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Abstract: Remote sensing images have been widely used in many applications. However, the
resolution of the obtained remote sensing images may not meet the increasing demands for some
applications. In general, the sparse representation-based super-resolution (SR) method is one of the
most popular methods to solve this issue. However, traditional sparse representation SR methods
do not fully exploit the complementary constraints of images. Therefore, they cannot accurately
reconstruct the unknown HR images. To address this issue, we propose a novel adaptive joint
constraint (AJC) based on sparse representation for the single remote sensing image SR. First, we
construct a nonlocal constraint by using the nonlocal self-similarity. Second, we propose a local
structure filter according to the local gradient of the image and then construct a local constraint. Next,
the nonlocal and local constraints are introduced into the sparse representation-based SR framework.
Finally, the parameters of the joint constraint model are selected adaptively according to the level of
image noise. We utilize the alternate iteration algorithm to tackle the minimization problem in AJC.
Experimental results show that the proposed method achieves good SR performance in preserving
image details and significantly improves the objective evaluation indices.

Keywords: single remote sensing image; super-resolution (SR); sparse representation; nonlocal
self-similarity; local structure filter

1. Introduction

With the constant development of the remote sensing technology in recent years, many remote
sensing image applications have been proposed, such as fine-grained classification [1,2], detailed land
monitoring [3], and target recognition [4,5]. The performance of these applications is closely related to
the image quality. However, the resolution of the remote sensing image is largely affected by the spatial
resolution of the optical sensor. To improve the quality of remote sensing images, many super-resolution
(SR) methods [6–10] have been proposed. They can be divided into multi-frame [11–17] and single-image
SR methods [18–23].

The multi-frame SR methods aim to recover a high-resolution (HR) image from multiple
low-resolution (LR) frames. A multi-frame SR method based on frequency domain was proposed
in [13]. Though this method can be implemented fast, it leads to serious visual artifacts [12]. To address
the above issue, many spatial domain-based multi-frame SR methods have been proposed [15,16].
Farsiu et al. [15] proposed an iterative method using l1-norm in the fidelity and regularization
terms. Patanavijitt and Jitapunkult [16] proposed a stochastic regularization term according to the
Bayesian maximum a posteriori (MAP) estimation. Huang et al. [14] proposed a bidirectional recurrent
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convolutional network for multi-frame images SR. Although the spatial domain-based multi-frame
SR methods can achieve good SR performance, they either consume quite a lot of memory or take
a large amount of running time [15]. Moreover, in some cases, only one image is available instead
of multi-images, which is more challenging. Therefore, single-image SR methods are significant in
practical applications [23].

Generally, the problem of single-image SR can be formulated as:

y = DBx + n, (1)

where y is the observed LR image, x denotes the original HR image, B represents the blurring operator,
D denotes the downsampling operator, and n is the additive Gaussian white noise with standard
deviation of σn. Single-image SR methods can be roughly divided into interpolation-based prior-based
methods. Interpolation-based methods [24,25] exploit adjacent pixels to estimate the unknown pixel.
The interpolation-based methods have low computational complexity and can recover degraded
images fast, but they may generate severe staircase artifacts and smooth out image details.

Many prior-based methods have been used to address the single-image SR problem. Tai et al. [26]
exploited edge prior and single-image detail synthesis to enhance the resolution of the LR image. Some
researchers have proposed example learning-based methods by exploiting the priors according to the
similarity of the image. Yang et al. [22] proposed a joint sparse dictionary (HR and LR dictionaries) to
reconstruct the HR image. This method assumes that the sparse vector of the HR patch is the same
as the corresponding LR patch. Timofte et al. [27] proposed a joint sparse dictionary-based anchored
neighborhood regression (ANR) approach, where regressors are anchored to the dictionary atoms.
A joint dictionary-based statistical prediction model that assesses the statistical relationships between
the sparse coefficients of LR and HR patches was introduced by Peleg and Elad [28]. NPDDR [29]
trained a joint dictionary to deal with the lack of HR component and employed improved nonlocal
self-similarity and local kernel to constrain the optimization process. Hou et al. [7] proposed a
global joint dictionary model for the single remote sensing image SR, including the local constraint
within each patch and the nonlocal constraint between HR and LR images. A single dictionary-based
adaptive sparse representation scheme was presented in [30]. Dong et al. [31] proposed a single
dictionary-based method, which restores the HR image by using the nonlocal self-similarity of the
sparse vector. Compared with the joint dictionary methods, the single dictionary methods do not
require external examples to train. Although the above methods enhance the resolution of the LR
image, they are prone to generate some artifacts. Recently, deep learning technologies have been
introduced into SR. For example, Dong et al. [32] proposed a deep convolutional neural network for
the SR methods. Haut et al. [6] exploited a novel convolutional generator model to improve the quality
of remote sensing images. Li et al. [33] applied spatial-spectral group sparsity and spectral mixture
analysis to the SR problem. Tai et al. [34] proposed a deep recursive residual network(DRRN) that
contains 52 convolutional layers. A generative adversarial network (GAN) for image SR methods was
introduced in [35].

However, deep learning-based methods take a great deal of time to train models by using external
datasets. Furthermore, they require retraining for each different degradation, which costs more training
time. In contrast, the single dictionary-based sparse representation SR methods require neither external
datasets nor retraining for each degradation. However, traditional single dictionary-based sparse
representation SR methods ignore some complementary constraints of the image itself. Previous
works show that sparse representation-based SR methods are of great significance in improving the
quality of remote sensing images [7,8]. Based on the above reasons, we focus on improving the
single dictionary-based sparse representation SR methods to enhance the quality of the reconstructed
HR image.

Inspired by [7], we consider introducing a joint constraint for the single dictionary-based sparse
representation SR methods. In the references [7,8], authors pointed out that the sparse representation
model is beneficial to improve the quality of the remote sensing image. However, this kind of method
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does not consider the continuity and correlation of an image’s local neighborhood, and the edge
preservation ability should be further improved. To address this issue, we propose a local structure
constraint based on the local gradient of the image, which can further improve the edge-preserving
ability. For the sparse representation-based SR methods, it is usually assumed that the sparse
coefficients corresponding to the LR image and the HR image are equal. However, due to the
degradation of the LR image such as blurring and down-sampling, there is a gap between the LR
sparse coefficient and the HR sparse coefficient, i.e., sparse noise. In addition, image artifacts tend to
appear in the reconstructed images. Since the sparse noise and image artifacts can be well suppressed
by exploiting these overlapping nonlocal similar patches, as shown in [7,31], we use the nonlocal
self-similarity of the image to construct a nonlocal constraint. By using the nonlocal constraint and the
proposed local structure constraint, we further propose a novel adaptive joint constraint (AJC) for the
single remote sensing image SR. In the reconstruction phase, according to the level of image noise, we
adaptively select regularized parameters for the proposed AJC model to obtain better reconstructed
images. Our main contributions are summarized as follows:

(1) Since human visual system is more sensitive to image edges, we propose a local structure filter
based on the local gradient of the remote sensing image and then construct a local structural prior.

