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Abstract: The Toolbox implementation for removal of antipersonnel mines, submunitions and
unexploded ordnance (TIRAMISU) Advanced Intelligence Decision Support System is an operational
system proposed to Mine Action Centres worldwide for conducting non-technical surveys in
humanitarian demining. The system consists of three modules, one of which is the module
for data acquisition introduced and described in this study. The module has been designed,
produced, improved, used and operationally tested and validated on several platforms (helicopters,
remotely piloted aircraft systems (RPAS) and a blimp), with various sensors and acquisition units
(Global Positioning System (GPS) and inertial measurement unit) in a variety of combinations for
additional data acquisition from deep inside a suspected hazardous area. For the purposes of aerial
data acquisition over a suspected hazardous area, the use of multiple sensors such as visible digital
cameras and multi-spectral visible, near infrared (VNIR), hyperspectral VNIR and thermal infrared
sensors are of benefit, because they display the scene in different ways. Off-the-shelf equipment and
software were mostly used, but some specific equipment, such as sensor pods, was developed and
also some software solutions for data acquisition and pre-processing (transforming hyperspectral line
scanner data into hyperspectral images, and producing hyperspectral cubes). The technical stability
and robustness of the module were confirmed by operationally testing and evaluating the systems on
the aforementioned platforms and missions in several actual suspected hazardous areas in Croatia
and Bosnia and Herzegovina, between 2001 and 2015.

Keywords: multi-sensors system; aerial data acquisition; sensors; platforms; remote sensing

1. Introduction

After the end of the Homeland War in 1995, the Republic of Croatia faced a huge mine problem.
A great deal of its territory (about 10.5%; [1]) was suspected hazardous areas. “A suspected hazardous
area is an area where there is reasonable suspicion of mine/explosive remnants of war contamination
on the basis of indirect evidence of the presence of mines/explosive remnants of war” [2]. During the
post-war period, concern increased regarding the number of landmine injuries suffered by innocent
civilians. The civilian approach to demining (humanitarian mine action) differs from the military
approach and begins when the conflict stops. It is called mine action [2]. The goal of integrated mine
action is to return previously mined land to the community for use and covers a far wider scope
of activities than simply mine clearance. It includes mine awareness and risk-reduction education,
minefield surveying, mapping, marking and clearance, victim assistance, including rehabilitation
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and reintegration, and advocacy to stigmatize the use of landmines and support a total ban on
anti-personnel landmines [3]. Mine action ultimately aims at a 100% clearance rate of land mines and
dangerous explosive objects [3]. To plan and implement demining projects successfully, it is necessary
to know minefield locations. Information-gathering techniques, such as interviewing returnees, general
mine action assessment [4], technical surveys [5], analytical evaluation of military maps or reading the
biographies of military commanders, provide a good insight into the mine situation [6,7]. However,
as noted in [3] these are long, expensive processes that ultimately do not provide enough accurate
information. The mine action process must be accelerated in order to identify mined areas quickly,
avoid accidents, and assign demining priorities. This requires a quick, low-risk, cost-effective tool
for surveying suspected hazardous areas and producing maps with indicators of the mine presence
and absence [8–10] to define suspected hazardous area boundaries. For example, in the Republic of
Croatia, humanitarian mine campaigns have shown that only 10% of suspected hazardous areas are
mine-affected [11]. It is almost as important to identify areas not affected by landmines, for the purpose
of reducing an already defined suspected hazardous area [12].

To this end, the Advanced Intelligence Decision Support System (AIDSS) [13,14] based on
visible digital cameras, multi-spectral and hyperspectral visible, near infrared (VNIR), and thermal
infrared sensors, has been designed, produced, operationally validated and implemented in the
Republic of Croatia and Bosnia and Herzegovina. AIDSS is the result of research conducted within
seven international and domestic scientific projects: ARC [15], SMART [12], System for Multi-sensor
Airborne Reconnaissance and Surveillance in Crisis Situations and Environmental Protection [16],
Deployment of the Decision Support System for Mine Suspected Area Reduction [17], Deployment of
the Advanced Intelligence Decision Support System for Mine Suspected Area Reduction in Bosnia and
Herzegovina [18], and Toolbox implementation for removal of antipersonnel mines, submunitions
and unexploded ordnance (TIRAMISU) [19], which aimed to implement airborne and satellite-borne
remote sensing for non-technical survey [10,20] in humanitarian mine campaigns and crisis situations.
AIDSS is a modular tool with a module for aerial data acquisition [14].

