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Abstract: In this paper, a data-driven optimal scheduling approach is investigated for continuous-time
switched systems with unknown subsystems and infinite-horizon cost functions. Firstly, a policy
iteration (PI) based algorithm is proposed to approximate the optimal switching policy online quickly
for known switched systems. Secondly, a data-driven PI-based algorithm is proposed online solely
from the system state data for switched systems with unknown subsystems. Approximation functions
are brought in and their weight vectors can be achieved step by step through different data in the
algorithm. Then the weight vectors are employed to approximate the switching policy and the cost
function. The convergence and the performance are analyzed. Finally, the simulation results of two
examples validate the effectiveness of the proposed approaches.
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1. Introduction

Switched systems consisting of several subsystems and a switching policy ruling the switching
among them [1,2] arise in certain application situations [3,4] such as a system which has to collect data
sequentially from a number of sensory sources and switches its attention among the data sources [5,6].
The switching among subsystems complicates the control problems and many of the problems remain
to be open such as the optimal control problems. Optimal control [7,8] problems of switched systems
have attracted considerable attention over the past few years. Thereinto, the optimal scheduling
problem of switched systems is investigated in this paper.

Multiple approaches have been introduced to solve the optimal control problems for switched
systems. Gradient-based approaches are investigated to solve the optimal switching time problems [9]
and optimal scheduling problems [10,11] directly, usually in a finite time horizon. By utilizing
control inputs to represent the switching policy, embedding approaches transform the optimal control
problems of switched systems to traditional optimal control problems to address [12–14]. Adaptive
dynamic programming (ADP) [15] approaches are introduced to solve the optimal control problems for
switched systems with different initial conditions directly [16–22]. For optimal scheduling of switched
systems with infinite-horizon cost functions, ADP approaches perform well to provide approximate
global optimal solutions directly.

Approximate global optimal solutions are derived in feedback forms through ADP for optimal
scheduling of switched systems with discrete-time dynamics and finite-horizon cost functions [17] or
infinite-horizon cost functions [18]. Then further research is conducted for problems with switching
cost [19] or state jumps [20]. For optimal scheduling of switched systems with continuous-time
dynamics, an approximate feedback solution is proposed based on policy iteration (PI) algorithm
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with its offline, online, and concurrent implementation [21]. Then, a PI algorithm with recursive
least squares is proposed and modified into a single loop PI algorithm to reduce the computational
burden [22].

The aforementioned optimal control approaches are deduced based on the a priori knowledge
of system models. However, not all system models can be completed acquired so that approaches
independent of system models [23–25] require investigated. For this purpose, some model-free
optimal control approaches have been studied for switched systems. Adaptive dynamic programming
approaches are presented respectively for a continuous-time switched system with an infinite-horizon
cost function [26] and a discrete-time switched system with a finite-horizon cost function [27] under
the assumption that dynamic equations can be evaluated at some sets. Gradient-decent approaches
only employing state data are proposed to solve optimal switching problems for continuous-time
switched systems with finite-horizon cost functions [28,29]. Data-driven research utilizes real-life
data measured by sensory sources to achieve the intrinsic information of systems [30] and can solve
the problems of switched systems with unknown subsystems, such as the data-driven framework
for discovering cyber-physical systems directly from the data [31]. Thereinto, data-driven ADP
approaches provide possible solutions for optimal control problems of switched systems [32–34] and
based on that, the following approach is designed to adapt to the complexity of switched systems
which is brought by switching. Then in this paper, the data-driven optimal scheduling approach is
investigated for continuous-time switched systems with unknown subsystems. At first, an online
PI-based algorithm inspired by the off-policy learning method [35,36] is proposed to approximate the
optimal solution quickly for optimal scheduling problems with known system models first and based
on that, a data-driven PI-based algorithm is formulated for optimal scheduling of continuous-time
switched systems with infinite-horizon cost functions, which don’t require that dynamic equations can
be evaluated or known at some sets. Moreover, common online algorithms usually keep collecting
data with the updating switching policies applied to the system at each iteration while the online
algorithms in this paper take advantages of the data produced only by the initial switching policy.

The contribution of this paper is stated as follows: (1) with the data produced by the initial
switching policy, an online PI-based algorithm is proposed to approximate the optimal solution quickly
for optimal scheduling of known switched systems. (2) A data-driven PI-based algorithm is designed
to solve optimal scheduling problems for switched systems with infinite-horizon cost functions and
unknown subsystems, solely from the data produced by the initial switching policy, which has not
been achieved well in existing literature as far as we know. (3) The convergence is proved and the
optimality is analyzed.

The remainder of the paper is organized as follows. In Section 2, the problem is stated
and the classic PI approach is introduced for the optimal scheduling problem. In Section 3,
online PI-based algorithms are proposed for switched systems with known subsystems and unknown
subsystems. In Section 4, simulation results are shown to indicate the effectiveness of the algorithms.
Finally, the conclusion is drawn in Section 5.

2. Preliminaries

Consider the switched system as follows:

ẋ(t) = fv(x(t)), x(0) = x0, (1)

where x(t) ∈ Rn is the system state, v ∈ V represents the index of the active subsystem, V =

{1, 2, . . . , N} is the index set of all subsystems, N is the number of subsystems, and fv : Rn → Rn

denotes the unknown dynamics of subsystem v. fv(v ∈ V) is Lipschitz continuous in Ω where Ω ⊂ Rn

including the origin is the region of interest and there exists v ∈ V such that fv(0) = 0.
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In this paper, the problem to be addressed consists in seeking out the optimal switching policy v∗

to minimize the following cost function:

J =
∫ ∞

0
Q(x(τ))dτ, (2)

where Q : Rn → R is a positive definite function. During the time interval, the cost-to-go from the time
t to infinity with the state x(t) at time t can be described as [37]:

V(x(t)) =
∫ ∞

t
Q(x(τ))dτ (3)

and then

V(x(t)) =
∫ t+δt

t
Q(x(τ))dτ + V(x(t + δt)). (4)

For the optimal problem, the admissible switching policy should be introduced and the relevant
assumption is made as [22].

