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Abstract: When using the technique of magnetic gradient tensor measurements to obtain the position
of magnetic objects, calibration of the magnetic tensor gradiometer plays a pivotal role in precisely
locating the target, and extensive research has been carried out on this up to now. However, previous
studies have always lacked sufficient discussion on the position error of magnetometers in magnetic
tensor gradiometers caused by inaccurate installment of magnetometers. In this paper, we analyze
and correct this position error based on a magnetic dipole source. The result of the simulation
exemplifies that the magnetometer’s position error will affect the locating accuracy and, therefore,
it is worth correcting this error. The relationship between position error and magnetic gradient
tensor components is established, followed by an error correction method based on this relationship.
Simulations illustrate that this method can effectively decrease the effect caused by the position error
of magnetometers and improve the locating performance with locating error and magnetic moment
errors dropping from 2 to 0.2 m and 6× 105A ·m2 to 5× 104A ·m2, respectively.

Keywords: magnetic dipole; magnetic gradient tensor; position error of magnetometers; locating error;
error correction

1. Introduction

Recently, the magnetic gradient tensor system has been extensively applied in geophysical
exploration [1], such as underwater target detection and unexploded ordnance [2], due to the
advantages of magnetic gradient tensor measurements, the unstoppable development of technology,
and the improvement in various platforms [3]. However, the performance of the tensor system is
adversely affected by the measurement error caused by specific factors, which are broadly divided into
three aspects [4].

Firstly, an inherent error exists in the magnetic gradient tensor system in obtaining the magnetic
gradient tensor components, as the magnetic gradient tensor is generally approximated by the numerical
difference between two separated magnetometers instead of the differential. As a result, magnetic
objects’ localization by magnetic field gradient tensor measurement always involves an inherent
locating error. This locating error can be corrected by iterations based on the systematic position error
distribution patterns [5]. Besides, the geometric configuration of the system will also affect the accuracy
of the obtained data. Rong et al. used the hybrid model of an ellipsoid and magnetic dipole array
to simulate and analyze the measurement performance of several typical magnetic gradient tensor
systems with different geometric configurations, and proposed that the cross-shaped magnetic gradient
tensor system has the characteristics of an optimal structure with minimum measurement error [6].

Secondly, systematic errors (scale factors, non-orthogonally, and bias error) of magnetometers due
to the limited production process and processing level also cause the inaccuracy in measurements [7,8].
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However, several theories on the mechanism of this error and its corresponding error calibration methods
have been proposed and can thus be efficiently solved. In 2001, Gebre proposed a nonlinear, two-step
estimation algorithm to calibrate a single solid-state magnetometer, making the magnetometer calibration
achievable without rotating the loaded magnetometer platform [9]. Topaz et al. [10–12] analyzed the
measurement errors caused by the magnetometer in detail and established the mathematical error
model, basically fitting the real situation. Besides, calibration methods based on the functional link
artificial neural network (FLANN) were also proposed. In 2019, YaXin et al. [13] proposed a novel
calibration method based on tensor invariants in the nonuniform magnetic field without the extra
device. The calibration parameters were estimated using the concept of the magnetic gradient tensor
and corresponding rotational invariants combined with Levenberg–Marquardt optimization. As many
effective and practical calibration methods for the magnetometer’s systematic error are present, we do
not discuss these topics in this paper.

One of the important and not very well analyzed aspects of error is the inaccurate installment of
magnetometers. Magnetometers may rotate slightly along with the installation center point, inevitably
causing misalignment errors between magnetic sensors. Even a minor error can multiply serious
errors in the measurement accuracy of the tensor system [14]. Mutual calibration between sensors is
necessary before using obtained data for location and detection.

Researchers have proposed many fast and efficient calibration methods for misalignment errors
until now. Chi et al. obtained the calibration matrix [15] by solving the orthogonal Procrustes problem;
Qingzhu et al. proposed that calibration of misalignment errors can be completed just by three
sets of measurement data with the same rotation period [16]. All these methods only consider the
misalignment error when installing the sensor, but do not consider the position error of magnetometers
caused by inaccurate installment. The position of the sensor’s center may not accurately be at its
geometric center, or magnetometers may not be correctly installed at the required position, especially
for the magnetic gradient tensor system with flexible baseline length in which magnetometers will
be slightly inaccurately installed along its axis after each change in baseline. This error will lead to a
difference between the actual baseline length and standard baseline length of the tensor system, which
significantly affects the accuracy of the obtained magnetic gradient tensor and locating results.