(2) The fusion of the complementary local and nonlocal priors can achieve higher SR performance.
Based on this, we combine the nonlocal self-simialrity prior and the local structural prior and then
propose a novel adaptive joint constraint (AJC) for the single remote sensing image SR.

(3) To further improve the proposed AJC SR method, the regularization parameters are selected
adaptively according to the level of remote sensing image noise.

The organization of this paper is as follows. Section 1 is the introduction. Section 2 introduces the
related work about the sparse coding-based single image SR. In Section 3, the proposed AJC algorithm
is described in detail. Section 4 introduces the basic parameters setting and shows experiment results.
Section 5 summarizes our work.

2. Related Work

The single-image SR reconstruction methods aim to transform the LR image into the HR image.
To achieve this goal, sparse priors have been proposed [22,27,30,31,36,37]. Researchers have found that
the image can be sparsely represented as x ≈ Θα, where α is a sparse vector composed of coefficients,
and Θ denotes an over-complete dictionary, such as a discrete cosine transform (DCT) or a wavelet
dictionary [30,38]. The sparse vector α can be evaluated via the following formula:

α̂ = arg min
α
{‖x−Θα‖2

2 + ι‖α‖0}, (2)

where ι represents a regularization parameter, x is a HR image, Θ denotes the dictionary of x,
and α represents the sparse vector of x. Since l0-minimization is an NP-hard problem, in general,
l1-minimization is used to approximate the l0-minimization. In the single-image SR problem, we want
to restore the missing details of the LR image y to enhance the spatial resolution. For this problem, we
can address it by the following equation:

α̂y = arg min
α
{‖y− DBΘα‖2

2 + λ̃‖α‖1}, (3)

where α̂y denotes the estimated sparse vector of the LR image y, and λ̃ is a regularization parameter of
the sparse term. Since the sparse vector of the HR patch is the same as the corresponding LR patch [22],
we can get the reconstructed HR image by x̂ ≈ Θα̂y.
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3. Proposed Method

To remove artifacts and improve the quality of reconstructed HR images, we propose the AJC
model that includes the nonlocal and local priors. The proposed framework is shown in Figure 1,
the nonlocal prior is constructed by exploiting the nonlocal self-similarity of the sparse vector, and the
local prior can be obtained according to the proposed local structure filter. The proposed AJC model
can be formulated as:

α̂y = arg min
α

{
‖y− DBΘα‖2

2 + η JNL (α) + γJL (x)
}

, (4)

where the first term is the data term, JNL (α) denotes the nonlocal constraint, JL (x) represents the local
prior, η is a parameter to balance the data term and the nonlocal constraint, and γ is a regularization
parameter used to keep balance between the data term and the local structural constraint. For the
subsequent reconstruction process, we first need to use the self-learning method to train the compact
dictionary. Then, the nonlocal and local priors are constructed. Finally, we use the iterative shrinkage
algorithm [39] to solve the SR reconstruction problem.

Figure 1. The proposed framework.

3.1. The Compact Dictionary Learning

In sparse representation, it is important to select a suitable dictionary for the image. In this paper,
we learn a compact dictionary for the image according to [31]. It is worth noting that our dictionary
learning uses a LR image as the input of training. The compact dictionary learning first needs to
extract the HR image patches X ( For the first reconstruction, the HR image was reconstructed from the
corresponding LR image by Bicubic.). Considering that human vision is sensitive to edges, we remove
extremely smooth image patches in X and express them in Xh. Furthermore, to further supplement
the high frequency details of the images, we learn the dictionary in the high-frequency feature space
of patches. Specifically, we adopt a rotationally symmetric Laplacian of Gaussian filter (size 5× 5
with standard deviation 0.5), which can improve the average PSNR of the test images by 0.11dB
in SR application. The high-frequency feature of Xh is denoted by C = [C1, C2, . . . , CN ], where N
represents the number of patches. Then, we adopt the K-means algorithm to divide C into K clusters
(H = [H1, H2, . . . , HK]). Next, the compact dictionary Θ can be learned from H. Specially, since the
PCA approach can reduce dimension and realize de-correlation, we apply the PCA algorithm to each
cluster Hk(k = 1, 2, . . . , K). After PCA, the sub-dictionary Θk corresponding to each cluster Hk can
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be obtained according to [31]. Finally, the compact dictionary Θ corresponding to the reconstructed
image x̂ can be constructed by Θ = [Θ1, Θ2, . . . , ΘK]. After learning the dictionary Θ, we apply the
dictionary to the proposed AJC model for obtaining the reconstructed HR image x̂. It should be noted
that the estimated x̂ will be used to update the dictionary Θ and K will be updated in the dictionary
learning phase.

3.2. The Joint Priors

3.2.1. The Nonlocal Self-Similarity Prior

The remote sensing image has a large number of repetitive structures. That means, for a given
image patch, we can find its similar patches in other parts of the image. We illustrate the nonlocal
self-similarity of the remote sensing image by using the “airplane” image in Figure 1. The red patch is
a target patch, its nonlocal similar patches can be found in the image, such as the blue, green, black
patches. Thus, we can use the nonlocal self-similarity of the remote sensing image to guide the image
SR reconstruction. According to [31], the sparse vector also has the nonlocal self-similarity. Thus, we
can exploit the nonlocal self-similarity of the sparse vector to guide the image SR reconstruction, where
the nonlocal prior can be formulated as:

JNL (α) = ‖α − β‖1, (5)

where α = [α1, . . . , αi, . . . , αN ], β = [β1, . . . , βi, . . . , βN ], and βi is the estimated αi by using the nonlocal
self-similarity of αi.

