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Abstract: The aim of this paper is to highlight how the employment of Light Detection and Ranging
(LiDAR) technique can enhance greatly the performance and reliability of many monitoring systems
applied to the Earth Observation (EO) and Environmental Monitoring. A short presentation of
LiDAR systems, underlying their peculiarities, is first given. References to some review papers are
highlighted, as they can be regarded as useful guidelines for researchers interested in using LiDARs.
Two case studies are then presented and discussed, based on the use of 2D and 3D LiDAR data.
Some considerations are done on the performance achieved through the use of LiDAR data combined
with data from other sources. The case studies show how the LiDAR-based systems, combined with
optical Very High Resolution (VHR) data, succeed in improving the analysis and monitoring of
specific areas of interest, specifically how LiDAR data help in exploring external environment and
extracting building features from urban areas. Moreover the discussed Case Studies demonstrate
that the use of the LiDAR data, even with a low density of points, allows the development of an
automatic procedure for accurate building features extraction, through object-oriented classification
techniques, therefore by underlying the importance that even simple LiDAR-based systems play in
EO and Environmental Monitoring.

Keywords: LiDAR technology; 2D LiDARs; 3D LiDARs; optical VHR data; WorldView-2;
environmental monitoring; analysis and classification; building feature extraction; Object-Based
Image Analysis (OBIA)

1. Introduction

An efficient exploration of the surrounding environment is becoming the key point for the future
world where human functionalities are going to be substituted by automatic or semiautomatic systems.
Self-driving cars and charging robots for electrical cars are just some examples where the knowledge
of the space in which to move becomes essential for the success of complex operations. In this
context, Light Detection and Ranging (LiDAR)-based systems are going to play an increasingly more
important role because of their higher capability to discriminate smaller objects with respect to other
active systems, such as RAdio Detection And Ranging (RADAR) systems. In fact, LiDAR is an active
object detection method similar to RADAR, but it makes use of other parts of the electromagnetic
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spectrum, predominantly infrared light rather than radio waves. LiDAR measures reflected light
emitted by a laser, which has a much smaller wavelength than radio signals, and therefore its capability
to discriminate smaller objects is much higher, and consequently also its capability to solve the
navigation problems.

Since the 1990s LiDAR technology spread and continued to search for ts commercial use, until its
rapid growth in 2010s. In the last decade, it has found an increasing use in combination with other
data sources for land surface cover analysis and classification [1–8].

An extensive additional list of references, highlighting the main LiDAR characteristics,
its advantages and disadvantages, and the different fields of applications with several case studies,
can be found in [9–13], showing how LiDAR has contributed significantly in the EO and Remote
Sensing fields. The above references can be regarded as useful guidelines for researchers interested in
using LiDARs.

In this paper, we aim to further extend the analysis of LiDARs systems, by enriching the list of
references, and proposing a classification algorithm , showing the performance that can be achieved
through the use of LiDAR data, when combined with data from other sources, in exploring external
environments and extracting building features from urban areas.

Relevant literature about the building detection with the employment of LiDAR can be found
in [14], where the most important articles for building extraction are listed, by highlighting the
approaches and the auxiliary sources used in combination with LiDAR data. Further important
literature about the building detection, based on the fusion of LiDAR data with optical remote sensing
imagery, can be found in [15–18] .

Although there are studies that have concerned the building detection, by combining LiDAR data
and optical imagery, the use of OBIA, in combination with optical satellite remote sensing data and
low density LiDAR point cloud on extended areas, is not common in a simple LiDAR-based system
version. For instance, the review in [14], summarizing the LiDAR point cloud density and covered
areas for the most relevant papers, highlights that the dataset size is always less than one km2, and in
the few cases in which it is greater than one, also the point cloud density increases, far beyond the
unity. In this paper, we applied the proposed algorithm to an area of 5.3 km2, after testing it on a
smaller area of only 200 square meters, with a LiDAR point cloud density equals approximately to 1.5
points per square meter (ppsm). Note that, although the work in [14] was published in 2015, if we look
for other applications of the OBIA technique, in recent years, in similar conditions, no other results
are comparable with those reached with the proposed algorithm, where such a low LiDAR point
cloud density has been used in combination with optical imagery on wide urban areas. Moreover,
the transferability from the tested area to the wider area has been carried out without any modification
of the proposed algorithm.

Two Case Studies, based on the use of 2D and 3D LiDARs (2-dimensional and 3-dimensional
LiDARs) are presented and analyzed in an extensive way.

The Case Studies show how the LiDAR-based systems succeed in improving the analysis and
monitoring of specific areas of interest, specifically how LiDAR data help in exploring external
environment and extracting building features from urban areas.