The goal of the AIDSS module for aerial data acquisition, or any similar multi-sensor imaging
system, is to provide usable images for extracting information, detecting and identifying objects
and features based on image (geometric and spectral) characteristics, and classification as shown
in [12] and [13]. Multi-sensor imaging systems as cited in [21–25] allow the implementation of
multi-sensor data fusion [26,27], the results of which can reveal certain objects indirectly, as shown
in [28]. Multi-sensor fusion deals with a combination of complementary, sometimes competing sensor
data, in a reliable estimate of the environment, to achieve an outcome that is better than the sum of
its parts, [29–31], to achieve inferences that are not feasible from each sensor operating separately.
Advances in the development of sensor technology are insufficient without the use of multi-sensor
fusion techniques [32]. Since sensors of different types integrated in the system have their own
limitations and perceptive uncertainties, an appropriate data fusion approach is expected to reduce
overall sensor uncertainties and increase the accuracy of system performance [33]. The crucial thematic
framework which assures operational success and the outcome values of multisensory imaging and
fusion for the purposes of anti-mine operations is the detailed identification of the mined scene, with
the working title of analytical assessment, defining the so-called strong indicators of mine levels,
introduced in 2001 and developed up to 2015 [6,7]. These paradigms have assured the selection and
adaptation of sensory techniques, a regime for recording situations in suspected hazardous areas, and
a new type of outcome, called “office virtual reconstruction of former battlefields”.

Data fusion in AIDSS is not performed within the data acquisition module, but after processing the
collected materials in the third module and, therefore it will not be explained any further in this paper.
Here, it is important to stress that data fusion is not performed in real time, as with other multi-sensory
systems, for example [34] or [21]. Therefore, it is important to define the purpose of multi-sensory
imaging well, in order to select optimal sensors and adequate platforms for such a system.
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A thorough review of satellite and airborne sensors for remote-sensing-based detection of
minefields and landmines can be found in [11], focusing on multi-temporal aerial photographs and
satellite images. The paper presents a good analysis of the structure and composition of minefields and
patterns that can be obtained for minefield detection. On the other hand, [32,35,36] focus on some of
the most common ‘direct’ remote sensing technologies in landmine detection, defining ‘direct’ as mine
clearance per se (a technology used in technical surveys and actual demining processes). The demand
for detailed information from inside suspected hazardous areas has increased markedly throughout
the world. Therefore, it is very important to develop new remote-sensing techniques that allow for the
direct measurement of common situations in suspected hazardous areas. Although public satellite
imagery is available (e.g., Sentinel, Landsat), low ground sample distance (GSD, 10 m for Sentinel-2
and 30 m for Landsat satellite imagery) is an obstacle to interpreting and extracting information with
the required accuracy. On the other hand, commercial satellites provide better GSD (≈0.5 m from
WordView and GeoEye satellite imagery) and better insights into the scene. Airborne imagery resolves
the low-GSD problem of satellite imagery and, with better GSD, provides adequate spectral bands for
photogrammetric and remote-sensing methods. Remotely piloted aircraft systems (RPAS) provide
special advantages over other platforms, in particular high GSD, and more economical preparations
for performing and collecting data in smaller areas. Examples of RPAS use in landmine detection can
be found in [37–39], and indicators of mine presence detection in [40,41].

This paper presents an overview of an imaging system operating in the visible, near infrared and
LWIR range of the electromagnetic spectrum according to defined needs, particularly humanitarian
mine action, and which has also been tested to collect data on the quality of standing water, oil pollution
in the Adriatic and fire monitoring [16,42]. The results of this system are used as inputs in data fusion
and the production of mine danger maps [6,7,10,43].

2. Equipment

2.1. Advanced Intelligence Decision Support System (AIDSS) Module for Aerial Data Acquisition

AIDSS is not a mine detector. It is a set of tools and methods, advanced and integrated into one
effective system, and based on SMART methodology [44] for use by experienced operators, experts in
remote sensing and experts from Mine Action Centres, to help suspected hazardous area reduction
using remote sensing data and expert knowledge [14]. In the SMART project [45], many useful tools
for aerial non-technical surveys in humanitarian mine action were developed and tested, but within
the actual project and following it, they were integrated and implemented operationally. AIDSS was
developed due to actual demands for help in removing mines quickly in the Republic of Croatia.
AIDSS is a complex system (Figure 1) to support decisions on defining suspected hazardous areas.
It consists of three modules:

• module for the analytical assessment of mine information system data;
• module for data acquisition (multi-sensor imaging system);
• module for data pre-processing and processing.

