Supplementary Materials

A Copper (II) Ensemble Based Fluorescence Chemosensor and the Application in the "Naked–eye" Detection of Biothiols in Human Urine

Yue Wang¹, Huan Feng¹, Haibo Li², Xinyi Yang¹, Hongmin Jia¹, Wenjun Kang², Qingtao Meng^{1,*}, Zhiqiang Zhang^{1,*} and Run Zhang³

- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China; Wangyue9088@163.com (Y.W.); 18369956613@163.com (H.F.); yxz0601y@163.com (Y.Y.); jhongmin66@163.com (H.J.)
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Department of Chemistry, Liaocheng University, Liaocheng, 252059, China; haiboli@mail.ustc.edu.cn (H.L.); kangwenjun@lcu.edu.cn (W.K.)
- 3. Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia; r.zhang@uq.edu.au (R.Z.)
- * Correspondence: qtmeng@ustl.edu.cn (Q.M.); zhangzhiqiang@ustl.edu.cn (Z.Z.);
 Tel.: +86-412-5929627 (Q.M.)

Scheme S1. Synthetic procedure of the fluorescent ligand, L

Figure S1. HRMS of fluorescent ligand, L.

Figure S2. ¹H NMR of fluorescent ligand, L (CDCl₃, 600 MHz)

Figure S3. ¹³C NMR of fluorescent ligand, L (CDCl₃, 150 Hz).

Figure S4. (A) UV-vis absorption spectra of L (10 μ M) in the presence of different amounts of Cu²⁺ (0–60 μ M) in the DMF/HEPES mixed solution (7:3, v/v, pH=7.4). Inset: normalized absorption intensities of L at 378 nm as a function of Cu²⁺ (0–60 μ M). (B) UV-vis absorption spectra of L (10 μ M) in the DMF/HEPES mixed solution (7:3, v/v, pH=7.4) upon addition of 60 μ M various cations: 1. Cu²⁺, 2. Pb²⁺, 3. Ba²⁺, 4. Ag²⁺, 5. Al³⁺, 6. Cd²⁺, 7. Ca²⁺, 8. Mg²⁺, 9. Co²⁺, 10. Fe³⁺, 11. Cr²⁺, 12. Ni²⁺, 13. Hg²⁺, 14. Li⁺, 15. Na⁺, 16. K⁺, 17. Zn²⁺. A₀ and A represent the absorption intensities of L at 378 nm in the absence and in the presence of Cu²⁺.

Figure S5. Fluorescence of L (10 μ M) at different times in the DMF/HEPES mixed solution (7:3, v/v, pH=7.4). The intensities were recorded at 443 nm, and excitation was performed at 378 nm.

Figure S6. Job's plots according to the method for continuous variations. The total concentration of **L** (10 μ M) and Cu²⁺ is 10 μ M. X_L represents the proportion of **L** to the total amounts of **L** and Cu²⁺. The intensities were recorded at 443 nm, and excitation was performed at 378 nm.

Figure S7. Effect of pH on the fluorescence intensities of L (10 μ M) in the absence and presence of Cu²⁺ (60 μ M) in the DMF/H₂O mixed solution. The intensities were recorded at 443 nm, and excitation was performed at 378 nm.

Figure S8. Absorption spectra of L-Cu²⁺ (10 μ M) in the presence of different amounts of Cys (0–70 μ M), Hcy (0–40 μ M), GSH (0–30 μ M) in the DMF/HEPES mixed solution (7:3, v/v, pH=7.4).

Figure S9. The linear relationship between fluorescence intensity of $L-Cu^{2+}(1 \ \mu M)$ at 443 nm versus the concentration of (A) Cys, (B) Hcy and (C) GSH in the DMF/HEPES mixed solution (7:3, v/v, pH=7.4). Excitation was performed at 378 nm. Intensities were recorded at 443 nm.

Table S1. Comparison of this work with reported fluorescent chemosensors for biothiols detection.

Probes	Selectivity	Detection limit	Response time	Detection of Biothiols by "Naked–eye"	Detection of biothiols in Human Urine	Test papers	Ref.
RhAN	GSH	0.1 μΜ	< 5 s	Yes	No	No	S 1
probe	biothiols	GSH 3.7 μM	$\sim 120 \text{ min}$	No	No	No	S2
Compoud 1	biothiols	GSH 10.3 nM	< 5 s	Yes	No	No	S3
Probe1	Cys	1.4 nM	$\sim 30 \text{ min}$	No	No	No	S4
SATZ	Cys/Hcy	2.843 μM (Cys)	12 min	Yes	No	No	S5
	Cys	0.014 µM	25 min				
CI	Нсу	0.081 µM	55 min	Yes	No	No	S 6
	GSH	0.097 μΜ	50 min				
BT-AC	Cys	36.2 nM		No	No	test strip	S 7
	Cys	12 nM	40 min				
CPR	Нсу	13 nM	100 min	No	No	No	S 8
	GSH	30 nM	38 min				

NIRHA	Cys	77.6 μΜ	15 min	Yes	No	No	S9
SHCy-C	Cys	21.2 nM	5 min	No	No	No	S10
	Cys	31 µM					
HN-NBD	Нсу	66 µM	5 min	No	No	No	S11
	GSH	58 µM					
СРА	Cys	49 nM	~3 min	No	No	No	S12
	Нсу	51 nM					
Nap-Cy s	Cys	1.8 µM	5 min	No	No	No	S13
PYR	Cys	22 nM	5min 10min	Yes	No	No	S14
	Нсу	23nM					
Lyso-RC probe 1	Cys	27 nM 33 nM 16 nM Cys 0.11 μM	 20 min	No	No	No	S15 S16
	Hcy						
	GSH						
	H ₂ S						
	Cys						
	Hcy						
	GSH						
EuTc-H ₂	Cys	100 nM					
O ₂	Нсу	200 nM		No	Yes	No	S17
	GSH	400 nM					