Definition 1. For system (1), a switching policy is called admissible with respect to the cost (2), if it stabilizes
the system in Ω and for all x0 ∈ Ω, the cost V(x0) is finite.

Assumption 1. There exists at least one admissible policy for the system.

According to the Bellman principle of optimality, the optimal cost-to-go can be represented by

V∗(x(t)) = min
v

(
∫ t+δt

t
Q(x(τ))dτ + V∗(x(t + δt))), (5)

and when δt → 0 , the corresponding optimal switching policy v∗ can be represented in a
state-feedback form:

v∗(x) = arg min
v

(
∫ t+δt

t
Q(x(τ))dτ + V∗(x(t + δt))). (6)

When δt→ 0, with first-order Taylor expansion of V∗(x(t + δt)) applied in (5) and (6), the HJB
equation can be given as [21]:

min
v(x)

(Q(x) + (
∂V∗(x)

∂x
)T fv(x)(x)) = Q(x) + (

∂V∗(x)
∂x

)T fv∗(x)(x) = 0,

where x = x(t), ∂(·)
∂x = [ ∂(·)

∂x1
, ∂(·)

∂x2
, . . . , ∂(·)

∂xn
]T when (·) is a scalar and the corresponding optimal switching

policy v∗ is given as [21]:

v∗(x) = arg min
i∈V

((
∂V(x)

∂x
)T fi(x)).

Then, a PI approach can be applied to solve the optimal scheduling problem. Given an admissible
switching policy v0, the PI approach [21,22] is stated as follows:

Q(x) + (
∂Vk(x)

∂x
)T fvk(x)(x) = 0 (7)

vk+1(x) = arg min
i∈V

((
∂Vk(x)

∂x
)T fi(x)), (8)
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where k is the iteration number. The cost-to-go is solved in policy evaluation (7) and the switching
policy is updated in policy improvement (8) iteratively. The stability and convergence are stated in the
following theorem which has been proved in [21,38].

Theorem 1. For the system (1) with the cost (2), if the value function sequence {Vk}∞
k=0 and the switching

policy sequence {vk}∞
k=0 are generated through (7) and (8) initiating from a stabilizing initial policy v0, the value

functions {Vk}∞
k=0 converge to the optimal value function V∗, and the switching policies {vk}∞

k=0 stabilize the
system in Ω.

3. Main Results

3.1. PI-Based Algorithm for Known Switched Systems

The offline, online and concurrent implementation of the aforementioned PI approach for switched
systems with known dynamics has been investigated in references [21,22,38]. In this subsection, a novel
online PI-based algorithm is proposed to approximate the optimal switching policy quickly.

Common online algorithms keep collecting data from the systems to evaluate and improve the
switching policy. To be specific, once a new switching policy is produced at each iteration, it is applied
to the system and the newly produced data is collected to calculate a new cost and a new switching
policy. It entails considerable time to apply the new switching policy, collect new data and calculate a
new cost and a new switching policy sequentially at each iteration. Aiming at this, inspired by the
off-policy ADP methods for ordinary systems [36,39,40], an online PI-based algorithm is proposed to
approximate the optimal switching policy quickly with only an initial switching policy applied and
only the data produced by the initial switching policy is required. Next, the algorithm starts from the
initial admissible switching policy.

With the initial admissible switching policy v0 applied only, large amounts of data can be produced
in the process and the state trajectory x(t) corresponding to the switching policy v0 can be acquired
which will be employed in the subsequent derivation. Along the acquired state trajectory x(t),
Vk(x(t + δt))−Vk(x(t)) can be represented as

Vk(x(t + δt))−Vk(x(t)) =
∫ t+δt

t
(

∂Vk(x)
∂x

)
T

fv0(x)(x)dτ, (9)

where δt > 0 is very small. To combine the policy iteration and the cost at the acquired state, integrating
(7) along the acquired state trajectory x(t) and adding the integration to (9) yield

Vk(x(t + δt))−Vk(x(t)) =
∫ t+δt

t
(

∂Vk(x)
∂x

)
T

( fv0(x)(x)− fvk(x)(x))dτ −
∫ t+δt

t
Q(x)dτ. (10)

The cost Vk(x) is unknown. However, for all x ∈ Ω, it can be expressed by:

Vk(x) = WkΦ(x) + ek
Φ(x), (11)

where Φ(x) = [Φ1(x), Φ2(x), . . . , ΦNw(x)]T is a vector concerning a set of linearly independent basis
functions Φj(x) : Rn → R(j = 1, 2, . . . , Nw), Wk ∈ R1×Nw is the weight vector and ek

Φ(x) is the
approximation error. Nw is the number of the basis functions. A set of basis functions can constitute a
particular basis of a function space and can almost approximate any function in the function space.
With the approximation function (11) applied, Equation (10) can be transformed into

Wk[Φ(x(t + δt))−Φ(x(t)) +
∫ t+δt

t

∂Φ(x)
∂x

( fvk(x)(x)− fv0(x)(x))dτ]=−
∫ t+δt

t
Q(x)dτ + ek

1(t), (12)
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where ∂(·)
∂x = [