In view of the above, the closer the patches are, the greater the similarity weight will be. This can
be achieved by gaussian weighting. Thus, we can estimate β by the nonlocal gaussian weighting of
the nonlocal similar sparse vector α. For each patch xi, βi can be computed by the following equation:

βi = ∑
xs

i∈Co

{ exp(−‖xi − xs
i ‖2

2/ε2)

∑xs
i∈Co exp(−‖xi − xs

i ‖2
2/ε2)

αs
i

}
, (6)

where Co is the collection of similar patches of xi, xs
i denotes the s-th similar patch of xi, ε2 is a constant

that controls the degree of decay, and αs
i represents the s-th similar vector of αi.

3.2.2. The Local Structure Prior

However, the previous prior term can not sufficiently constrain the local structures of remote
sensing images. Therefore, we propose a local prior as a complementary prior. The methods [7,22,40]
exploit local features of the images to constrain the solution of SR problem. JIDM [7] and SRSC [22]
employed local image patches as local features. K-SVD [40] ensured that mean square error (MSE)
of each pixel neither reduction nor change in each iteration, which constrains the local structures.
However, it is not sufficient for these methods to preserve edge energy while taking into account the
relationship between adjacent pixels. To address the above issue, we use the local gradient of the
image to solve the local structures-preserving problem in the SR reconstruction. The image gradient is
sensitive to the image edge. The large gradients correspond to sharp edges of the image, while the
small gradients correspond to smooth regions of the image. The objective function based on the local
gradient of the image can be expressed as:

O = arg min
O

Q

∑
p=1

{
(Zp −Op)

2 + ω[ah,p(5h,p(O))2 + av,p(5v,p(O))2]
}

, (7)

where p is the pixel location in the image, Z ∈ Rm×n (m× n represents the size of the image) denotes
the clean image, O ∈ Rm×n represents the smoother image of Z, Q (Q = m × n) is the number
of pixels in the image, ah,p and av,p are weight vectors, (5h,p(O))2 and (5v,p(O))2 are the square
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of gradients along the horizontal and the vertical directions at the p-th position of the image O,
respectively. In Equation (7), the first term is the data term to ensure that the image O is close to the
image Z, the second term is a regularization term that makes the gradient of O as small as possible
(except where the image has significant gradients) and constrains the edge energy, and the parameter
ω balances the data term and the regularization term.

By using matrix notations, we can rewrite Equation (7) as:

O = arg min
O

{
(Z−O)T(Z−O) + ω(OTST

h AhShO + OTST
v AvSvO)

}
, (8)

where Ah, Av ∈ RQ×Q,

Ah =


ah,1 0 . . . 0
0 ah,2 . . . 0
...

...
. . .

...
0 0 . . . ah,Q

 , Av =


av,1 0 . . . 0
0 av,2 . . . 0
...

...
. . .

...
0 0 . . . av,Q

 . (9)

Sh and Sv ∈ RQ×Q are discrete difference operations along the h and v directions, respectively, which
are defined as follows:

Shcr =


1 if c = r

−1 if c = r0 + m

0 if others

, Svcr =


1 if c = r

−1 if c = r0 + 1

0 if others

, (10)

where c and r are the column and row numbers of Sh and Sv, respectively, c, r = 1, 2, . . . , Q, and r0 is
the value of r in the case of r = c. Minimizing Equation (8), we can acquire the following formula:

(I + ωM)O = Z, (11)

where M = ST
h AhSh + ST

v AvSv, I denotes an identity matrix, and we call E = (I + ωM) the local
structure filter. Inspired by [41], we calculate weight vectors ah,p and av,p by:

ah,p = [5h,p(O) + ε1]
−1, av,p = [5v,p(O) + ε1]

−1, (12)

where ε1 is a constant for mathematical stability, and ε1 = 0.0001. Since O is unknown, ah,p and av,p

are estimated by exploiting the image Z. The calculation of the local structure filter E is summarized in
Algorithm 1.

Algorithm 1 The calculation of the local structure filter E.

Input: Z
Output: E

1: set parameters ε1, ω and compute ah,p, av,p by Equation (12);
2: calculate matrices Ah, Av via Equation (9);
3: calculate difference matrices Sh, Sv via Equation (10);
4: compute the symmetrical matrix M by M = ST

h AhSh + ST
v AvSv;

5: obtain the local structure filter E by E = (I + ωM);

The proposed local structure filter E has strong local correlation because it takes into account
the local gradient of the image. Moreover, remote sensing images are usually terrain and targets
images, such as airplane, harbor, parking lot, river, and mountain. These images have local correlation.
To describe the local correlation of remote sensing images, we construct a local prior for remote sensing
images. In order to explore the local property, we perform statistical analysis on a large number of
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remote sensing images. Since E can describe the local continuity of the image, we analyze the statistic
property of ψ = Ex − x. For the image “Building” as an example, the distribution function curves are
shown in Figure 2. We can find that the probability density of ψ is close to Gaussian distribution (note
that the value of each entry in ψ is normalized to [−1, 1] in this test). According to the results, we can
obtain the following formula:

F(ψ) =
{ 1√

2πσh
exp(

−ψ2

2σ2
h
)
}

, (13)

where F(ψ) is the the probability density of ψ, and σh denotes a standard deviation. Then the local
constraint JL (x) can be constructed according to ψ in the MAP estimate, and the mathematical
expression is as follows:

JL (x) = ‖Ex − x‖2
2. (14)

Figure 2. The statistic property of ψ.

3.3. Regularized Parameter Settings

Proper parameters are conducive to improve the performance of SR reconstruction, so we adopt
the parametric adaptive method. Since the noise level is related to the regularization parameters [23],
in this paper, η and γ are both selected adaptively according to the noise level. The noise level can
be calculated by [42]. Let ξ = α− β, and assume that ξ and ψ are independent. The MAP estimation
considering both ξ and ψ is a multi-prior estimation. Multi-prior estimation methods have been widely
used in image processing [43,44]. The MAP estimation of ξ and ψ can be expressed as:

ξ, ψ = arg max
ξ,ψ

{
log F(y|ξ) + log F(ξ) + log F(y|ψ) + log F(ψ)

}
. (15)

Since E is a pre-calculated matrix and ψ = Ex − x, ψ is only related to x. We can obtain F(y|ψ) =

F(y|x).
F(y|ξ) and F(y|x) are generally characterized by the Gaussian distribution [43,44]:

F(y|ξ) = F(y|α, β) =
1√

2πσn
exp

{
−
‖y− DBΘα‖2

2
2σ2

n

}
, (16)

F(y|x) = 1√
2πσn

exp
{
−
‖y− DBx‖2

2
2σ2

n

}
, (17)

where ξ and β are assumed to be independent according to [31]. Since Θ is pre-calculated and x = Θα,
F(y|ξ) = F(y|x).
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F(ξ) can be obtained according to [31,45]:

F(ξ) = ∏
i

∏
g

1√
2σi,g

exp
{
−
√

2‖ξi,g‖1

σi,g

}
, (18)

where ξi,g is the g-th entry of ξi, and σi,g represents a standard deviation of the error ξi,g corresponding
to the Laplace distribution.