The modules can be used together or individually. Input includes data from the mine information
system, expert knowledge, and airborne, satellite and contextual data (Figure 1). AIDSS is a unique
mine action technology that provides a successfully operational system combining remote sensing
with advanced intelligence methodology. It is a validated operational solution for non-technical
surveys in humanitarian mine actions [13] proposed to mine action centres worldwide, because it is
adaptable to specific terrains and situations. The outcomes of this system are successfully detected
and confirmed geographical positions of indicators of mine presence and indicators of mine absence,
a better (re)definition of a suspected hazardous area, and thematic maps (mine danger maps) [6].
Therefore, the AIDSS module for data acquisition is a very important part of the whole system, because
the processing of collected data should provide useful results, within the AIDSS methodology, for
decision-making on suspected hazardous area re-definition.
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Suspected hazardous area in the Republic of Croatia are usually not compact areas with regular 
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which can change direction and require low minimum speeds for stable flight (Mi-8 ≈ 120 km/h, Bell-
206 ≈ 70 km/h) in comparison with airplanes. Helicopter flights require shorter times, particularly in 
maneuvering from one site and set of images to another. Helicopters can also fly lower (≈200 m above 
the ground) for minimum speed flight stability, and this directly affects the size of GSD on images. 
For an even better view of details in small areas of suspected hazardous areas, or in parts recorded 
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each mission.  

The module ensured the stability and reliability of data acquisition on each platform. The 
technical stability and the robustness of the system has been confirmed by tests and evaluations 
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Figure 1. Scheme of Advanced Intelligence Decision Support System (AIDSS) methodology. 1—Module
and requirements for data acquisition.

The goal of the AIDSS module for data acquisition for humanitarian mine action is to collect
information about the current situation within a suspected hazardous area or munitions depots
destroyed by explosion, that is, information on the locations of remains of fortification objects in the
area. Fortification objects are strong indicators of mine presence, such as trenches, bunkers, artillery
tool stores, personnel shelters, altered forest boundaries, objects that are not currently used but were
used before the conflict, and the remains of military equipment.

Suspected hazardous area in the Republic of Croatia are usually not compact areas with regular
borders, but larger and smaller fragmented areas. For this reason, helicopters and RPAS were chosen
as platforms, and a blimp was also tested as a potential platform. Helicopters are mobile platforms
which can change direction and require low minimum speeds for stable flight (Mi-8 ≈ 120 km/h,
Bell-206 ≈ 70 km/h) in comparison with airplanes. Helicopter flights require shorter times, particularly
in maneuvering from one site and set of images to another. Helicopters can also fly lower (≈200 m
above the ground) for minimum speed flight stability, and this directly affects the size of GSD on
images. For an even better view of details in small areas of suspected hazardous areas, or in parts
recorded from helicopters where GSD was inadequate to detect individual indicators of mine presence,
RPAS was used as a multi-sensor system platform. These platforms can fly low and hover over areas
of interest within a suspected hazardous area.

Research and development to create AIDSS has responded to real demands from humanitarian
mine action experts in Croatia. It was done using prototyping (spiral) methodology rather than
waterfall methodology, and the statement of needs was defined before each step was defined, followed
by state of the art, and ending with gap-filling requirements. An initial version of the system (prototype)
was developed that was modified according to the needs of each project and tested on each mission.

The module ensured the stability and reliability of data acquisition on each platform. The technical
stability and the robustness of the system has been confirmed by tests and evaluations (based on
the behavior of the system during data acquisition over areas of interest) on different platforms and
missions in the Republic of Croatia and Bosnia and Herzegovina in the periods mentioned.

The AIDSS module for data acquisition consists of:

• Visible digital cameras;
• Multi-spectral VNIR sensor;
• Thermal infrared sensor;
• Hyperspectral VNIR sensor;
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• Sensors for navigation and positioning (Global Positioning Systems (GPSs) and inertial
measurement unit);

• Module control system;
• Power supply;
• Platforms (helicopters, RPAS, blimp);
• Operator.