∂(·)1
∂x , ∂(·)2

∂x , . . . , ∂(·)m
∂x ]T ∈ Rm×n when (·) = [(·)1, (·)2, . . . , (·)m]T ∈ Rm and ek

1(t) =

ek
Φ(x(t))− ek

Φ(x(t + δt)) +
∫ t+δt

t
∂ek

Φ(x)
∂x ( fv0(x)(x)− fvk(x)(x))dτ is the approximation error. Then the

estimation can be achieved:

Ŵk[Φ(x(t + δt))−Φ(x(t)) +
∫ t+δt

t

∂Φ(x)
∂x

( fv̂k(x)(x)− fv0(x)(x))dτ]=−
∫ t+δt

t
Q(x)dτ, (13)

where the estimate v̂k(x) is achieved through substituting the estimate Ŵk and the approximation (11)
into (8) as follows:

v̂k+1(x) = arg min
i∈V

(Ŵk ∂Φ(x)
∂x

fi(x)), (14)

with the initial switching policy estimate v̂0(x) = v0(x).
To employ the acquired state data corresponding to some selected instants, some data matrices

can be defined as follows:
Φ̄(tr) = Φ(x(tr + δt))−Φ(x(tr))

b(tr) =
∫ tr+δt

tr

∂Φ(x)
∂x

( fv̂k(x)(x)− fv0(x)(x))dτ

d(tr) =
∫ tr+δt

tr
Q(x)dτ

where t1 < t2 < · · · < tl are the selected instants, l is a positive integer, r = 1, 2, . . . l, Φ̄(tr) ∈ RNw ,
b(tr) ∈ RNw and d(tr) ∈ R. The following assumption concerning the data matrices is made as [40,41]:

Assumption 2. There exist a positive integer L̄ and a positive number α such that for all L ≥ L̄, the following
equality holds:

1
L

L

∑
r=1

(Φ̄(tr) + b(tr))(Φ̄(tr) + b(tr))
T ≥ αINw .

In optimal control of ordinary systems, this kind of assumption can be satisfied by exerting an
exploration noise in the input [39,40]. In the case of the switched systems, according to [21,22], it can
be satisfied through random switching.

Then based on Assumption 2, Ŵk can be achieved with the data matrices as the following formula:

Ŵk=− [
L

∑
r=1

d(tr)(Φ̄(tr) + b(tr))
T ] · [

L

∑
r=1

(Φ̄(tr) + b(tr))(Φ̄(tr) + b(tr))
T ]−1. (15)

According to the analysis, the online PI-based algorithm for switched systems with known
dynamics can be formulated in Algorithm 1.

Algorithm 1 Online policy iteration (PI)-based Algorithm.

Step 1. Start with an initial admissible switching policy v0(x) and set the iteration index k = 0.
Step 2. Apply v0(x) in the switched systems and acquire the state data. Set v̂0(x) = v0(x) . Calculate
Φ̄(tr) and d(tr) for r = 1, 2, . . . , l according to their definition with the state data.
Step 3. Calculate b(tr) for r = 1, 2, . . . , l according to its definition with the state data and then calculate
Ŵk from (15).
Step 4. Update the switching policy v̂k+1(x) as (14).
Step 5. If

∥∥∥Ŵk − Ŵk−1
∥∥∥ < ε, set Ŵ∗ = Ŵk and exit. Otherwise, set k = k + 1 and go back to Step 3.

In the algorithm, when the switching policy v0(x) is applied, the corresponding system state
data can be obtained. With multiple samples, multiple data matrix Φ̄(tr) and b(tr) will be calculated.
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Sufficient samples should be employed to satisfy that 1
L

L
∑

r=1
(Φ̄(tr) + b(tr))(Φ̄(tr) + b(tr))

T ≥ αINw

with a proper α so that the sampling stage must be long enough to ensure that. Moreover, since the
weight vector Ŵk to be solved in Equation (15) has Nw components, at least Nw instants tr should
be employed to solve Ŵk so that r is no less than Nw. Then through the algorithm, the approximate
optimal cost function can be achieved as V̂∗(x) = Ŵ∗Φ(x) with the corresponding approximate
optimal switching policy v̂∗(x) = arg min

i∈V
(Ŵ∗ ∂Φ(x)

∂x fi(x)). It can be seen from Algorithm 1 that only

the initial switching policy is applied and then Algorithm 1 can approximate the optimal switching
policy quickly with the data produced by the initial switching policy.

3.2. Data-Driven PI-Based Algorithm for Unknown Switched Systems

In this subsection, based on the proposed PI approach dependent on system models, a data-driven
PI-based algorithm is proposed for switched systems with unknown subsystems. The algorithm takes
full advantage of data produced by an initial switching policy to approximate the optimal switching
policy quickly.

From Section 3.1, with the initial admissible switching policy v0 applied and along the acquired
state trajectory x(t), (10) can be achieved and the cost function can be represented by (11). In the

process, ∂Vk(x)
∂x can be represented by (Wk ∂Φ(x)

∂x )T and solved with known system models. However,

due to the unknown subsystem models, Wk ∂Φ(x)
∂x fi(x) representing ( ∂Vk(x)

∂x )T fi(x) cannot work well
as Section 3.1. So another approximation function is brought in to solve the problem. For all x ∈ Ω,

the unknown variable ( ∂Vk(x)
∂x )T fi(x), i ∈ V can be expressed by:

(
∂Vk(x)

∂x
)T fi(x) = Ck

i Ψ(x) + ek
Ψ,i(x), (16)

where Ψ(x) = [Ψ1(x), Ψ2(x), . . . , ΨNc(x)]T is a vector concerning a set of linearly independent basis
functions Ψj(x) : Rn → R(j = 1, 2, . . . , Nc), Ck

i , i ∈ V are the weight vectors and ek
Ψ,i(x) is the

approximation error. Nc is the number of the basis functions.
With the approximation functions (11) and (16) applied, Equation (10) can be transformed into

Wk(Φ(x(t + δt))−Φ(x(t))) +
∫ t+δt

t
(Ck

vk(x) − Ck
v0(x))Ψ(x)dτ = −

∫ t+δt

t
Q(x)dτ + ek

2(t), (17)

where ek
2(t) =

∫ t+δt
t (ek

Ψ,v0(x)(x)− ek
Ψ,vk(x)(x))dτ + ek

Ψ(x(t))− ek
Ψ(x(t + δt)) is the approximation error.