Substituting Equations (13), (16), (17) and (18) into Equation (15), and ignoring constant terms, we
can get:

αy = arg min
α

{
‖y− DBΘα‖2

2 +
√

2σ2
n ∑

i
∑
g

‖αi,g − βi,g‖1

σi,g
+ σ2

n
‖Ex − x‖2

2
2σ2

h

}
, (19)

where αi,g denotes the g-th entry of αi, and βi,g represents the g-th entry of βi.
Comparing Equation (4) with Equation (19), we can obtain parameters η and γ. Furthermore,

to ensure mathematical stability, we add additional parameters εη and εγ in the calculation of η and γ,
respectively.

η = ∑
i

∑
g

√
2σ2

n + εη

σi,g
, γ = (σ2

n + εγ)/2σ2
h , (20)

where σh denotes the evaluated noise level from x̂ during each iteration.
Finally, we apply the iterative shrinkage algorithm [39] to the AJC model, and the details of

solution are given in Algorithm 2.

Algorithm 2 Details of solution.

1: initialization

(a) set the initializing parameter;

(b) get initialized x̂ by Bicubic of the input LR image;

(c) estimate the noise level σn of the input LR image;
2: outer loop: iterate on lo = 1, 2, . . . , lmax

o

(a) update the dictionary Θ;

(b) inner loop: iterate on l = 1, 2, . . . , L;

(1) obtain the noise level σh of the reconstructed HR image x̂l ;

(2) estimate η and γ by Equation (20);

(3) calculate the filter E by using Algorithm 1, where x̂l as the input;

(4) compute x̂(l+1/2) = x̂l + δ
[

BT DT(y− DBx̂l) + γ(E − I)T(Ex̂l − x̂l)
]
;

(5) estimate α
(l+1)
i according to α

(l+1)
i = Sς(Λ

l
i − βl) + βl , where ς = λl

1/u, u is an

auxiliary parameter, and Λl
i =

ΘT BT DT(y−DBΘΘT
k Ri x̂(l+1/2))

u + ΘT
k Ri x̂(l+1/2), where Θk

denotes the corresponding sub-dictionary for the patch Ri x̂(l+1/2);

(6) if mod (l, L0) = 0, update βi, where L0 is constant ;

(7) reconstruct the HR image x̂(l+1) according to

x̂(l+1) = Θα̂(l+1) = (∑N
i=1 RT

i Ri)
−1 ∑N

i=1(RT
i Θα̂

(l+1)
i ),

where Ri denotes the extraction matrix of x̂i ;

end of inner loop;

end of outer loop.
3: obtain the reconstructed HR image x̂.
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4. Experimental Results

4.1. Experimental Setting

In this subsection, we show minutely the datasets and parameters settings. Test images are shown
in Figure 3. These images come from three different remote sensing image datasets: UCMLUD [46],
USC-SIPI-aerials [47] and NWPU-RESISC45 [48]. UCMLUD contains 21 classes of remote images,
and each class contains 100 images with size 256× 256. The spatial resolution for this dataset is
0.3 m/pixel. The spatial resolution for USC-SIPI-aerials is 1 m/pixel. NWPU-RESISC45 contains more
kinds of images than UCMLUD. Specifically, NWPU-RESISC45 contains 45 categories, and each class
has 700 images with size 256× 256. The spatial resolution of this database ranges from 0.2 m/pixel to
30 m/pixel.

Figure 3. Experimental test images, including the following images: aerial, airplane, residential,
parking-lot, terrace, farmland, mountain, industrial-area, river, building, meadow, island, runaway,
storage-tank, harbor.

Furthermore, the basic parameters settings in the proposed AJC method are as follows: the
number of inner loop J is 160, the number of outer loop L is 5, ω is set to 0.0001, and δ = 7. In addition,
to generate the test LR images, first, the HR image is blurred by the Gaussian Blur Kernel with size
7× 7 and standard deviation 1.6. Then, we downsample the blurred image by a scale factor of 3 [7,49].

4.2. Parameters Setting

The size (τ × τ) of patch and the number (K) of clustering have an important impact on the SR
performance. Too few clusters will eliminate the gaps between classes. Too many clusters will make
the dictionary lose its representativeness and reliability. So we need to find an optimal K by [30].
Specifically, we first divide the training patches into K clusters, and then merge the classes containing
a few image patches into the nearest neighboring classes. We analyze the impact of τ and K0 on peak
signal-to-noise ratio (PSNR) for all the test images, where K0 denotes the predefined clustering number
of K, and the results are shown in Table 1. The average PSNR varies with the patch size. In the case of
the patch size of 5, the average PSNRs of the test images are superior. In the case of the same patch
size and K0 larger than 10, PSNRs are close. This phenomenon shows the robustness of the method to
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find an optimal K [30]. Furthermore, the larger the number of clustering, the more time it takes. In
order to obtain a higher PSNR at a reasonable time, we set τ to 5 and K0 to 50.

Table 1. Average PSNR (Peak Signal-to-noise Ratio) of Test Images with Different Parameters (Scale
Factor = 3, Noise = 0).

τ

K0

10 30 50 70 90 110

3 31.17 31.22 31.21 31.21 31.21 31.21
5 31.84 31.86 31.90 31.87 31.87 31.86
7 31.68 31.77 31.78 31.77 31.78 31.78
9 31.49 31.57 31.59 31.58 31.59 31.59

4.3. Comparison with Different Traditional Methods

To demonstrate the SR performance of the proposed AJC algorithm, we compare it with other SR
methods, including Bicubic, SRSC [22], ASDS [30], MSEPLL [43], NARM [50] and LANR-NLM [51].
PSNR, structural similarity index (SSIM) [52] and erreur relative globale adimensionnelle de synthèse
(ERGAS) [53] are used as the objective evaluation indices. The result with higher PSNR/SSIM and
smaller ERGAS means the quality of the reconstructed image is better.