In particular, the case study of Lioni demonstrates that the use of the LiDAR data, even with a
low density of points, allows the development of an automatic procedure for accurate building feature
extraction, through object-oriented classification techniques, therefore by underlying the importance
that even simple LiDAR-based systems play in EO and Environmental Monitoring. In the second case
study, a measurement campaign has been carried out to test among others the 3D LiDAR MRS 6000 by
the SICK company, a new device very useful for research purposes, resulting in an efficient tool for
monitoring external environments, made by buildings, trees, roads, and other objects.
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2. The LiDAR System

LiDAR is an active remote sensing technique used for performing high-resolution topographic
surveys that operates in the visible or near-infrared regions of the electromagnetic spectrum. The survey
could be carried out in flight (data collected using drones or airplanes), in space (data collected using
satellites), or land-based (data collected from the ground). The very high-speed data acquisition
and high ground resolution are the main characteristics of a LiDAR system [19]. The light pulse
emitted by the transmitting device is reflected by a target to the sensor, and the system calculates
the relative distance between them. By scanning a surface of interest, a cloud of points is created,
that discriminates the points relative to the ground (represented through a Digital Terrain Model
(DTM)) and those relative to the “objects” on the ground (represented through a Digital Surface Model
(DSM)). By measuring the vegetative cover, and penetrating up to the ground, information is obtained
on the altitudes with a centimetric accuracy. Many examples of LiDAR applications can be examined,
for instance, from the punctual morphology representation of hydrogeological hazard areas, to the
urban and infrastructure modeling and planning, to the design of power and energy distribution lines,
and inventory and management of forests [9–13]. Moreover, the combination of LiDAR information
with data from other sources can greatly help in improving the features’ extraction and classification
for Earth Monitoring and Remote Sensing as highlighted in [20] and discussed later in this paper.

In the most common cases, the LiDAR sensor synchronously scans the distance to the obstacles in
one plane. The result of a single scan is therefore a cloud of points in one plane only, and the LiDAR
in this case will be referred to as a 2D LiDAR scanner. It is the most often used device in obstacle
detection systems [21] and simultaneous localization and mapping (SLAM) [22]. It is then possible to
obtain the third dimension by using a 2D LiDAR scanner, and, for example, by making the sensor’s
head move in the direction perpendicular to the scanned plane.

LiDARs can be also mounted on the top of a quadrotor, above the rotors line. The results are
merged with the current height values and in this way the number of dimensions can be extended,
if necessary, for the measurements acquisition. LiDAR-based systems can be therefore used also in
vertical take-off and landing (VTOL) of Unmanned Aerial Vehicles (UAVs), by making these operations
completely autonomous. An example of an autonomously flying system is that developed at the
University of Warwick [23] for outdoor applications, where a LiDAR on the top of an Unmanned Aerial
Inspection Vehicle (UAIV) creates a 3D map of surroundings and it allows the UAIV to return to the
starting point by following the same path. Another interesting work for vertical take-off and landing
(VTOL) of UAVs is presented in [24] for indoor applications. Another example similar to this latter is
given by the Hokuyo UGR-4LX LiDAR, which has been integrated with a switching mechanism and
provides an ordinary 2D LiDAR with the 3D LiDAR features. The function of sweeping the scanning
planes can be embedded inside the module of a 2D LiDAR by simulating what a 3D LiDAR does:
scanning a few planes simultaneously. In this way, a 3D point cloud is provided by a 2D LiDAR,
without external mechanical elements [25].

Other examples of laser-based systems, mounted on UAVs, are those where aerial
photogrammetry solutions need to be employed [26]. In this case, the use of LiDARs allows the
realization of simple visual navigation systems able to monitor large areas of interest with a high-speed
data acquisition and a high ground resolution. One of the main concerns with UAVs is that fast
movements in air require good performances in avoiding obstacles. A very interesting work has
been done and presented by the Massachusetts Institute of Technology in [27] to this end. A collision
avoidance system is realized, based on a visual alert that is delivered to an operator when the UAV is
approaching an obstacle and the warning is computed according to data from a laser range scanner.
Therefore, LiDARs demonstrate to give UAVs a large and important contribution for navigation.

As above introduced the so-called 3D LiDARs are laser sensors integrated with synchronously
moving platforms for efficient performing of a scan. Realistically, it is the next step of the single-layer
sensors mounted on moving stands of a 2D LiDAR module or embedded inside. In a “pure” 3D LiDAR,
instead, the sensor can acquire data points simultaneously in many layers. Data acquisition is faster
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and more comfortable and results into a broader number of possible applications. Robotics seems to
be the main beneficent of the rapid development of 3D LiDARs [28–30] and this is in accordance with
initial observations on the significant role that LiDAR-based systems are going to play for an efficient
exploration of the surrounding environment, to allow human functionalities to be substituted by
automatic or semiautomatic systems. Other examples of important applications for 3D LiDAR-based
systems can be found in [13,31–33], where 3D LiDAR data are used in combinations with cameras and
radars for the indoor exploration of inside tunnels, underground mines, and caves.