Since δt is very small, the values of vk(x) and v0(x) can be seen to be constant during the time
interval [t, t + δt) so that Ck

v0(x) and Ck
vk(x) are constant during the time interval [t, t + δt). Therefore,

the estimation can be made as (18):

Ŵk(Φ(x(t + δt))−Φ(x(t))) + (Ĉk
v̂k(x) − Ĉk

v0(x))
∫ t+δt

t
Ψ(x)dτ = −

∫ t+δt

t
Q(x)dτ. (18)

For the subsequent algorithm, in addition to the data matrices defined in Section 3.1, some more
matrices are required which are defined as follows:

g(tr) =
∫ tr+δt

tr
Ψ(x(τ))dτ

where t1 < t2 < · · · < tl , l is a positive integer, g(tr) ∈ RNc and r = 1, 2, . . . l.
At first, the following assumption concerning the data matrices is made as Assumption 2:
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Assumption 3. There exist a positive integer L̄′ and a positive number α such that for all L ≥ L̄′, the following
equalities hold:

1
L

L

∑
r=1

Φ̄(tr)Φ̄(tr)
T ≥ αINw

where the time instants tr satisfies the condition that v̂k(x(tr)) = v0(x(tr));

1
L

L

∑
r=1

Ψ(x(tr))Ψ(x(tr))
T ≥ αINc

where the time instants tr satisfies the condition that v0(x(tr)) = i for ∀i ∈ V;

1
L

L

∑
1

g(tr)g(tr)
T ≥ αINc

where the time instants tr satisfies the conditions that v̂k(x(tr)) = i and v0(x(tr)) = j for ∀i 6= j, (i, j ∈ V).

Remark 1. Since the vector Ĉk
v̂k(x) − Ĉk

v0(x) changes as x changes, the weight vector Ŵk and Ĉk
v̂k(x) cannot

be solved directly from (18) with the data matrices as Section 3.1. The difficulty in this problem is mainly
calculating the weight vector Ŵk and Ĉk

v̂k(x) or achieve enough useful knowledge about the weight vectors
through the state data.

Based on the above analysis, the following approach is designed to acquire useful knowledge
about the weight vector Ŵk and Ĉk

v̂k(x) step by step through different state data. The weight vector Wk

is discussed firstly. The state data satisfying the condition that v̂k(x) = v0(x) is selected from all the
state data and then utilized in (18). It is obvious that when v̂k(x) = v0(x), Ĉk

v̂k(x) = Ĉk
v0(x) and (18) can

be simplified to:

Ŵk(Φ(x(t + δt))−Φ(x(t))) = −
∫ t+δt

t
Q(x)dτ. (19)

Under Assumption 3, the estimate of the weight vector Wk can be achieved from (19) with the
data matrices defined in Section 3.1 concerning certain states as follows:

Ŵk=− (
L

∑
r=1

d(tr)Φ̄(tr)
T)(

L

∑
r=1

Φ̄(tr)Φ̄(tr)
T)−1, (20)

where the time instants tr satisfies the condition that v̂k(x(tr)) = v0(x(tr)).
Then, we concentrate on estimating the weight vector of Ck

i . Along the acquired state trajectory
x(t) produced by the switching policy v0, it can be obtained from (16) and (7) that when k = 0 the
following formula holds:

∫ t+δt

t
C0

v0(x)Ψ(x)dτ +
∫ t+δt

t
e0

Ψ,v0(x)(x)dτ +
∫ t+δt

t
Q(x)dτ = 0. (21)

The estimation can be made as follows:

Ĉ0
v0(x)

∫ t+δt

t
Ψ(x)dτ +

∫ t+δt

t
Q(x)dτ = 0.

Under Assumption 3, the estimate of the weight vector C0
i can be easily achieved as follows:

Ĉ0
i = −[

L

∑
1

d(tr)g(tr)
T ](

L

∑
1

g(tr)g(tr)
T)−1, (22)
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where the time instants tr satisfies the condition that v0(x(tr)) = i(i ∈ V).
Though the weight vector Ck

i is not easy to estimate, the estimate of Ck
i − Ck

j (i 6= j) can be easily
achieved from (18) with the data matrices concerning certain states under Assumption 3 as follows:

Ĉk
i − Ĉk

j = −[
L

∑
1
(d(tr) + ŴkΦ̄(tr))g(tr)

T ](
L

∑
1

g(tr)g(tr)
T)−1, (23)

where the time instants tr satisfies the conditions that v̂k(x(tr)) = i and v0(x(tr)) = j (i, j ∈ V and
i 6= j).