Herein, we analyze the magnetometer’s position error in depth and simulate how this error
influences the locating results. The mathematical relationship between the magnetic gradient tensor
components and magnetometer’s error is derived. According to the established mathematical model
of the magnetometer’s position error, the calibration method is proposed, and its feasibility is verified
by simulation at the end of the paper.

The paper is structured as follows. First, the theory of the magnetic gradient tensor and location
based on the magnetic gradient tensor is introduced. Afterward, the magnetometer’s position error
and its influence on the location results are analyzed followed by a correction method for it. Finally,
the simulation results of the above content are clearly shown.

2. Magnetic Gradient Tensor and Location Theory

When discussing the location of the magnetic target, the distance to the target is usually 3 times
larger than the physical dimensions of the target, so the target can be regarded as a magnetic dipole
source [17]. The magnitude of the magnetic field generated by a magnetic dipole is expressed as follows:

B =
µ0

4π
(

3(M•r)r
r5 −

M
r3 ). (1)

where r = |r|, µ0 ≈ 4π× 10−7 H/m, M = (Mx, My, Mz), and r represents the position vector. µ0 is the
permeability of vacuum and M denotes the magnetic moment vector.
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The magnetic gradient tensor G is defined as the vector gradient of the magnetic field vector B [3].
It is formally presented in Equation (2).

G = ∇B =


Gxx Gxy Gxz

Gyx Gyy Gyz

Gzx Gzy Gzz

. (2)

Equation (2) shows that the magnetic gradient tensor is symmetrical, and the sum of the three
components of the principal diagonal is equal to 0, so only five of the nine components of the magnetic
gradient tensor are independent [18], and it can be expressed by [19]

Gi j =
µ0

4π

[
−

15(M•r)i j
r7 +

3(Mi j + M ji + (M•r)δi j)

r5

]
. (3)

i, j represent x, y, z, and δi j = 1 for i = j and δi j = 0 for i , j.
The magnetic gradient tensor data can be measured by using a magnetic sensor array with a

certain structure, such as a cross-shaped array, cube-shaped array, and three-dimensional cross-shaped
array, to measure the magnitude of the magnetic field along the three orthogonal axes and calculate the
difference in each direction. A schematic of the magnetic tensor gradiometer system is depicted in
Figure 1. The formula of the cross-magnetic gradient tensor is shown as [20]

G =


B1x−B3x

2h
B1y−B3y

2h
B1z−B3z

2h
B2x−B4x

2h
B2y−B4y

2h
B2z−B4z

2h
B1z−B3z

2h
B2z−B4z

2h −
B1x−B3x

2h −
B2y−B4y

2h

. (4)

Bi j(i = 1, 2, 3, 4; j = x, y, z) is the output of the magnetometer si, and h is the baseline length of the
magnetic tensor gradiometer.
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Figure 1. The schematic of the magnetic tensor gradiometer system. 
Figure 1. The schematic of the magnetic tensor gradiometer system.

Euler deconvolution is a powerful technique for locating the target, which can be seen as a magnetic
dipolar source, as we can directly estimate the target location from the raw data, and any initial
estimation of parameters is not required in this method. The expression of the Euler deconvolution
algorithm is [21]

r = −3G−1B. (5)

We can locate the magnetic object exactly if we obtain the accurate magnetic gradient tensor
components and the magnitude of the magnetic field of the target. The magnetic moment vector can
also be estimated correspondingly once we obtain the location of the target [5].

Mx

My

Mz

 = 2πr


3x2
− 2r2 3xy 3xz

3xy 3y2
− 2r2 3yz

3xz 3yz 3z2
− 2r2




Bx

By

Bz

. (6)
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3. The Analysis and Correction of Magnetometer’s Position Error

3.1. Analysis of Locating Error

In this paper, we analyze the influence of the magnetometer’s position error on localization
accuracy based on the Euler deconvolution algorithm mentioned above.