3. Environmental Monitoring and Extraction of Features in Urban Areas

Exploration of the environment and its knowledge must be timely and precise to be efficient.
Understanding urban dynamics, growth, and changes, brought by the urbanization, is fundamental
for managing the land resources and providing services responding to the requests, in these
rapidly changing environments [34]. Moreover, accurate and timely information on the coverage
of the urban soil is essential for the government policies. However an urban environment is
extremely complex and heterogeneous, typically composed of built structures (buildings and transport
areas), various vegetation coverings (parks, gardens, and agricultural areas), areas of bare soil,
and water bodies.

Remote sensing resources come to help in this regard, especially VHR images and LiDAR data,
along with new analysis techniques, that allow to greatly improve mapping and classification of
urban areas.

Among the different classification techniques, OBIA has attracted significant attention in recent
years. Specifically, OBIA is a technique in which the semantic information is not enclosed in the
single pixel but is found in an image-object, or groupings of pixels, that have similar characteristics,
such as color, texture, and brightness. The aim of this technique is, therefore, to determine
the specific characteristics of an object, its geometric, structural and relational features, with the
corresponding thresholds for classifying different objects in the image. Numerous studies have shown
that environmental monitoring and extraction of features in urban areas highly benefit when OBIA is
jointly used with LiDAR [35–39]. In all these papers, an object-oriented approach has been applied for
urban cover classification, using LiDAR data. The difference is in the parameter selection or in the
number of classes, that can refer for instance to building, pavement, bare soil, fine textured vegetation,
and coarse textured vegetation, resulting in a knowledge base of rules, potentially applicable to other
urban areas. In the last paper, [39], some considerations on shadows affecting the areas under analysis,
are also given, by showing how this may limit their correct classification.

In this paper, as already underlined in the introduction, we aimed to show how the LiDAR-based
systems succeed in improving the analysis and monitoring of specific areas of interest, specifically,
how LiDAR data help in exploring external environment and extracting building features from
urban areas.

Two Case Studies are presented, and, in particular, the Case Study of Lioni (Avellino, Italy)
demonstrates that LiDAR data, even with a low density of points, used in combination with VHR
satellite imagery, allow the development of an automatic procedure for accurate building feature
extraction, through the OBIA technique, therefore by underlying the importance that even simple
LiDAR-based systems play in EO and Environmental Monitoring, whereas in the second case study,
the use of a new 3D LiDAR device is discussed and tested through a measurement campaign carried
out at the premises of Military University of Technology (MUT) in Warsaw, Poland.

The work done to this end will be presented in the next sessions.

4. Extraction of Building Features from LiDAR Data and WorldView-2 Images Through OBIA

This session is going to highlight how the combined use of LiDAR data and the VHR optical
satellite WorldView-2 images, processed through OBIA, can produce a detailed map of the buildings
in an urban area.
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Moreover, this specific case study has been chosen with the aim of presenting a simple and precise
workflow for building feature extraction, to provide decision makers with a tool capable of producing
information related to the territory and useful to different needs. The next sub-sessions will describe
the proposed algorithm.

4.1. Methods and Data

4.1.1. Study Areas

This Case Study focuses on the urban areas of Lioni, a municipality in the province of Avellino
(AV), in the Campania region, located in the south of Italy. Lioni is located 550 meters above sea level
(expressed at the point where it is located the Municipal House). The geographical coordinates of
Lioni are Latitude 40◦52′ North and 15◦11′ East.

The proposed algorithm was first applied to an area of Lioni, chosen randomly as tested area and
extended approximately 200 m2.

Later, the same algorithm was applied to the whole area of Lioni, covering 5.3 km2, to verify
its reliability and transferability. Results demonstrate the transferability of the proposed algorithm,
without any parameter modification, as shown ahead in this paper.

The town of Lioni and its surrounding area are shown in the Figure 1, where the reference Google
Map has been retrieved in October 2019.

Figure 1. Lioni: Immages@2019 Google, Immages@2019 CNES/Airbus, Landsat/Copernicus,
Maxar Technologies, Cartographic data (October 2019).

4.1.2. Datasets

The proposed classification algorithm is shown in the Figure 2, where LiDAR data, WorldView-2
images, the Regional Technical Chart (CTR), and orthophotos are the inputs, as discussed briefly in the
next paragraphs.