For a certain state x, ( ∂Vk(x)
∂x )T fv0(x)(x) is constant and arg min

i∈V
(( ∂Vk(x)

∂x )T fi(x)) =

arg min
i∈V

(( ∂Vk(x)
∂x )T fi(x)− ( ∂Vk(x)

∂x )T fv0(x)(x)). Therefore, on the basis of (8), employing the estimate of

(22) and (23), the switching policy vk+1(x) is estimated by

v̂k+1(x) =


arg min

i∈V
(Ĉ0

i Ψ(x)) k = 0

arg min
i∈V

(Ĉk
i − Ĉk

v0(x))Ψ(x) k > 0
(24)

with the initial switching policy estimate v̂0(x) = v0(x).
The approach utilizes different parts of the acquired state data to calculate the weight vector Ŵk,

C0
i andCk

i − Ck
j (i 6= j) respectively. Then the weight vectors are employed to calculate the switching

policy and the cost function.
According to the aforementioned analysis, the data-driven PI-based algorithm for switched

systems can be formulated as follows:
Then, the approximate optimal cost function can be achieved as V̂∗(x) = Ŵ∗Φ(x) with the

corresponding approximate optimal switching policy v̂∗(x) = arg min
i∈V

((Ĉk
i − Ĉk

v0(x))Ψ(x)).

Remark 2. In Algorithm 2, only the initial switching policy v0(x) requires to be applied in the system and the
produced state data is collected at the beginning. The data matrices Φ̄(tr), d(tr) and g(tr) are calculated once at
the beginning and don’t require to be calculated repeatedly at each iteration. It is very convenient and timesaving
to operate online according to Algorithm 2 and the calculation time is very short. Therefore, the optimal cost
can be approximated rapidly in Algorithm 2. Moreover, Algorithm 2 is only based on data with no need for the
knowledge of subsystems.

Algorithm 2 Data-driven PI-based algorithm.

Step 1. Start with an initial admissible switching policy v0(x) and set the iteration index k = 0.
Step 2. Apply v0(x) in the switched systems and acquire the state data. Set v̂0(x) = v0(x) . Calculate
Φ̄(tr), d(tr) and g(tr) for r = 1, 2, . . . , l according to their definition with the state data.
Step 3. Calculate Ĉ0

i for all i ∈ V from (22) and then calculate v̂1(x) from (24). Set k = 1.
Step 4. Calculate Ŵk from (20) and then calculate Ĉk

i − Ĉk
j from (23) for all i 6= j (i, j ∈ V).

Step 5. Update the switching policy v̂k+1(x) as (24).
Step 6. If

∥∥∥Ŵk − Ŵk−1
∥∥∥ < ε, set Ŵ∗ = Ŵk and exit. Otherwise, set k = k + 1 and go back to Step 4.

Next, the convergence of Algorithm 2 is analyzed. Based on Theorem 1, Theorem 2 is stated for
the convergence analysis of Algorithm 2.

Theorem 2. For system (1) with cost (2) under Assumptions 1 and 3, if the value function sequence {Vk}∞
k=0

and the switching policy sequence {vk}∞
k=0 are generated through (7) and (8) initiating from an initial admissible
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policy v0, for ∀ε > 0 and all x ∈ Ω, there exists N̄ > 0 such that for ∀N > N̄, when δt approaches to zero,
the following inequalities hold: ∣∣∣V̂k(x)−Vk(x)

∣∣∣ < ε, v̂k(x) = vk(x),

where N = min{Nw, Nc}, V̂k(x) = ŴkΦ(x), Ŵk and v̂k are generated through (20) and (24) in Algorithm 2,
and k = 0, 1, . . ..

Proof of Theorem 2. Mathematical induction is utilized to prove the convergence.
Firstly, we discuss the theorem when k = 0. When k = 0, v̂0(x) = v0(x), Ĉk

v̂0(x) = Ĉk
v0(x) and it

can be achieved from (17) and (18) that:

(Ŵ0 −W0)(Φ(x(t + δt))−Φ(x(t))) = −e0
2(t)

and
L

∑
r=1

(Ŵ0 −W0)Φ̄(tr)(Φ̄(tr))
T(Ŵ0 −W0)

T
=

L

∑
r=1

e0
2(tr)

2.

According to Assumption 3, it follows that

1
L

L

∑
r=1

Φ̄(tr)(Φ̄(tr))
T ≥ αINw

and then
∥∥Ŵ0 −W0

∥∥2 ≤ 1
αL

L
∑

r=1
e0

2(tr)
2. The approximation theory [42] yields that for all x ∈ Ω,

lim
Nw→∞

e0
Φ(x) = 0, then lim

Nw→∞
e0

2(tr) = 0. Therefore, for ∀ε > 0 and ∀x ∈ Ω, there exists N̄w > 0 such that

for ∀Nw > N̄w,
∥∥Ŵ0 −W0

∥∥2 ≤ ε and then
∣∣V̂0(x)−V0(x)

∣∣ < ε. It follows that lim
Nw→∞

∥∥Ŵ0 −W0
∥∥ = 0

and lim
Nw→∞

V̂0(x) = V0(x) for ∀x ∈ Ω. Then, it can be achieved from (21) and (22) that:

(Ĉ0
v0(x) − C0

v0(x))
∫ t+δt

t
Ψ(x)dτ =

∫ t+δt

t
e0

Ψ,v0(x)(x)dτ +
∫ t+δt

t
(C0

v0(x(τ)) − C0
v0(x(t)))Ψ(x)dτ.