References:

- Tong, L.; Qian, Y. A NIR rhodamine fluorescent chemodosimeter specific for glutathione: Knoevenagel condensation, detection of intracellular glutathione and living cell imaging. J. Mater. Chem. B 2018, 6, 1791-1798.
- Gao, B.; Cui, L.; Pan, Y.; Zhang, G.; Zhou, Y.; Zhang, C.; Shuanga, S.; Dong, C. A highly selective ratiometric fluorescent probe for biothiol and imaging in live cells. *RSC Adv.* 2016, 6, 43028-43033.
- 3. Zhang, M.; Han, H.; Zhang, S.; Wang, C.; Lu, Y.; Zhu, W. A new colorimetric and fluorescent probe with a large stokes shift for rapid and specific detection of biothiols and its application in living cells. *J. Mater. Chem. B* **2017**, *5*, 8780-8785.
- Chen, X.; Xu, H.; Ma, S.; Tong, H.; Lou, K.; Wang, W. A simple two-photon turn-on fluorescent probe for the selective detection of cysteine based on a dual PeT/ICT mechanism. *RSC Adv.* 2018, *8*, 13388-13392.
- Song, H.; Zhou, Y.; Qu, H.; Xu, C.; Wang, X.; Liu, X.; Zhang, Q.; Peng, X. A Novel AIE Plus ESIPT Fluorescent Probe with a Large Stokes Shift for Cysteine and Homocysteine: Application in Cell Imaging and Portable Kit. *Ind. Eng. Chem. Res.* 2018, *57*, 15216–15223.
- 6. Xu, G.; Tang, G.; Lin, W. A multi-signal fluorescent probe for the discrimination of

cysteine/homocysteine and glutathione and application in living cells and zebrafish. *New J. Chem.* **2018**, *42*, 12615-12620

- Zhu, M.; Wu, X.; Sang, L.; Fan, F.; Wang, L.; Wu, X.; Hua, R.; Wang, Y.; Qing X. Li. A novel and effective benzo[d]thiazole-based fluorescent probe with dual recognition factors for highly sensitive and selective imaging of cysteine in vitro and in vivo. *New J. Chem.* 2019, 43, 13463-13470.
- 8. Zhang, H.; Wang, B.; Ye, Y.; Chen, W.; Song, X. A ratiometric fluorescent probe for simultaneous detection of Cys/Hcy and GSH. *Org. Biomol. Chem.* **2019**, *17*, 9631-9635.
- Qi, S.; Zhu, L.; Wang, X.; Du, J.; Yang, Q.; Li, Y. Near-infrared turn-on fluorescent probe for discriminative detection of Cys and application in in vivo imaging. *RSC Adv.* 2019, *9*, 41431-41437.
- Cai, S.; Liu, C.; Jiao, X.; Zhao, L.; Zeng, X. Lysosome-targeted Near-Infrared Fluorescence Probe for Imaging Endogenous Cysteine (Cys) in Living Cells. J. Mater. Chem. B DOI: 10.1039/C9TB02609F
- 11. Zhu, H.; Zhang, H.; Liang, C.; Liu, C.; Jia, P.; Li, Z.; Yu, Y.; Zhang, X.; Zhu, B.; Sheng, W. A novel highly sensitive fluorescent probe for bioimaging biothiols and its applications in distinguishing cancer cells from normal cells. *Analyst* **2019**, *144*, 7010-7016.
- Cheng, T.; Huang, W.; Gao, D.; Yang, Z.; Zhang, C.; Zhang, H.; Zhang, J.; Li, H.; Yang, X. Michael Addition/S,N-Intramolecular Rearrangement Sequence Enables Selective Fluorescence Detection of Cysteine and Homocysteine. *Anal. Chem.* 2019, *91*, 10894–10900.
- Dong, B.; Lu, Y.; Zhang, N.; Song, W.; Lin, W. Ratiometric Imaging of Cysteine Level Changes in Endoplasmic Reticulum during H2O2 - Induced Redox Imbalance. *Anal. Chem.* 2019, *91*, 5513–5516.
- Yang, M.; Fan, J.; Sun, W.; Du, J.; Peng, X. Mitochondria-Anchored Colorimetric and Ratiometric Fluorescent Chemosensor for Visualizing Cysteine/Homocysteine in Living Cells and Daphnia magna Model. *Anal. Chem.* 2019, *91*, 12531–12537.
- Zhang, H.; Xu, L.; Chen, W.; Huang, J.; Huang, C.; Sheng, J.; Song, X. A Lysosome-Targetable Fluorescent Probe for Simultaneously Sensing Cys/Hcy, GSH, and H2S from Different Signal Patterns. ACS Sens. 2018, 3, 2513–2517
- Nomura, N.; Nishihara, R.; Nakajima, T.; Kim, S.; Iwasawa, N.; Hiruta, Y.; Nishiyama, S.; Sato, M.; Citterio, D.; Suzuki, K. Biothiol-Activatable Bioluminescent Coelenterazine Derivative for Molecular Imaging in Vitro and in Vivo. *Anal. Chem.* 2019, *91*, 9546–9553.
- 17. Xie, F.; Tan, H.; Li, Z.; Yang, H. A europium-based fluorescence probe for detection of thiols in urine. *Anal. Methods*, **2014**, *6*, 6990-6996