• LiDAR data
The Digital surface model (DSM) and the Digital Terrain Model (DTM) of Lioni were acquired
from LiDAR dataset, property of the Italian Ministry for the Environment and the Protection of
the Territory and the Sea, in conjunction with the Extraordinary Plan of Environmental Remote
Sensing (EPRS-E) [40]. The acquisition year dates back to 2011 and the point cloud density is
approximately 1.5 ppsm.
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Some considerations must be made about the ppsm of LiDAR data. Some case studies, presented
in the literature, highlight the difficult to provide accurate models for buildings when low-density
LiDAR data are used [41,42]. For example, in [41] the authors showed that is necessary a density
point cloud higher than 5 ppsm in order to have better classification results. However, the data
provided free of charge in many databases often cover vast areas but they have a point cloud
density below 5 ppsm (such as the database of the Italian Ministry in the context of EPRS-E).
Therefore, it is necessary to develop a specific strategy for features’ extraction over large areas
with this type of data. Furthermore, the transferability of the strategy must also be carefully
analyzed and discussed when these data are used.

Figure 2. Workflow of the developed rule-based classification algorithm.

• WorldView-2 image
The WorldView-2 image on the area of Lioni was acquired by the satellite on 5 June 2017 at an angle
of 16◦, with cloud cover equal to 1% . The WorldView-2 image includes a panchromatic image
with eight multispectral bands (Coastal Blue, Blue, Green, Yellow, Red, Red Edge, Near-Infrared-1,
and Near-Infrared-2).
The data were purchased by Mapsat (the company involved as a partner in this research) within
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the project “Asbesto 2.0”, and downloaded from the DigitalGlobe image archive, as a standard
Ortho-Ready product projected on a plane with a UTM projection (Universal Transverse of
Mercator) and a WGS84 datum. WGS84 is the abbreviation for World Geodetic System 1984,
a geodesic, worldwide geographic coordinate system.
A pan-sharpening and orthorectification procedure was performed by Mapsat. The image
was pan-sharpened using the algorithm developed by Yun Zhang at the University of New
Brunswick, in New Brunswick, Canada [43]. The pan-sharpening was performad to “transfer” the
geometric resolution of the panchromatic datum, 0.5 meters (m), to the multispectral datum (with
a 2 m resolution), to generate a final image with a resolution of 0.5 m, and improve the spatial
information associated with the different bands. The orthorectification was applied using the
using the CE90 standards [44] and the rigorous Toutin’s model [45], in accordance with the UTM
33 projection system, to have an error less than 4 m.
The flowchart in the Figure 3 presents the main processing steps, as above described.

Figure 3. Flowchart for WorldView-2 image preprocessing.

• Regional Technical Chart (CTR) and orthophotos
To validate the results from the proposed algorithm, both the CTR of the Campania region
and orthophotos, obtained under the license granted by the Agricultural Dispensing Agency
of the Ministry of Agricultural and Forestry Policies, have been used. This is usually done,
because the available public data are often not recent. In this case, the CTR dated back to 2004,
at a scale of 1:5000, and the orthophotos were instead acquired in 2011, at a scale of 1:10,000 [46].
Therefore some buildings present in the orthophotos were not present in the CTR, because of
new construction. On the other hand, some buildings in the CTR were demolished before the
orthophotos survey, and therefore were not present in the 2011 data. The validation process will
be discussed later in the paper.

4.1.3. Processing LiDAR Data

The LiDAR DSM and DTM were processed in a QGIS enviroment [47], to generate three separate
raster datasets: a normalized DSM (nDSM), a nDSM smoothed (Figure 4), and a slope map (Figure 5).
A nDSM is generated by subtracting the DTM from the DSM, and it is necessary to identify high-rise
objects in a DSM. High-rise objects in fact have a local nature due to the topography of the terrain
surface [16]. Therefore, to eliminate the effects of topography from the DSM, the latter must be
normalized [48]. Moreover, to get a better image quality for the nDSM, a smoothed nDSM is obtained
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by using a complex interpolation method, such as the cubic B spline. The objective of this method is
to make the interpolation curve more smoothly and the image edges more defined. The smoothing
operation is also necessary to adapt the geometric resolution of the LiDAR data (1 m) to the geometric
resolution of the WordView-2 image (0.5 m), for matching the information from different data sources.
Before the smoothing, groups of neighboring pixels in the WordView-2 image correspond to the same
elevation (Figure 6a); after the smoothing, a different elevation is associated to each pixel (Figure 6b).
In addition, as also shown in the figure, the magnified image, obtained by using the cubic B spline
interpolation method, has no longer the so-called saw tooth phenomenon [49].

Figure 4. The normalized Digital Surface Model (nDSM) smoothed.

Figure 5. The slope map.