Similarly, the approximation theory [42] yields that for all x ∈ Ω, lim
Nw→∞

e0
Ψ,i(x) = 0(i ∈ V) and

then lim
δt→0

∫ t+δt
t (C0

v0(x(τ)) − C0
v0(x(t)))Ψ(x)dτ = 0. Under Assumption 3, it can be deduced that for

∀x ∈ Ω, lim
Nc→∞
δt→0

( ∂V0(x)
∂x )̂

T
fi(x) = ( ∂V0(x)

∂x )T fi(x). It implies that lim
Nc→∞
δt→0

v̂1(x) = v1(x) for ∀x ∈ Ω.

Secondly, we consider the theorem when k = 1. When k = 1, lim
Nc→∞

Ĉ1
v̂1(x) = Ĉ1

v1(x). When Ŵ1 is

calculated, for ∀x ∈ Ω and it can be achieved from (17) to (19) that:

(Ŵ1 −W1)(Φ(x(t + δt))−Φ(x(t))) + (Ĉ1
v̂1(x) − Ĉ1

v0(x))
∫ t+δt

t Ψ(x)dτ−∫ t+δt
t (C1

v1(x) − C1
v0(x))Ψ(x)dτ = −e1

2(t),

where v̂1(x) = v0(x) and thus lim
Nc→∞

v1(x) = v0(x) for ∀x ∈ Ω. Then it can be inferred that when

Nc → ∞
(Ŵ1 −W1)(Φ(x(t + δt))−Φ(x(t))) = −e1

2(t)
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Under Assumption 3, it can be deduced that for all x ∈ Ω, lim
Nw→∞

e1
2(tr) = 0,

lim
Nw ,Nc→∞

∥∥Ŵ1 −W1
∥∥ = 0 and lim

Nw ,Nc→∞
V̂1(x) = V1(x). Then, it can be achieved from (17), (18)

and (23) that:

(Ĉ1
v̂1(x) − Ĉ1

v0(x))
∫ t+δt

t Ψ(x)dτ −
∫ t+δt

t (C1
v1(x) − C1

v0(x))Ψ(x)dτ

= −e1
2(t)− (Ŵ1 −W1)(Φ(x(t + δt))−Φ(x(t))).

Since it can be achieved that
∫ t+δt

t (C1
v1(x) − C1

v0(x))Ψ(x)dτ = (C1
v1(x) − C1

v0(x))
∫ t+δt

t Ψ(x)dτ +

e1
3(t) where e1

3(t) =
∫ t+δt

t ((C1
v1(x(τ)) − C1

v1(x(t)))− (C1
v0(x(τ)) − C1

v0(x(t)))Ψ(x)dτ, it can be inferred that

[(Ĉ1
v̂1(x) − Ĉ1

v0(x))− (C1
v1(x) − C1

v0(x))]
∫ t+δt

t Ψ(x)dτ

= e1
3(t)− e1

2(t)− (Ŵ1 −W1)(Φ(x(t + δt))−Φ(x(t))).

Since lim
δt→0

e1
3(t) = 0, lim

Nw→∞
e1

2(t) = 0 and lim
Nw ,Nc→∞

∥∥Ŵ1 −W1
∥∥ = 0, under Assumption 3, it can

be deduced that lim
Nw ,Nc→∞

δt→0

‖ (Ĉ1
v̂1(x) − Ĉ1

v0(x)) − (C1
v1(x) − C1

v0(x)) ‖ = 0 and then lim
Nw ,Nc→∞

δt→0

(Ĉ1
v̂1(x) −

Ĉ1
v0(x))Ψ(x) = (C1

v1(x) − C1
v0(x))Ψ(x) for ∀x ∈ Ω. It implies that lim

Nw ,Nc→∞
δt→0

v̂2(x) = v2(x) for ∀x ∈ Ω.

Thirdly, we suppose the theorem holds when k = k. That is to say, lim
Nw ,Nc→∞

δt→0

V̂k(x) = Vk(x) and

lim
Nw ,Nc→∞

δt→0

v̂k+1(x) = vk+1(x) for ∀x ∈ Ω. When Ŵk+1 is calculated, it can be achieved from (17) to

(19) that:

(Ŵk+1 −Wk+1)(Φ(x(t + δt))−Φ(x(t))) + (Ĉk+1
v̂k+1(x) − Ĉk+1

v0(x))
∫ t+δt

t Ψ(x)dτ−∫ t+δt
t (Ck+1

vk+1(x) − Ck+1
v0(x))Ψ(x)dτ = −ek+1

2 (t)

where v̂k+1(x) = v0(x) and lim
Nw ,Nc→∞

δt→0

vk+1(x) = v0(x) for ∀x ∈ Ω. Then it can be inferred that

(Ŵk+1 −Wk+1)(Φ(x(t + δt))−Φ(x(t))) = −ek+1
2 (t)

Under Assumption 3, it can be deduced that lim
Nw ,Nc→∞

δt→0

∥∥∥Ŵk+1 −Wk+1
∥∥∥ = 0 and

lim
Nw ,Nc→∞

δt→0

V̂k+1(x) = Vk+1(x) for ∀x ∈ Ω. Then, it can be achieved from (17), (18) and (23) that:

