL
bounds ε= ± 5%

(a) RUL prediction.

0.2

0.3

0.4

0.5

0.6

120 125 130 135 140 145

time index (hours)

C
hl

or
in

e

Actual Chlorine

CI 95%

Predicted Chlorine

qrf

(b) Chlorine forecast.
Figure 17. QRF model. Train scenario A and test scenario B.
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Figure 18. QRF model. Train scenario A and test scenario C.

5. Conclusions

This paper presents a prognosis approach for the water quality sensors using advanced data
analytics approaches.

The complexity of chlorine sensors requires a regular maintenance plan to avoid monitor
unreliable data and infer wrong conclusions. The prognosis framework presented can help the
WU to predict these faulty states in order to apply predictive maintenance. Therefore, this allows
decreasing corrective actions reducing OPEX costs of the WU.

On the one hand, a diagnosis framework has been briefly discussed that guarantees that no event
or sensor fault is present before running the prognosis approach [17]. On the other hand, a prognosis
framework has been presented to predict the RUL of chlorine sensors that presents a chlorine decay
due to loss of sensitivity. The proposed prognosis approach has been assessed using three real scenarios
from the Barcelona Water Network.
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Brown and drift methods have shown a bad performance when non-linear shapes are present on
the chlorine decay, such as bumps and curves. While the ETS method shows poor performance when
applied to different scenarios that the trained one indicating an inherent over-fitting behavior. The drift
method shows the best performance average, but Brown showing a slightly less performance average
has less variance. For this reason, Brown is the one proposed to be used in the real implementation.

In contrast, the nonlinear models considered (NNET, QRF and SVM) do not provide the expected
good results due to the reduced amount of data used for model construction. They require a larger
number of training scenarios to generalize properly with new unseen scenarios.

The complexity of the model is an important requirement for the experts of the WU. Therefore,
according to the performance and the simplicity of the implementation, the Brown method is the
optimal choice for the prognosis module, discarding the other methods.

The methodology and the results detailed in this work have been presented to the experts of the
WU. They expressed their approval and satisfaction with the results obtained. However, this work is a
study phase of the methodology and it is not implemented on-line by the WU yet.

Finally, future work will deal with the on-line deployment of the proposed methodology.
Moreover, many more decay scenarios in order to improve the machine learning model’s performance
will be considered.
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