(a) (b)

Figure 6. Pixels of the WordView-2 image before (a) and after the smoothing (b). Courtesy of the
authors of [50].
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Processing the smoothed nDSM is also necessary in order to obtain information about the slopes
of the objects present in the image under analysis. The slope map is calculated from the smoothed
nDSM using the Zevenbergen Thorne method [51], implemented in QGIS. This method allows to have
greater detail in the calculation of the curvature and is preferable with respect to other algorithms,
like, for instance, the “Horn method”, in those applications where the processing of numerical data
requires an exact definition of the parameters [52].

The slope represents a very important information, since it allows all buildings to be discriminated
in the area of interest. In fact (with some exceptions in specific cultures which, for instance, tents are
used for dwellings) all above ground artificial objects provide a strong and sudden change in height,
forming a crisp edge around them [53]. Figures 4 and 5 show, respectively, the nDSM and the slop
map. The processing of LiDAR data, carried out and described above, has represented the starting
point for the development of the proposed classification algorithm, used for the extraction of buildings’
features in the urban areas.

The flowchart in the Figure 7 summarizes the main processing steps above described.

Figure 7. Flowchart for preprocessing LiDAR data.

4.1.4. Object-Based Classification Method

In recent years, OBIA has proved to be a very efficient method for classifying high-resolution
images, because, as already highlighted in the paper, this technique relies on semantic information not
enclosed in the single-pixel, but in an object of the image, that is in groups of pixels that have similar
characteristics, such as color, texture, brightness.

The main steps in the development of the rule set for achieving the object-based classification are
(1) the segmentation and (2) the feature extraction and classification.

The segmentation divides the image into separate and homogeneous regions (objects).
The particularity of this operation is to use not only the spectral characteristics, but also the geometrical,
structural and relational properties of an object. After the segmentation, the pixels of the image are
grouped and, consequently, much information is available for each object (for example the spectral
signature, the shape, and the size or the context), and in addition, features concerning the interrelations



Sensors 2020, 20, 1285 10 of 23

between the objects will also be available. All these attributes can be applied and combined for the
development of a rule set to classify the objects in the scene of interest.

The feature extraction is the next step necessary to detect the objects of interest. As each object
is characterized by particular features that distinguish it from other objects in the image, the feature
extraction works in identifying these characteristics.

The rule-set creation is based on the analyst’s knowledge of the spatial, spectral, textural,
and elevation characteristics of each feature. For instance, buildings have a different elevation pattern
with respect to roads, roads are elongated compared with other features, trees have a coarser texture
than grass, and various roof materials vary in texture and spectral characteristics. This type of
human knowledge and reasoning is applied to the OBIA processing to separate the targeted objects
from unwanted features [54]. In the rule-based classification phase, once the attributes have been
chosen, thresholds must therefore be defined, on the basis of which objects are assigned to each class.
In this case, the characteristics, chosen for the building extraction, belongs to the following three
main categories: Average band values, Geometric features, and Spectral Indexes, summarized in the
following Table 1.

Table 1. Categories and features chosen for the building extraction rule-set.

Average Band Values Geometric Features Spectral Indexes

Mean (NIR1) Area (pxl)
Mean (Red) Area (m2) NDVI = Mean(NIR1)−Mean(Red)

Mean(NIR1) + Mean(Red)
Mean (nDSM) Lenght/Width
Mean (nDSM smoothed)
Mean (Slope)

The software used for the classification has been eCognition Developer, a product developed by
Trimble for the analysis and interpretation of images, which allows semi-automatic information to be
extracted, through an object-oriented classification [55].

To avoid burdening the manuscript, the rules adopted for the building extraction have been
collected in an Appendix A, and numerical values are presented in the Appendix A, as well. They refer
mainly to the workflow shown in the Figure 2. Note that the choice of the specific features for the
proposed algorithm belongs to the authors’ expertise, based on the state-of-the-art knowledge and good
sense and sound judgment, developed in practical matters related to the image analysis. Moreover,
it must be underlined that, among the features shown in Table 1, some are more important than others.
In fact, nDSM and slope, obtained from LiDAR data, represent the starting point for the development
of the proposed classification algorithm.

The development of the set of carried out rules is, in fact based on the concept that the buildings
are characterized by a sudden change of elevation at their edges and show a very different height,
when compared to the surrounding environment. Therefore, for the extraction of buildings, the use of
the information from the nDSM smoothed raster and the nDSM slope raster, previously described,
is particularly important. Regarding other features, like, for instance, the Normalized Difference
Vegetation Index (NDVI), the latter has been identified as a needful index for distinguishing vegetation,
but this does not mean that other indexes cannot be added to improve the classification.
Extending the number of possible indexes can certainly represent a future development of this work.