The magnetic gradient tensor measurement system constructed by four three-axis fluxgate sensors
is located at the measuring point. Here, we assume that all the magnetometers are the standard sensors
without any systematic errors, and there is no misalignment error among the magnetometer array.
A target that can be modeled as a magnetic dipole is located at the origin of the coordinates. It is
assumed that there exists a position error only in the magnetometer s1 when installing the sensor on
the cross bracket (Figure 2). The accuracy of Gxx, Gxy, Gxz obtained by this system suffers. According
to Equations (1) and (4), these three tensor components, which are acquired by this magnetic tensor
gradiometer with the position error of the sensor s1, can be expressed as follows:


Gxx
′

Gxy
′

Gxz
′

 = 1
2h

µ0

4πr7


(−15x2 + 9r2)Q 3yr2(2h + ∆h) − 15yxQ 3zr2(2h + ∆h) − 15zxQ

3yr2(2h + ∆h) − 15xyQ (−15y2 + 3r2)Q −15zyQ
3zr2(2h + ∆h) − 15xzQ −15yzQ (−15z2 + 3r2)Q




Mx

My

Mz

. (7)

where Q = 2hx+ h∆h+ x∆h. Gxx
′, Gxy

′ and Gxz
′ denote incorrect tensor components. ∆h represents the

position error of the magnetometer s1. The specific derivation of Equation (7) is given in Appendix A.
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The position error of the magnetometer s1 causes errors in the measured magnetic gradient tensor
components, which lead to the inaccuracy in the locating results. Equation (5) can be written in a scalar
form and, according to the total differential theory, location errors of the target along the three axes can
be written as follows:

∆x =
∂x
∂Gxx

∆Gxx +
∂x
∂Gxy

∆Gxy +
∂x
∂Gxz

∆Gxz . (8)

∆y =
∂y
∂Gxx

∆Gxx +
∂y
∂Gxy

∆Gxy +
∂y
∂Gxz

∆Gxz . (9)

∆z =
∂z
∂Gxx

∆Gxx +
∂z
∂Gxy

∆Gxy +
∂z
∂Gxz

∆Gxz. (10)

According to Equation (7), we obtain the expression of ∆Gxi as

∆Gxi = Gxi −Gxi
′
≈

Gxi
2h

∆h +
µ0

8π
(

3Mx + 3δixMx

r5 −

15
(
Mxx + Myy + Mzz

)
i

r7 )∆h. (11)
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It is known from Equation (11) that the magnitude of the magnetic gradient tensor error is
mainly determined by the first part Gxi

2h ∆h, and ∆Gxi will be larger when the magnetic gradient tensor
components are larger or the baseline distance is smaller.

3.2. The Correction Method for Magnetometer’s Position Error

In summary, the relationship between the measured tensor data with the magnetometer’s position
error is established as Gi j

′ = f (x, y, z, Mx, My, Mz, h, ∆h).
We can rotate the magnetic tensor gradiometer around the Z-axis to obtain M (M ≥ 2) groups of

measured magnetic gradient tensor data:

N =


Nxxθ1 Nxxθ2 Nxxθ3 · · · Nxxθ(M−1)

NxxθM

Nxyθ1 Nxyθ2 Nxyθ3 · · · Nxyθ(M−1)
NxyθM

Nxzθ1 Nxzθ2 Nxzθ3 · · · Nxzθ(M−1)
NxzθM

. (12)

The theoretical inaccurate magnetic gradient tensor data after rotation can be calculated according
to Equation (7):

Then, we can establish the error matrix between the actual measured tensor data and the
calculated ones:

E =


Nxxθ1 −Gxxθ1

′ Nxxθ2 −Gxxθ2
′
· · ·

Nxyθ1 −Gxyθ1
′ Nxyθ2 −Gxyθ2

′
· · ·

Nxzθ1 −Gxzθ1
′ Nxzθ3 −Gxyθ3

′
· · ·

. (13)

Finally, the error coefficient ∆h can be obtained by solving this nonlinear Equation (14) with a
suitable method:

F = min
{
ET
•E

}
. (14)

4. Numerical Simulation

4.1. Influence Assessment

In order to investigate the influence of the magnetometers’ position error on locating, the simulation
experiment is conducted as follows.

Simulation setup:

• A magnetic object, which can be seen as a magnetic dipole, is used as a target and placed
at the origin of the coordinates. Its magnetic moment is assumed as Mx = 4.5 × 107 A ·m2,
My = 1× 105 A ·m2, and Mz = 1× 106 A ·m2.

• The baseline length of the magnetic gradient tensor system is 0.5 m and the precision of the
magnetometer is 1 pT.

• A 600 m straight survey line containing 100 observation points is designed. It starts from point
(−300, 20, 100) m to point (300, 20, 100) m.