[(Ĉk+1
v̂k+1(x) − Ĉk+1

v0(x))− (Ck+1
vk+1(x) − Ck+1

v0(x))]
∫ t+δt

t Ψ(x)dτ

= −(Ŵk+1 −Wk+1)(Φ(x(t + δt))−Φ(x(t)))− ek+1
2 (t) + ek+1

3 (t),

where ek+1
3 (t) =

∫ t+δt
t ((Ck+1

vk+1(x(τ))−Ck+1
vk+1(x(t)))− (Ck+1

v0(x(τ))−Ck+1
v0(x(t)))Ψ(x)dτ. Since lim

δt→0
ek+1

3 (t) = 0,

lim
Nw→∞

ek+1
2 (t) = 0 and lim

Nw ,Nc→∞
δt→0

∥∥∥Ŵk+1 −Wk+1
∥∥∥ = 0, under Assumption 3, it can be deduced that

lim
Nw ,Nc→∞

δt→0

∥∥∥(Ĉk+1
v̂k+1(x) − Ĉk+1

v0(x))− (Ck+1
vk+1(x) − Ck+1

v0(x))
∥∥∥ = 0 and then lim

Nw ,Nc→∞
δt→0

(Ĉk+1
v̂k+1(x) − Ĉk+1

v0(x))Ψ(x) =

(Ck+1
vk+1(x) − Ck+1

v0(x))Ψ(x) for ∀x ∈ Ω. It implies that lim
Nw ,Nc→∞

δt→0

v̂k+2(x) = vk+2(x) for ∀x ∈ Ω. In brief, it

can be deduced that the theorem holds when k = k + 1 from the supposition that the theorem holds
when k = k.

The proof is completed through mathematical induction.
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It can be achieved from Theorem 2 that the value function V̂k(x) generated through Algorithm 2
is an approximation of Vk(x) and the corresponding switching policy is v̂k(x) = vk(x) if the
preconditions are satisfied. Theorem 2 combined with Theorem 1 indicates that the value function
V̂∗(x) = Ŵ∗Φ(x) is the approximate optimal cost function with the corresponding approximate
optimal switching policy v̂∗(x) = arg min

i∈V
((Ĉk

i − Ĉk
v0(x))Ψ(x)).

Remark 3. In practice, the error of the approximation exists and the small parameter δt can not get infinitely
close to zero so that the solution calculated from Algorithm 2 is suboptimal.

4. Example

In this section, two examples are illustrated to validate the effectiveness of the suboptimal
scheduling approach of Algorithm 1 and the data-driven suboptimal scheduling approach of
Algorithm 2 in this paper.

Example 1. Consider a switched system as [21,38] consisting of the following subsystems:

ẋ(t) = f1(x(t)) = −x(t), ẋ(t) = f2(x(t)) = −x3(t)

with x(0) = 2 and Q(x(t)) = x2(t).

The optimal switching policy can be known from [17] as

v∗(x) =

{
1 x ≤ 1
2 x > 1

Choose the initial switching policy v0(x) = 1 when x ≤ 1.5 and v0(x) = 2 when x > 1.5. The basis
functions are Φ(x) = [x2, x4, x6, x8, x10]T selected as [21]. Set the sample period δt = 0.002 s.

Apply Algorithm 1 and utilize the online state data from t = 0 to 0.2 s. Then after calculation in
0.02 s, the approximate optimal cost is achieved with the corresponding approximate optimal switching
policy through 3 iterations. The initial cost V̂0, the approximate optimal cost V̂k and the optimal cost
V∗ are demonstrated in Figure 1. The largest error between V̂k and V∗ is 0.1621 and it is obvious that
the approximate optimal cost V̂k is very close to the optimal cost of V∗. The state trajectories with the
initial switching policy v0, the approximate optimal switching policy v̂k and the optimal switching
policy v∗ applied in the system after t = 0.25 s are demonstrated in Figure 2, where the state trajectory
corresponding to v̂k coincides with the one corresponding to v∗ and their largest error is zero while
the largest error between the state trajectory corresponding to v0 and the one corresponding to v∗ is
0.0563. The online trajectories are too close to show the superiority of the proposed algorithm so that
the switching policies v0, v̂k and v∗ when x ∈ [−2, 2] are illustrated in Figure 3. Apparently, v̂k and
v∗ are the same. The similarity rate of the schedules v̂k and v∗ is 100% while the similarity rate of the
schedules v0 and v∗ is 75.31%.

Apply Algorithm 2 and utilize the online state data from t = 0 to 0.2 s. Then after calculation
in 0.05 s, the approximate optimal cost is achieved with the corresponding approximate optimal
switching policy through 6 iterations. The costs V̂0, V̂k and V∗ are demonstrated in Figure 4. It can
be obtained that compared with the initial cost of V̂0, the approximate optimal cost of V̂k is close to
the optimal cost of V∗. The state trajectories with v0, v̂k and v∗ applied in the system after t = 0.25 s
are demonstrated in Figure 5, where the state trajectory corresponding to v̂k coincides with the one
corresponding to v∗ and their largest error is 0.0155 while the largest error between the state trajectory
corresponding to v0 and the one corresponding to v∗ is 0.0563. The online trajectories also are too close
to show the superiority of the proposed algorithm so that the switching policies v0, v̂k and v∗ when
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x ∈ [−2, 2] are illustrated in Figure 6. It can be seen that v̂k is approximate to v∗. The similarity rate of
the schedules v̂k and v∗ is 95.06% while the similarity rate of the schedules v0 and v∗ is 75.31%.
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Figure 1. Costs achieved by Algorithm 1 applied in Example 1.
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Figure 2. State trajectories with Algorithm 1 applied in Example 1.
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Figure 3. Switching policies achieved by Algorithm 1 applied in Example 1.
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Figure 4. Costs achieved by Algorithm 2 applied in Example 1.
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Figure 5. State trajectories with Algorithm 2 applied in Example 1.
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Figure 6. Switching policies achieved by Algorithm 2 applied in Example 1.

Example 2. Consider a mass-spring-damper system as [21,22]:

ẋ1(t) = x2(t),
ẋ2(t) = Fv − 0.1x1(t)− 0.1x2(t)

with v ∈ {1, 2, 3}, F1 = 1, F2 = −1 and F3 = 0. Here, the state x1(t) is the displacement of the mass measured
from the relaxed length of the spring. Fv is the external force acting on the mass. The initial state is x(0) = [2, 2]
and the function Q is
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Q(x(t)) = x(t)T

[
1 0
0 1.