4.2. Results Analysis and Accuracy Assessment

Figures 8 and 9 show the segmentation and classification of the first Lioni area used for testing
the proposed algorithm.

To evaluate the accuracy of the buildings’ detection, the classification results have been compare
with CTR and orthophotos, in a GIS environment, but before analyzing the results, it is important to
make some considerations.
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The orthophotos and the CTR used for the validation refer to two different years, 2011 and 2004,
respectively. As already explained, this is usually done, because depending on the specific Italian
region, the available public data are often not recent. Therefore, in the specific case, some buildings
present in the orthophotos were not present in the CTR, because of new construction. On the other
hand, some buildings in the CTR were demolished before the orthophotos survey, and therefore were
not present in the 2011 data. For these reasons, both data have been considered as reference data for
the validation. Moreover, the total number of buildings, assumed as ground truth, has been considered
equal to the sum of the buildings in the CTR (excluding those demolished) and the new buildings
from the orthophotos. The total number of classified buildings has been instead calculated as the sum
of the correctly classified buildings and the objects incorrectly classified as buildings (false positives).

Figure 8. Result of the contrast segmentation for a first area of Lioni.

Figure 9. Result of buildings extraction over the selected first area of Lioni.

The results of the classification and the references data have been reported in a confusion matrix
from which the Producer Accuracy (PA) and the User Accuracy (UP) have been calculated.

PA has been calculated by the ratio of the correctly classified buildings and the total number of
buildings. UP has been calculated by the ratio of the correctly classified buildings and the total number
of classified buildings.

The developed strategy, performed first on the tested area, led to detection of 200 correctly
classified buildings and 14 false positives, while the amount of buildings in the reference data was 220,
by resulting into a PA and PU of 91% and 93.5%, respectively, as easily retrieved from the confusion
matrix represented in the Table 2.
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Table 2. Confusion matrix.

Result of Building Extraction

Buildings Other Total
Reference data Buildings 200 20 220

Other 14 0 14
Total 214 20 234

Figure 10 shows the results of the developed rule-set building extraction algorithm on the entire
municipality of Lioni.

Figure 10. The WorldView-2 image and results of the proposed buildings extraction algorithm over
Lioni town.

The amount of buildings in the reference data is 1538 and the objects classified as buildings
were 1479 (1372 correctly classified and 107 false positives). Therefore, from the confusion matrix,
as represented in the Table 3, PA and PU for the second area are 89% and 93%, respectively.

Table 3. Confusion matrix.

Result of Building Extraction

Buildings Other Total
Reference data Buildings 1372 166 1538

Other 107 0 107
Total 1479 166 1645

The low density of LiDAR points may have affected the refining of the edges of the buildings.
Yet, the developed strategy remains valid since it provides new information at urban scale. In fact,
the results can be used to produce or update a municipal database as shown in the Figure 11 and it can
be used also for updating the CTR as shown in the Figure 12.
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Figure 11. Example of updated municipal map and database.
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Figure 12. Updating of the CTR based on the results of proposed algorithm.

Also, to give an idea of the amount of resources required for running this algorithm for building
extraction, computational cost (Table 4) and computer characteristics (Table 5) have been registered.
However, the time complexity depends on the computer that is used and on the considered area.
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Table 4. Computational cost.

Main Steps of Building Extraction Sw Mean Computation Time

Pre-processing QGIS 5:15.376 (5 min and 15.376 s)
Processing eCognition 21:59.784 (21 min and 59.784 s)

Table 5. Computer characteristics.

Processor Ram System Type

Intel(R) Core(TM) i3 CPU 530 @2.93 GHz 4.00 GB (2.99 GB available) 32-bit operating system

The obtained results have demonstrated how the use of the LiDAR data, through the OBIA
technique, can allow to obtain useful information concerning the urban land cover. Moreover,
the low density of LiDAR points did not significantly affect accuracy in the algorithm developed.
Furthermore, the development of a rule-set mainly based on objects information (such as height and
slope), obtained from the LiDAR survey, has made possible to transfer the proposed approach to study
areas of different sizes. Note that, in applying the proposed algorithm to the second area of the whole
Lioni city, the rule-set has not been modified and parameters have not been adjusted. In addition,
the LiDAR data used in this case are free-of-charge, because they were downloaded from public
databases or they were collected through direct measurement acquisitions, as in the second Case Study
presented in the next section. Unfortunately, this is the reason why one has to settle for the low density
of the LiDAR point cloud in the case of public databases. Yet, it has been demonstrated that good
performances have been achieved in any case, if results from the extended literature presented are
used for comparison.

Future work will use more information from LiDAR data, for example, taking into account also the
intensity, in order to further improve the building extraction on large areas, only using free-of-charge
LiDAR data.