4.3.1. Noiseless Remote Sensing Images

In the noiseless case, the reconstruction results using different methods are shown in Table 2.
For “Island”, the LANR-NLM method acquires better objective evaluation indices. However,
considering all the test images, our algorithm has superior objective indices. Specifically, the average
PSNR, SSIM and ERGAS are 31.90 dB, 0.8876 and 2.2912, respectively. In addition, a graph is drawn
in Figure 4 for the results provided in Table 2. From Figure 4, it can be intuitively observed that our
method has better objective indices than other methods. To intuitively show the visual quality of the
reconstructed image, we compare the visual results as shown in Figures 5 and 6. The SR performance
of Bicubic interpolation is the worst. NARM produces smoother images. As shown in Figures 5f and 6f,
the MSEPLL method also smoothes many details of the image. In Figure 5, compare with other SR
reconstructed methods, the proposed method reconstructs the HR image with fewer artifacts and
clearer edges.

Table 2. PSNR, SSIM (Structural Similarity Index) and ERGAS (Erreur Relative Globale Adimensionnelle
De synthèse) Results of Reconstruction for Test Images (Scale Factor = 3, Noise = 0).

Image Bicubic SRSC ASDS NARM MSEPLL LANR-NLM Proposed Method

Aerial
24.67 25.10 29.24 25.97 29.09 29.03 29.61
0.6537 0.6925 0.8242 0.6757 0.8138 0.8220 0.8355
3.9962 3.8693 2.3713 3.6780 2.4803 2.4152 2.2616

Airplane
26.27 26.95 30.95 27.20 31.45 30.69 32.19
0.7989 0.8205 0.8949 0.8108 0.8944 0.8919 0.9078
2.6212 2.4746 1.4973 2.6506 1.5388 1.5706 1.3277

Building
22.37 23.06 28.38 23.80 28.33 27.73 29.69

0.7016 0.7534 0.8958 0.7478 0.8813 0.8736 0.9295
4.1124 3.9017 2.0649 3.7222 2.2919 2.1973 1.7704

Farmland
28.35 28.72 33.50 29.84 33.74 33.39 34.41

0.7874 0.8080 0.8968 0.8021 0.8940 0.8957 0.9088
2.7081 2.6418 1.4812 2.5845 1.4699 1.5164 1.3482

Residential
22.12 22.35 27.26 23.69 27.34 26.69 28.13

0.6490 0.6797 0.8612 0.7079 0.8632 0.8421 0.8866
6.6038 6.4314 3.6263 5.6736 3.6207 3.9071 3.3038

Harbor
19.46 19.80 22.46 20.33 22.30 22.20 22.74

0.5839 0.6282 0.7774 0.6250 0.7575 0.7556 0.7954
9.7545 9.5490 6.9617 9.0384 7.0954 7.1817 6.6975
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Table 2. Cont.

Image Bicubic SRSC ASDS NARM MSEPLL LANR-NLM Proposed Method

Industrial-area
24.36 24.77 28.20 25.34 28.02 27.80 28.77

0.5826 0.6287 0.7951 0.6225 0.7870 0.7818 0.8154
4.1738 4.0708 2.6768 3.9101 2.7803 2.7963 2.5078

Island
42.05 42.46 44.55 41.76 44.04 45.54 45.28

0.9651 0.9678 0.9775 0.9611 0.9755 0.9821 0.9798
0.6397 0.6282 0.4730 1.2450 0.4727 0.4299 0.4444

Meadow
32.81 33.14 35.66 32.89 35.72 35.82 35.94

0.8231 0.8391 0.8960 0.8134 0.9005 0.9016 0.8994
2.4863 2.4410 1.7647 2.6757 1.6946 1.7657 1.7365

Mountain
28.65 28.92 34.49 30.26 34.56 34.38 34.81

0.7410 0.7677 0.8996 0.7660 0.8975 0.9022 0.9063
3.2698 3.2337 1.6807 3.0163 1.7413 1.6866 1.6089

Parking-lot
20.44 20.94 24.73 21.68 24.51 24.19 25.06

0.5741 0.6324 0.8019 0.6212 0.7805 0.7831 0.8225
7.9069 7.6570 4.9041 7.1071 5.1441 5.1708 4.6497

River
28.41 28.89 31.81 28.79 31.53 31.31 32.09

0.7459 0.7761 0.8710 0.7492 0.8651 0.8635 0.8780
3.6894 3.5537 2.4926 3.7640 2.5060 2.6506 2.4179

Runway
27.08 27.44 31.94 28.47 31.56 30.93 32.49

0.7765 0.7988 0.8861 0.8078 0.8726 0.8696 0.9031
3.2369 3.1714 1.8489 2.9907 1.9089 2.0770 1.7356

Storage-tank
26.28 26.71 31.88 27.77 31.94 31.08 33.11

0.8143 0.8349 0.9224 0.8353 0.9264 0.9112 0.9367
3.2870 3.1918 1.6767 2.9933 1.5735 1.8949 1.4944

Terrace
28.32 28.93 32.15 29.27 31.58 32.13 34.20

0.7066 0.7526 0.8572 0.7485 0.8464 0.8605 0.9086
2.0933 2.0133 1.3215 2.2463 1.3896 1.3478 1.0632

Average

26.78 27.36 31.15 27.80 31.05 30.86 31.90
0.7269 0.7634 0.8705 0.7530 0.8637 0.8624 0.8876
4.0386 3.9257 2.4561 3.8197 2.5139 2.5739 2.2912

Figure 4. The average objective indices for the test images in the case of noise = 0 and noise = 5.
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In Figure 6, ASDS and LANR-NLM tend to smooth out image details to some extent. As shown
in Figure 6h, the image reconstructed using the proposed method has a clearer white line than others.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Visual comparisons of the proposed method and other methods on the aerial image (noise = 0).
(a) original image. (b) Bicubic interpolation (PSNR:24.67, SSIM:0.6537, ERGAS:3.9962). (c) SRSC
(PSNR:25.10, SSIM:0.6925, ERGAS:3.8693). (d) ASDS (PSNR:29.24, SSIM:0.8242, ERGAS:2.3713).
(e) NARM (PSNR:25.97, SSIM:0.6757, ERGAS:3.6780). (f) MSEPLL (PSNR:29.09, SSIM:0.8138,
ERGAS:2.4803). (g) LANR-NLM (PSNR:29.03, SSIM:0.8220, ERGAS:2.4152). (h) Ours (PSNR:29.61,
SSIM:0.8355, ERGAS:2.2616).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Visual comparisons of the proposed method and other methods on the airplane
image (noise = 0). (a) original image. (b) Bicubic interpolation (PSNR:26.27, SSIM:0.7989,
ERGAS:2.6212). (c) SRSC (PSNR:26.95, SSIM:0.8205, ERGAS:2.4746). (d) ASDS (PSNR:30.95,
SSIM:0.8949, ERGAS:1.4973). (e) NARM (PSNR:27.20, SSIM:0.8108, ERGAS:2.6506). (f) MSEPLL
(PSNR:31.45, SSIM:0.8944, ERGAS:1.5388). (g) LANR-NLM (PSNR:30.69, SSIM:0.8919, ERGAS:1.5706).
(h) Ours (PSNR:32.19, SSIM:0.9078, ERGAS:1.3277).
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4.3.2. Noisy Remote Sensing Images

To demonstrate the effectiveness of our method in the noisy case, we add noise with a standard
deviation of 5 to the degraded image. The results are shown in Table 3.