]
x(t)

Choose the initial switching policy v0(x) = 3 when |x1| ≤ 0.5, v0(x) = 2 when x1 > 0.5 and
v0(x) = 1 when x1 < −0.5. The basis functions are polynomials with all possible combinations of
the state variables up to the 4th degree without repetitions selected as [21,22]. Set the sample period
δt = 0.02 s.

Apply Algorithm 1 and utilize the online state data from t = 0 to 23 s. Then after calculation in
7 s, the approximate optimal cost is achieved with the corresponding approximate optimal switching
policy through 15 iterations. The initial cost V̂0 and the approximate optimal cost V̂k are demonstrated
in Figure 7. It can be seen that the approximate optimal cost V̂k is less than the initial cost V̂0. The state
trajectories with the initial switching policy v0 and the approximate optimal switching policy v̂k applied
in the system after t = 30 s are demonstrated in Figure 8, where the state trajectory corresponding to
v̂k converges to the origin quickly after t = 30 s while the trajectory corresponding to v0 converges
slowly with decreasing oscillation amplitude. The corresponding switching policies v0 and v̂k are
illustrated in Figure 9. It can be seen that v0 which switches among three subsystems and finally stays
at subsystem 3 results in that the trajectory corresponding to v0 converges slowly with decreasing
oscillation amplitude, while v∗ which switches between subsystem 1 and 2 results in that the state
trajectory corresponding to v̂k converges to the origin quickly after t = 30 s.
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Figure 7. Costs achieved by Algorithm 1 applied in Example 2.

0 20 40 60 80 100
−5

0

5

t

x
1

 

 

v̂
k

v
0

0 20 40 60 80 100
−5

0

5

t

x
2

 

 

v̂
k

v
0

Figure 8. State trajectories with Algorithm 1 applied in Example 2.



Sensors 2020, 20, 1287 15 of 18

Apply Algorithm 2 and utilize the online state data from t = 0 to 23 s. Then after calculation in
7 s, the approximate optimal cost is achieved with the corresponding approximate optimal switching
policy through 21 iterations. The costs V̂0 and V̂k are demonstrated in Figure 10. It can be seen that the
approximate optimal cost V̂k is less than the initial cost V̂0. The state trajectories with v0 and v̂k applied
in the system after t = 30 s are demonstrated in Figure 11, where the state trajectory corresponding
to v̂k converges to the origin relatively quickly after t = 30 s while the trajectory corresponding to
v0 converges slowly with decreasing oscillation amplitude. The corresponding switching policies v0

and v̂k are illustrated in Figure 12. It can be seen that v0 which switches among three subsystems
and finally stays at subsystem three results in that the trajectory converges slowly with decreasing
oscillation amplitude, while v∗ which switches between subsystem 1 and 2 results in that the state
trajectory converges to the origin relatively quickly after t = 30 s.

Remark 4. In algorithm 2, the value of the initial switching policy v0(x) should include every element of V and
there should exist enough data to calculate Ĉ0

i for every i ∈ V so that the sampling stage must be long enough to
ensure that.

Remark 5. In the calculation, the fourth order Runge-Kutta algorithm is adopted to numerically evaluate the
integrals which are necessary in certain terms such as b(tr) and d(tr).

Remark 6. In Example 1, the proposed algorithms converge in 0.25 s while the online algorithm investigated
in [38] requires more time. In Example 2, the proposed algorithms converge in 30 s while the online algorithms
investigated in [21,22] require more time.
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Figure 9. Switching policies with Algorithm 1 applied in Example 2.
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Figure 10. Costs achieved by Algorithm 2 applied in Example 2.
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Figure 11. State trajectories with Algorithm 2 applied in Example 2.
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Figure 12. Switching policies with Algorithm 2 applied in Example 2.

In the two examples, the effectiveness of Algorithm 2 has been validated. The superiority of
Algorithm 2 lies in that it can work for switched systems with unknown subsystems while Algorithm
1 can not work if the subsystems of switched systems are unknown. Practical examples of this kind
of switched systems appear in a wide range of applications such as cyber-physical systems which
embed software into the physical world and have proved resistant to modeling due to their intrinsic
complexity arising from the combination of physical and cyber components and the interaction
between them in [31]. Thereinto, data-driven research has been conducted for some specific examples
such as complex electronics switching among low-voltage, middle-voltage and high-voltage models,
and smart grid switching between base configuration and changed configuration. These examples
require the data-driven approaches of Algorithm 2 where Algorithm 1 is inapplicable.

Simulation results show that Algorithms 1 and 2 can approximate the optimal solution effectively
and efficiently. Algorithm 2 achieves the approximate optimal solution for unknown switched systems
with infinite-horizon cost function, which has not been achieved well in existing literature as far as
we know.

5. Conclusions

In this paper, an online PI-based algorithm inspired by the off-policy learning method and
based on that, a data-driven PI-based algorithm, are proposed to approximate the optimal solution
quickly for optimal scheduling problems. Only data produced by an initial switching policy is
necessary and the approximation time is relatively short. The data-driven algorithm acquires useful
knowledge of the weight vectors step by step through different data and solves the optimal scheduling
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problem for switched systems with unknown subsystems, only taking advantage of data. However,
the dwell-time problems, which are important in practical applications, are not incorporated in this
paper. So, optimal scheduling problems with dwell-time constraints will be investigated in the future.
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