5. External 3D Scanning with a LiDAR Located at a Low Altitude

In this section, the objective is to show how 3D LiDARs can further help in monitoring the
surrounding environment, and in identifying objects, such as buildings, trees, roads, etc. In this second
case study, 3D LiDARs and other devices are presented and tested. Among them, the 3D LiDAR MRS
6000 by the SICK company, shown in Figure 13, is a very useful tool for research purposes. It will be
referred to as MRS 6000 or simply LiDAR later in this section.

Figure 13. 3D LiDAR MRS 6000 by the SICK company.

MRS 6000 has a multilayer sensor able to scanning simultaneously in all the layers. This device is
an optoelectronic LiDAR sensor that uses a 24-layer non-contact laser beam, as shown in Figure 14,
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with a frequency of 10 Hz, which makes a 3D point cloud and creates an accurate representation
of its surroundings in real-time. A unique mirror technology makes MRS 6000 a sensor that has a
high scanning field stability. Using a Polygon Mirror, the LiDAR generates a straight scan field line
without distortion. The LiDAR provides nearly gap-free detection through the ability to generate
up to 880,000 measurement points per second (mpps). In this way, a scanning field, created on
the distance of 25 meters from a sensor, contains 72 ppsm, throughout an entire aperture angle
of 120 degrees horizontally and 15 degrees vertically. With a scan point density at 0.13 degrees
horizontally and 0.625 degrees vertically, the distance between two individual measuring points
is thereby 4.3 millimeters. LiDAR has a minimum range of 0.5 meters and a maximum range of
200 meters, but only 30 meters range at 10 percent of emission (Figure 15). In the sensor, a multi-echo
evaluation is applied for increasing reliability. The LiDAR uses a calculation of time-in-flight of the
emitted pulse to set up distance between the sensor and an object. Multi-echo characteristic allows to
evaluate up to four echo signals for each measuring beam, and this helps in working under unfavorable
weather or adverse environmental conditions, like fog, rain, or dust in the air. The data interface is
1 Gb/s Ethernet with a web app embedded.

Besides the use of the MRS 6000 LiDAR, additional scans of the earth’s surface may be
supplemented through the use of small UAVs moving at the height of several meters above the ground.
They may allow scans by using high-resolution multilayer LiDAR that provides detailed information
about objects in the area of interest. During the test, scans of the surface were made using a multilayer
LiDAR and a photo of the area covered by the scan. Another Sick device, the MRS 6124R LiDAR, was used
and the SOPAS ET software for visualization of the measurements was employed (Figure 16).

Figure 14. MRS 6000 range of scanning. Source: https://cdn.sick.com.

https://cdn.sick.com
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Figure 15. MRS 6000 range of scanning. Source: https://cdn.sick.com.

Figure 16. MRS 6124R testing with SOPAS ET software.

Scans and photos were taken from a height of 9 meters, which may correspond to the measurement
from the sensors of a low-flying drone. The main idea of the tests was to determine the quality of
the scan by assessing the measurement of range in low-altitude scans almost parallel to the earth’s
surface. Such experiments were to imitate the measurement from a drone flying at a low altitude.
Another reason was to learn about the possible form of object visualization in the acquired scan.
Particular attention was paid to building identification, which is the essential task in this paper.
Some Test Areas at the premises of MUT (Military University of Technology) in Warsaw, Poland,
have been selected.

In the Test Area 1, the reference point was a corner of the building located 57 meters from the
scanner (Figure 17). The distance was determined using a laser rangefinder and shown on the image
retrieved from Google maps (Figure 18). The building’s wall 8 meters away from the scanner and
clearly visible in the scan foreground was also marked. It was found that the building elements are
well identifiable, and the distances designated to the characteristic points of the building are consistent
with the actual values (Figure 19).

In Test Area 2, the construction site buildings are located between 50 and 70 meters from the
scanner. Cars are parked at the construction site. The gate and fence of the construction site are made

https://cdn.sick.com
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of metal painted with matte paint. One of the vehicles (blue) has a matte paint. Other cars have
metallic paint (Figure 20). The scans show the construction site fence and the open gate. The side of
the blue van is also visible on the scan. The other two cars with metallic paint are not visible on the
scan (Figure 21). On both scans, you can also see how the trees are visible, which, in this case, can be
considered noise.

Figure 17. Panoramic picture of the Test Area 1.

Figure 18. Google Maps view of the Test Area 1 with the marked distance.

Figure 19. Cont.
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Figure 19. Scan of the Test Area 1.

Figure 20. Panoramic picture of the Test Area 2.

Figure 21. Cont.
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Figure 21. Scan of the Test Area 2.