Table 3. PSNR/SSIM/ERGAS Results of Reconstruction for Test Images (Scale Factor = 3, Noise = 5).

Image Bicubic ASDS NARM MSEPLL Proposed Method

Aerial 24.57/0.6385/4.0423 27.92/0.7557/2.7563 25.87/0.6670/3.6998 27.76/0.7388/2.8677 27.84/0.7490/2.7710
Airplane 26.13/0.7693/2.6658 29.57/0.8361/1.7637 27.06/0.7967/2.6225 29.93/0.8277/1.7034 30.24/0.8456/1.6599
Building 22.31/0.6817/4.1397 26.96/0.8113/2.4338 23.75/0.7405/3.7336 26.82/0.8093/2.6002 27.27/0.8479/2.3386
Farmland 28.09/0.7613/2.7893 31.35/0.8210/1.8997 29.67/0.7899/2.6078 31.66/0.8249/1.8446 31.88/0.8379/1.8029
Residential 22.05/0.6359/6.6547 26.16/0.7958/4.1301 23.61/0.6981/5.6835 26.21/0.8071/4.0817 26.46/0.8207/4.0046
Harbor 19.44/0.5679/9.7771 21.99/0.7214/7.3442 20.31/0.6178/8.9995 21.82/0.7063/7.4472 22.02/0.7297/7.2726
Industrial-area 24.26/0.5704/4.2199 26.96/0.7195/3.0857 25.21/0.6119/3.9566 26.84/0.7092/3.1590 27.08/0.7228/3.0452
Island 38.37/0.9164/0.9851 39.64/0.9420/0.8518 40.32/0.9453/1.3135 37.91/0.9068/1.0157 39.20/0.9339/0.8952
Meadow 32.19/0.7914/2.6744 33.39/0.8274/2.3056 32.56/0.7993/2.7643 33.42/0.8260/2.2176 33.65/0.8303/2.2597
Mountain 28.37/0.7233/3.3749 31.65/0.8168/2.3243 30.02/0.7533/3.0819 31.81/0.8196/2.3442 32.01/0.8293/2.2192
Parking-lot 20.39/0.5593/7.9503 23.92/0.7187/5.3732 21.60/0.6098/7.1449 23.82/0.7098/5.5197 23.76/0.7283/5.3984
River 28.16/0.7222/3.7962 30.13/0.7950/3.0248 28.64/0.7375/3.7906 29.92/0.7881/3.0064 30.19/0.7969/3.0082
Runway 26.90/0.7451/3.3047 29.77/0.8200/2.3667 28.44/0.7974/2.9942 29.55/0.7980/2.3862 30.47/0.8431/2.1896
Storage-tank 26.12/0.7854/3.3477 30.20/0.8618/2.0459 27.64/0.8227/2.9920 30.22/0.8662/1.9298 30.50/0.8766/2.0174
Terrace 28.07/0.6842/2.1537 30.07/0.7717/1.6848 29.10/0.7374/2.2373 29.79/0.7688/1.7139 31.19/0.8245/1.5030

Average 26.36/0.7035/4.1251 29.31/0.8009/2.8927 27.59/0.7417/3.8415 29.16/0.7938/2.9225 29.58/0.8144/2.8257

Compared with other methods, the ASDS method achieves better SR results on the “Aerial” image.
However, the average PSNR, SSIM and ERGAS of our algorithm are the highest among these SR
methods, which are 29.58 dB, 0.8144 and 2.8257, respectively. In addition, to more intuitively reflect the
performance of our method, we draw a graph for the results provided in Table 3, as shown in Figure 4.
Furthermore, we give visual effects as shown in Figures 7 and 8. We can find that the proposed method
also has better SR performance in suppressing image noise and preserving details and edges.

Consequently, according to the experiments on test images, the proposed method can achieve the
best SR results in both noiseless and noisy cases.

4.4. Comparison with Different Deep Learning Methods

To reasonably compare with deep learning methods, we chose the classic deep learning methods
SRCNN [32] and SRGAN [35], and the recently proposed remote sensing images method LGCnet [54].
For these methods, we retrain and fine tune their models, and then use these models for SR
reconstruction. The training data come from three remote sensing image datasets: UCMLUD [46],
USC-SIPI-aerials [47] and NWPU-RESISC45 [48]. All the training images are first blurred and
then down-sampled to obtain the low-resolution images. Next, both the obtained low-resolution
images and their original versions are collected as training pairs to train SRCNN [32], SRGAN [35],
and LGCnet [54]. When the training error stops decreasing, we reduce their initial learning rates
to fine-tuned their models to achieve their best performance. The results are shown in Table 4.
For “Runway”, the resolution reconstructed by the LGCnet method is higher. However, for all the test
images, our method is superior to SRCNN, SRGAN and LGCnet, and the average PSNR/SSIM gains
over SRCNN, SRGAN and LGCnet are 0.84 dB/0.0215, 1.64 dB/0.0778 and 0.2 dB/0.0048, respectively.
For ERGAS, our method is 0.0394 better than SRGAN on the test images. Our average ERGAS is 0.04
better than LGCnet’s average ERGAS and 0.1984 better than the average ERGAS of SRCNN. In order to
show that our method does not need a lot of external data compared with the deep learning methods,
we provide the training time and the number of training images, as shown in Table 5. Compared with
other methods, the proposed approach can train with only one image, and saves lots of training time.
The experiment results show that our method has better SR performance in noiseless cases.
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Table 4. PSNR/SSIM/ERGAS Results for Test Images (Scale Factor = 3, Noise = 0).