A schematic of the simulation experiment is shown in Figure 3.
The values of the magnetic gradient tensor and magnetic field intensity formed by the magnetic

target in each observation point are calculated respectively through Equations (4) and (1). The location
information of the target in each observation point can be estimated through Equation (5). Then, the
magnetic moment of the target can also be obtained by Equation (6). In order to assess the locating
performance, the location error and magnetic moment error of the target are defined as

errlocation = rtrue − restimated. (15)

errmagnetic moment = Mtrue −Mestimated. (16)
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The location error and magnetic moment error of the target along the survey line are calculated
and are shown in Figure 4a. The target locating based on Euler deconvolution has a high accuracy
with low location error (less than 0.2 m) and comparatively low magnetic moment error (less than
5× 104 A ·m2), which can be seen in Figure 4a.
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The position error of the magnetometer s1 (∆h= 0.005 m, ∆h/2h = 0.5%) is added in the magnetic
tensor gradiometer and the simulation experiment is carried out again. The simulation result is shown
in Figure 4b. The locating accuracy seriously degrades compared to Figure 4a. The location error
and magnetic moment error of the target increase to 2 m and 6× 105 A ·m2, respectively, due to the
presence of the magnetometer’s position error.

We can calculate the location error of the target caused by the position error of the magnetometer
s1 in each observation point through Equations (8), (9), and (10). The result is shown in Figure 5a,
which is nearly the same as the experimental results in Figure 4b. The magnetic gradient tensor and
magnitude of the gradient tensor error along the survey line are calculated through Equation (4) and
Equation (11) and are shown in Figure 5b,c. The differentiation of the target’s position vector to the
magnetic gradient tensor is drawn and shown in Figure 5e.
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(c) the magnetic gradient tensor, (d) ratio coefficient between gradient tensor error and gradient tensor,
and (e) differential of position vector to magnetic gradient tensor.

The tendency of the gradient tensor error is the same as that of the magnetic gradient tensor
according to Figure 5b,c, and the ratio coefficient between them is almost equal to ∆h/2h = 0.5%, which
can be seen in Figure 5d. This means that the magnitude of the magnetic gradient tensor error caused
by the magnetometer’s position error is mainly determined by the first part Gxi

2h ∆h in Equation (11).
Thus, the formula of ∆Gxi can be simplified as follows:

∆Gxi = Gxi −Gxi
′
≈

Gxi
2h

∆h. (17)

As shown in Figure 5e, we can see the tendency of the differential variation of location vectors x, y,
and z to Gxx, Gxy and Gxz respectively. Their values are almost zero in the near-target area, while they
sharply surge in the far target area. The location errors of the target in Figure 5a is determined by the
differential of location vectors to the magnetic gradient tensor and the magnetic gradient tensor error.
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4.2. Error Correction

In this section, a simulation experiment is designed to test the proposed correction method.
Simulation setup:

• A magnetic object with known magnetic moment (Mx = 4.5 × 107A ·m2, My = 1 × 105 A ·m2,
and Mz = 1× 106 A ·m2) is placed at the origin of the coordinates.

• Preset ∆h = 0.001m, ∆h = 0.003m, . . . . . . , ∆h = 0.01m.
• The baseline length of the magnetometer array is 0.5 m and the precision of the magnetometer is

1 pT. The measurement points, which are used to estimate ∆h, can be selected arbitrarily. Herein,
two points, (20, 20, 100) and (−300, 20, 100) m, with the same Y and Z of the survey line in
Section 4.1, are selected to exemplify the correction method.

The magnetometer array is rotated every 30◦ around the Z-axis to obtain more than 6 sets of
measured magnetic gradient tensor values. The unconstrained nonlinear equation is established
according to Equation (14) and the error parameters are estimated. The solution error of ∆h is defined as

err∆h =
∣∣∣∆hpreset − ∆hestimated

∣∣∣. (18)

The simulation results are listed in Table 1.

Table 1. The preset and estimated parameters in the simulation.

Number Preset ∆h(m)
(20, 20, 100) m (−300, 20, 100) m

Estimated ∆h(m) err∆h(m) Estimated ∆h(m) err∆h(m)

1 0.001 0.0007 0.0003 0.001 0
2 0.002 0.0017 0.0003 0.0019 0.0001
3 0.003 0.0027 0.0003 0.0029 0.0001
4 0.004 0.0036 0.0004 0.0039 0.0001
5 0.005 0.0045 0.0005 0.0049 0.0001
6 0.007 0.0062 0.0008 0.0068 0.0002
7 0.008 0.0071 0.0009 0.0077 0.0003
8 0.01 0.0089 0.0011 0.0096 0.0004

As shown in Table 1, the estimated error parameters are basically equal to the theoretical data
at these two points. This means that ∆h can be successfully obtained at both these points and
the calibration method proposed in Section 3.2 is feasible. The solution errors of ∆h at the point
(−300, 20, 100) m are much smaller, compared to the results at point (20, 20, 100) m, presumably
because the distance between the point (−300, 20, 100) m and the magnetic dipole is larger. Equation
(7) is deducted based on the assumption that the baseline length of the magnetometer array reaches
comparatively close to zero. When the distance between the measurement point and the magnetic
dipole is large enough, the baseline length of the magnetometer array can be seen as infinitesimal, and
the inaccurate magnetic tensor data calculated by Equation (7) can better fit the real measured data.
Therefore, the estimation of ∆h has a better performance.