Analysis of scans and the corresponding photos showed that the laser beam is almost wholly
deflected on reflective surfaces. As a result, reflective objects are partially mapped or utterly invisible
on the scan. Objects visible through the glass are correctly mapped on the scan unless other objects are
reflected in the glass. In this case, the mapped objects are superimposed on the mapped objects behind
the glass. On rough surfaces, part of the energy is lost due to shadowing. Curved surfaces produce
instead a higher diffusion, and finally dark surfaces reflect the laser beam worse than clear ones.
Note that the surface characteristics reduce the scanning range of the device, in particular for surfaces
with low emission values. This second Case Study has allowed demonstrating how 3D LiDARs can be
applied to analyze the external environment by further helping in discriminating the several objects
present there, with respect to 2D LiDARs. Specific devices by Stick have been used for the tests by
showing that they perform correctly, despite the presence of objects, such as cars, trees, and others,
that can be regarded as “noise”.

6. Conclusions

In this paper, we aimed to present a detailed analysis of LiDARs systems by pointing out the
performance that can be achieved through the use of LiDAR data when combined with data from other
sources. Two Case Studies, based on the use of 2D and 3D LiDARs (2- and 3-Dimensional LiDARs),
have been presented and analyzed in an extensive way.

The Case Studies have allowed to show how the LiDAR-based systems succeed in improving the
analysis and monitoring of specific areas of interest, specifically how LiDAR data can help in exploring
external environment and extracting building features from urban areas. Moreover, the Case Study
of Lioni has demonstrated that the use of the free-of-charge LiDAR data, even with a low density of
points, allows the development of an automatic procedure for accurate building features extraction,
through object-oriented classification techniques, therefore once again underlining the importance that
even simple LiDAR-based systems play in EO and Environmental Monitoring.
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Appendix A

As anticipated in Section 4.1.4, in this appendix, the detailed steps of the proposed algorithm are
presented and discussed in detail.

After the creation of the smoothed nDSM, the first necessary step is to divide luminous and dark
objects through a threshold that maximizes the contrast of luminous objects (consisting of pixel values
above the fixed threshold) and dark objects (consisting of pixel values below the threshold).

This choice is made because the nDSM raster has high brightness in correspondence of the regions
that have a certain elevation. Therefore, through the “Contrast Split Segmentation” on nDSM, it is
possible to separate high objects and low objects.

After the first segmentation on the smoothed nDSM, all the objects with a value of Mean (nDSM
smoothed) layer lower than 2 m are assigned to the class Ground, to exclude in the following steps all
the objects that certainly do not belong to the building class. The remaining objects are assigned to the
class NoGround.

Another Contrast Split Segmentation has been carried out on nDSM slope, as the generated slope
layer from LiDAR data has strong contrasts of brightness on the edge of the buildings and the steep
and flat areas are easily recognizable: the flat areas are associated with a very dark color, whereas the
steep areas are tending to white. As reported also in other studies [56,57], the segmentation is based
on the information of slopes related to the real footprint of the buildings .

All above-ground artificial objects provide a strong and sudden change in height, forming a crisp
edge around them. Therefore, to fully encompass the outer building outline, the slope map is been
reclassified into two classes, representing weak and strong edge in accordance to [57].

In particular, two passages of segmentation are necessary on the nDSM slope: one to obtain the
objects with a strong slope, and a second one to separate those with an average slope from the very
steep ones.

Therefore, after this second segmentation, based on the slope layer of objects classified as
NoGround, all those with an average slope lower than 15◦ are assigned to the class NoSteep areas,
because all those objects are characterized by a weak edge. The remaining objects are assigned to the
class Steep areas. Next, all objects with an average slope grater than 30◦ are assigned to the temporary
class Probable buildings. From the Probable buildings class, all the objects with an area with a number of
pixels less than 4 (too few to be considered buildings), are excluded.

The next segmentation algorithm is the “Multiresolution segmentation”, that groups areas of
similar pixels (pixels with equal values) into objects. Consequently, homogeneous areas result in larger
objects, heterogeneous areas in smaller ones. The “Multiresolution segmentation” algorithm joins
together existing pixels or image objects. This type of segmentation in this study was realized by
exploiting the information related to the WorldView-2 image bands to create objects characterized by a
strong spectral similarity, to be used in the further classification phases.

Over the objects classified as Probable buildings, a multi-resolution segmentation is carried out
in order to create a final class Buildings, and to improve the geometry of the buildings. To assign the
objects to the final class of Buildings, the height has been considered again, and a further consideration
has been undertaken, based on the NDVI. The high objects, probable buildings, with a high value of
NDVI are considered as Other Elevated objects, as they are very likely to be trees.

Moreover in the final class, buildings with an area less than 14 square meters are not considered
in the analysis. Therefore garages or smaller sheds are excluded from the classification, in order to
avoid misclassification errors.
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