Image Bicubic SRCNN LGCnet SRGAN Proposed Method

Aerial 24.67/0.6537/3.9962 29.04/0.8182/2.4128 29.36/0.8287/2.3298 27.89/0.7873/2.3921 29.61/0.8355/2.2616
Airplane 26.27/0.7989/2.6212 31.22/0.8960/1.4769 32.00/0.9033/1.3552 30.46/0.8806/1.3694 32.19/0.9078/1.3277
Building 22.37/0.7016/4.1124 27.83/0.8742/2.1715 28.95/0.9121/1.9262 28.02/0.9045/1.8661 29.69/0.9295/1.7704
Farmland 28.35/0.7874/2.7081 33.56/0.8968/1.4867 34.03/0.9043/1.4094 32.51/0.8905/1.4265 34.41/0.9088/1.3482
Residential 22.12/0.6490/6.6038 27.15/0.8563/3.7059 27.71/0.8757/3.4700 26.56/0.8712/3.4248 28.13/0.8866/3.3038
Harbor 19.46/0.5839/9.7545 22.42/0.7738/6.9924 22.67/0.7920/6.7545 21.58/0.7891/6.5860 22.74/0.7954/6.6975
Industrial-area 24.36/0.5826/4.1738 28.05/0.7878/2.7170 28.41/0.8043/2.6159 27.03/0.8063/2.6098 28.77/0.8154/2.5078
Island 42.05/0.9651/0.6397 45.04/0.9797/0.4557 45.05/0.9789/0.4561 42.61/0.9702/0.5597 45.28/0.9798/0.4444
Meadow 32.81/0.8231/2.4863 35.78/0.8989/1.7738 35.87/0.8990/1.7524 34.35/0.8845/1.7821 35.94/0.8994/1.7365
Mountain 28.65/0.7410/3.2698 34.50/0.9012/1.6649 34.53/0.9034/1.6612 33.06/0.8939/1.6890 34.81/0.9063/1.6089
Parking-lot 20.44/0.5741/7.9069 24.97/0.7937/4.7275 25.46/0.8204/4.4413 24.27/0.8102/4.3878 25.06/0.8225/4.6497
River 28.41/0.7459/3.6894 31.51/0.8665/2.5905 32.01/0.8756/2.4396 30.73/0.8680/2.4351 32.09/0.8780/2.4179
Runway 27.08/0.7765/3.2369 30.99/0.8661/2.0623 32.59/0.9052/1.7160 30.67/0.8716/1.8089 32.49/0.9031/1.7356
Storage-tank 26.28/0.8143/3.2870 31.48/0.9165/1.8077 32.62/0.9300/1.5836 31.09/0.9188/1.5738 33.11/0.9367/1.4944
Terrace 28.32/0.7066/2.0933 32.45/0.8654/1.2990 34.26/0.9087/1.0559 33.05/0.9023/1.0483 34.20/0.9086/1.0632

Average 26.78/0.7269/4.0386 31.06/0.8661/2.4896 31.70/0.8828/2.3312 30.26/0.8098/2.3306 31.90/0.8876/2.2912

Table 5. Comparison for the number of training images and training time.

SRCNN LGCnet SRGAN Proposed Method

The number of training images 2145 2145 4290 1
Training time 2 days 6 h 8 h 60 s

(a) (b) (c)

(d) (e) (f)

Figure 7. The reconstruction for the meadow of noisy image with different methods (noise = 5).
(a) original image. (b) bicubic interpolation (PSNR:32.19, SSIM:0.7914, ERGAS:2.6744). (c) ASDS
(PSNR:33.39, SSIM:0.8274, ERGAS:2.3056). (d) NARM (PSNR:32.56, SSIM:0.7993, ERGAS:2.7643).
(e) MSEPLL (PSNR:33.42, SSIM:0.8260, ERGAS:/2.2176). (f) ours (PSNR:33.65, SSIM:0.8302,
ERGAS:2.2605).
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(a) (b) (c)

(d) (e) (f)

Figure 8. The reconstruction for the residential of noisy image with different methods (noise = 5).
(a) original image. (b) bicubic interpolation (PSNR:22.05, SSIM:0.6359, ERGAS:6.6547). (c) ASDS
(PSNR:26.16, SSIM:0.7958, ERGAS:4.1301). (d) NARM (PSNR:23.61, SSIM:0.6981, ERGAS:5.6835). (e)
MSEPLL (PSNR:26.21, SSIM:0.8071, ERGAS:4.0817). (f) ours (PSNR:26.47, SSIM:0.8209, ERGAS:3.9976).

4.5. Comparison with Different Methods on Datasets

To verify our method performance, we use different methods to reconstruct the test databases,
including the “Airplane” and “Storage-tank” sub-databases from the UCMLUD, and the “Island”
sub-database from the NWPU-RESISC45. The results are shown in Table 6. In Table 6, in addition to
our approach, ASDS is the best traditional method, LGCnet is superior to SRCNN in deep learning
methods. For the “Airplane” sub-database, our method is superior to the ASDS and LGCnet methods,
and the average PSNR/SSIM gains over ASDS and LGCnet are 0.81 dB/0.0106 and 0.32 dB/0.0026,
respectively. Meanwhile, our method has a better ERGAS than other methods, it is 1.7553. For the
“Storage-tank” sub-database, the PSNR/SSIM of our algorithm is 0.56 dB/0.0119 higher than ASDS.
Our ERGAS is 0.1194 better than the ERGAS of ASDS. Compare with LGCnet, although LGCnet
has better SSIM and ERGAS, our approach gets the larger PSNR. For the “Island” sub-database,
the PSNR/SSIM of our method is 0.34 dB/0.0046 superior to ASDS, and the PSNR/SSIM of LGCnet is
0.08 dB/0.0019 inferior to ours. The results show that the images reconstructed using our method has
better performance.

The previous experimental analysis shows the comprehensive performance of our proposed
method. Specifically, for images that satisfy the joint constraint (i.e., images with repeated structures
and many edges), the proposed method has superior performance. For images with highly complex
texture, the proposed method is not effective enough. In our paper, the proposed approach is
based on local gradient constraint and nonlocal similarity. Because images with repeated structures
and many edges can perfectly satisfy these two features, they can acquire superior reconstruction
performance. Thus, in most cases, this approach performs better than many other super-resolution
methods. However, for images with highly complex texture, these two features are not reliable. If we
use these two features for reconstruction, the reconstructed image will not be very good. In fact, many
SR approaches do not work well under such extreme conditions.
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Table 6. PSNR/SSIM/ERGAS Results on Databases (Scale Factor = 3, Noise = 0).