We use the estimated result of point (20, 20, 100) m to correct the magnetic gradient tensor along
the survey line in Section 4.1 according to Equation (17) and use corrected data to carry out the locating
experiment again. The locating result after correction is presented in Figure 6. The location errors and
the magnetic moment errors of the target both largely declined after error correction.
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5. Conclusions

The position error of magnetometers in the magnetic gradient tensor system was analyzed based
on the model of a magnetic dipole. It can be seen from the simulation results that this error will
seriously affect the locating accuracy, so it is highly necessary to analyze and correct such an error for
precision. The function between position error and magnetic gradient tensor components is established.
An error calibration method based on this function is proposed and this method is profound for further
improving the capacity of the tensor system and performance of the localization algorithm.
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Appendix A

Derivation of Equation (7):

B1x
′ =

µ0
4π

 3(Mx(x+h+∆h)+My y+Mzz)(x+h+∆h)−Mx(x+h+∆h)2
−Mx y2+Mxz2

((x+h+∆h)2+y2+z2)
5
2


=

µ0
4π ( f (x + h + ∆h)g(x + h + ∆h))

(A1)

B3x =
µ0
4π

 3(Mx(x−h)+My y+Mzz)(x−h)−Mx(x−h)2
−Mx y2+Mxz2

((x−h)2+y2+z2)
5
2


=

µ0
4π ( f (x− h)g(x− h))

(A2)

B1x
′ and B3x denote the measured magnetic field intensity by senor s1, which has the position

error, and sensor s3, respectively. We can write the mathematical expression of B1x
′ and B3x according

to Equation (1), and Gxx
′ can be written as Equation (A3) according to Equation (4).

Gxx
′ = lim

2h→0

B1x
′
−B3x

2h =
µ0
4π lim

2h→0

( f (x+h+∆h)g(x+h+∆h)− f (x−h)g(x−h))
2h

=
µ0
4π lim

2h→0
1

2h ( f (x + h + ∆h)g(x + h + ∆h) − f (x− h)g(x + h + ∆h)

− f (x− h)g(x− h) + f (x− h)g(x + h + ∆h))

(A3)
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Simplify Equation (A3):

Gxx
′ =

µ0
4π lim

2h→0
1

2h

{
(2Mx(4xh + 2h∆h + ∆h2 + 2x∆h) + 3Myy(2h + ∆h) + 3Mzz(2h + ∆h))r−5

−
5
2 A•(4hx + ∆h2 + 2h∆h + 2x∆h)r−7

−A• 35
8 ((2hx + h2 + ∆h2 + 2h∆h + 2x∆h)2

− (−2hx + h2))r−9 + · · · }
(A4)

where A = 3
(
Mxx + Myy + Mzz

)
x−Mxx2

−Mxy2 + Mxz2.
When 2h reaches extremely close to zero, Equation (A4) can be simplified as

Gxx
′
≈

µ0
4π

1
2h {(2Mx(4xh + 2h∆h + 2x∆h) + 3Myy(2h + ∆h) + 3Mzz(2h + ∆h))r−5

+(3(Mxx + Myy + Mzz)x−Mxx2
−Mxy2

−Mxz2)(− 5
2 (4hx + 2h∆h + 2x∆h)r−7)}

. (A5)

The mathematical expression of Gxy
′ and Gxz

′ can be obtained in the same way. In order to test
the fitting degree of measured data and data calculated by the mathematical method, the simulation is
carried out and the result is shown in Figure A1. The calculated data fit the measured data well when
∆h is small relative to h according to the simulation result.
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Figure A1. The simulation results of fitting degree.

The simulation conditions are listed as follows:

• The magnetic moment of the magnetic object: Mx = 4.5 × 107A ·m2, My = 1 × 105 A ·m2,
and Mz = 1× 106 A ·m2.

• h = 0.2m and 0 ≤ ∆h
h ≤ 0.1.

• The observation point is arbitrarily selected as (20, 10, 10)m.
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