Dataset Airplane Storage-Tank Island

Bicubic 25.05/0.7351/3.7586 25.43/0.7148/4.1085 33.49/0.8812/2.6453
ASDS 30.82/0.8665/1.9192 30.04/0.8474/2.5866 37.78/0.9357/1.4686
SRCNN 30.77/0.8640/1.9225 30.05/0.8469/2.5429 37.87/0.9373/1.4911
LANR-NLM 30.29/0.8580/2.0861 29.63/0.8388/2.6896 37.77/0.9376/1.5116
LGCnet 31.31/0.8745/1.7948 30.55/0.8622/2.3560 38.04/0.9384/1.4303
Proposed method 31.63/0.8771/1.7553 30.60/0.8593/2.4672 38.12/0.9403/1.4403

4.6. The Effectiveness of Joint Constraint

The image itself comprises repetitive structures, i.e., self-similarity. Researchers often exploit the
nonlocal self-similarity of images for the SR reconstruction. However, it is not enough to consider
only the nonlocal self-similarity to improve the resolution of the input image. To address the above
problem, we construct a local constraint according to the proposed filter. Considering the joint
constraint, the quality of the reconstructed image will be greatly improved. In order to demonstrate
the performance of the joint constraint, we compare the SR performance for the joint constraint and the
single nonlocal constraint. The results are shown in Table 7. For all the test images, the method for the
joint constraint achieves superior objective qualities. Specifically, the average PSNR and SSIM gains of
the joint constraint over the single nonlocal constraint are 0.38 dB and 0.0071 , respectively, and the
average ERGAS of the joint constraint is 0.097 better than the single nonlocal constraint. Experiment
results demonstrate that the complementary joint constraint can effectively improve the image quality.

4.7. The Effectiveness of Adaptive Parameters

In the classic sparse coding problem, the choice of regularization parameters is very important.
However, the parameters of most methods are fixed. In this paper, we adaptively select the parameters
according to the noise level. To demonstrate the effectiveness of our adaptive parameters, we compare
the results of the fixed parameters with those of the adaptive parameters as shown in Figure 9. In the
case of fixed parameters, λ1 and λ2 are set to 0.33 and 0.001, respectively. In Figure 9, the maximum
PSNR gain is 0.36 dB, and the corresponding image is “Runway”. At the same time, the image with
the largest SSIM gain is also “Runway”. Specifically, it is 0.0061. For “Runway”, the ERGAS with
adaptive parameters is 0.0408 better than that with fixed parameters. Experiment results indicate that
the adaptive parameters are beneficial to improve the SR performance.

(a) (b)

Figure 9. Peak Signal-to-noise Ratio(PSNR) and Structural Similarity Index(SSIM) gains of the method
with adaptive parameters over the method with fixed parameters. (a) PSNR gains. (b) SSIM gains.
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Table 7. PSNR/SSIM/ERGAS Results of Nonlocal and Joint constraints (Scale Factor = 3, Noise = 0).

Image Nonlocal Constraint Joint Constraint

Aerial 29.50/0.8342/2.2917 29.61/0.8355/2.2616
Airplane 31.44/0.9026/1.4464 32.19/0.9078/1.3277
Building 27.93/0.9014/2.1688 29.69/0.9295/1.7704
Farmland 33.65/0.8993/1.4725 34.41/0.9088/1.3482
Residential 28.06/0.8834/3.3325 28.13/0.8866/3.3038
Harbor 22.18/0.7614/7.1387 22.74/0.7954/6.6975
Industrial-area 28.72/0.8129/2.5215 28.77/0.8154/2.5078
Island 44.71/0.9758/0.4746 45.28/0.9798/0.4444
Meadow 35.94/0.8996/1.7364 35.94/0.8994/1.7365
Mountain 34.80/0.9060/1.6101 34.81/0.9063/1.6089
Parking-lot 24.95/0.8188/4.7113 25.06/0.8225/4.6497
River 32.07/0.8774/2.4221 32.09/0.8780/2.4179
Runway 31.67/0.8908/1.9085 32.49/0.9031/1.7356
Storage-tank 32.92/0.9354/1.5278 33.11/0.9367/1.4944
Terrace 34.22/0.9091/1.0603 34.20/0.9086/1.0632

Average 31.52/0.8805/2.3882 31.90/0.8876/2.2912

4.8. Complexity Analysis

Our method takes major cost on three part: the sub-dictionaries learning, the calculation of
local structural filter, and the nonlocal search. In the sub-dictionaries learning, the core procedure
involves the clustering of K-means. Its computational complexity is O(Lτ2mnK). The calculation of
local structural filter E takes O(LJmn). The nonlocal search is related to the patch size, the search
window size b× b and the number of the images. It takes O(mnτ2b2). Take the “Airplane” with size
256× 256 as a test image, the LANR-NLM method takes 40.82 s, LGCnet takes 0.74s, NARM and
ASDS take 68.02 s and 107.92 s, respectively, the MSEPLL and our methods take 215.88 s and 297.91 s,
respectively. Therein, traditional SR methods are implemented in MATLAB 2014a on a computer with
Intel(R) Core(TM) i7-7700K CPU @ 4.20GHZ 4.20GHZ, 16.0GB RAM and 64-bit Windows 7 operating
system. Our method takes a little longer time than others. This is because the proposed method
learns the dictionary online for the input image and performs adaptive filtering for each iteration of
the HR image. However, our method does not need external training examples, which saves a large
amount of training time. In conclusion, our approach achieves the best visual and objective quality
with reasonable running time.

5. Conclusions

In this paper, we propose a novel SR scheme based on sparse representation for the single remote
sensing image. First, we use the single-dictionary method to learn the compact dictionary that exploits
only the unique information of remote sensing image itself. Compared with the double-dictionary
method and the deep learning method, this method has an advantage in the absence of external
samples. Second, we propose a local structure filter based on the local gradient of image, and then a
local structure prior is constructed. After that, the joint prior is constructed, including the local structure
prior and the nonlocal self-similarity prior, which can effectively improve the fine structures recovery
ability. Finally, the reconstructed HR images can be obtained by using the iterative shrinkage algorithm.
The results show that the proposed local structure prior shows superior edge-preserving performance
and the complementary prior constructed is more conducive in improving the SR performance.
Compared with other methods, the HR images reconstructed by our scheme have better visual quality
and higher objective evaluation indices. In the future, we will extend the proposed method to other
image processing applications.
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