2.2. Sensors

The passive sensors may detect natural electromagnetic energy that is reflected or emitted by
the observed object. Two main categories of passive camera systems can be distinguished: frame
cameras and line-scanner imaging systems [46]. Various types of both (multi-spectral VNIR: Fuji
FinePix, Canon 5D, Nikon D90, SONY α6000, DuncanTech MS3100, Redlake MS4100; hyperspectral
VNIR: ImSpector V9/PixelFly, UHD; panchromatic LWIR: THV 1000, Photon 320) were investigated
and used in AIDSS’s module for aerial data acquisition (Table 1). A wealth of experience was gained,
and random selection was narrowed down while refuting the frequently expressed claim, “the more
data from different sensors, the greater the probability of success” [36]. No single technology has the
capability to detect and recognize a variety of indicators of mine presence under all circumstances [32].
Most developed technologies and techniques are complex and/or expensive. Many are promising, but
none has the sensitivity, size, weight, manufacturability and price range required for humanitarian
mine action [32,36]. The goal of the AIDSS module for data acquisition is to collect information about
the current situation within a suspected hazardous area or munitions depot destroyed by a explosion,
that is, information on the locations of remains of fortification objects in that area. Sensors for the AIDSS
module for data acquisition were selected according to the above requirements (Table 1). Indicators of
mine presence can be detected and isolated on digital images using some of the methods for processing
digital images described in [47,48], or by methods of object-oriented identification of linear objects
based on presuppositions regarding their geometric and radiometric features and use of various filters
to emphasize them [49] or [50]. Isolating indicators of mine presence on hyperspectral images is done
via their spectral characteristics, as shown in [51–53].

Table 1. The main characteristics of image sensors, number of spectral bands and spectral ranges used
within the module for aerial data acquisition.

Camera Sensor Type Sensor Size
(mm)

Max Image
Size (pixel)

Radiometric
Resolution (bit)

Spectral
Bands

Spectral
Range (µm)

Nikon D90 DX CMOS 23.6 × 16.8 4288 × 2848 12 3 0.4–0.7
Sony α6000 APS-C 23.5 × 15.6 6000 × 4000 12 3 0.4–0.7

DuncanTech MS3100 3 × CCD 7.6 × 6.2 1392 × 1039 8 and 10 4 0.4–1.0
Redlake MS410 3 × CCD 14.2 × 8 1920 × 1080 12 4 0.4–1.0

Thermovision 1000
FLIR mini-STIRLING cooled 600 × 400 8 1 8–12

FLIR Photon 320 uncooled Vanadium
Oxide microbolometer 324 × 256 14 1 8–12

Imspector V9 + PCO
PixelFly line scanner, CCD 8.6 × 6.9 1280 × 1024 12 up to 95 0.4–0.93

CUBERT UHD 185 Si CCD 1000 × 1000
50 × 50 12 125 0.45–0.95

2.2.1. Visible Digital Cameras

Visible digital matrix cameras in the present constellation of sensors are the Nikon D90 and
SONY α6000, which collect information in the visible part of the spectrum, in 3 spectral bands from
400–700 nm (Table 1). The main cameras’ technical specifications are listed in Table 1. The Nikon D90
has high signal-to-noise components and design, and delivers exceptional performance, even at high
ISO setting and GPS unit to provide automatic real-time geotagging [54]. It was included in the sensor
system for the AIDSS data acquisition module due to its robustness and technical characteristics. The
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Sony α6000 E-mount camera is a compact, light-weight camera with interchangeable lenses. The α6000
compares favorably to bulkier, heavier DSLRs, and with interchangeable lenses, manual controls and
more [55]. This is very important when selecting sensors for an aerial multi-sensor imaging system, as
the payload can be reduced, which is important when constructing supports for an unmanned aerial
vehicle (UAV) and calculating endurance without reducing the quality of the images collected. These
parameters and the camera’s ability to freeze a subject at 11 fps [55] for shots that capture the exact
moment or object of interest, were decisive factors in its selection. These images were used to gain
a better insight into the situation in the scene and detect indicators of mine presence according to
geometric characteristics (trenches, bunkers, various types of shelter).

2.2.2. Multi-Spectral Visible, Near-Infrared (VNIR) Sensor

The Redlake MS-4100 is a multi-spectral VNIR optical matrix camera with 3 separate CCD sensors
and is available in two spectral configurations. The first is RGB for high quality colour imaging, and the
second is colour-infrared for multi-spectral applications (4 spectral bands from 400–1000 nm). Standard
colour-infrared imaging (CIR) uses red, green and near-infrared bands approximating Landsat satellite
bands. The maximum frame of the MS-4100 is 10 fps with a pixel clock rate of 25 MHz and bit depth of
12 bits [56].

2.2.3. Thermal Infrared Sensor

A FLIR Photon 320 [57] LWIR (8–14 µm) uncooled microbolometer camera was used for collecting
thermal images from 2008 until 2016. The Photon 320 had a 50 mm lens providing a 14◦ horizontal and
11◦ vertical field of view and acquired image frames of 324 × 256 pixels as raw 14-bit digital numbers
at the rate of 9 Hz. Image sequences from the camera were converted into ethernet data packets by the
FLIR Ethernet module and this data was then stored on a computer on the used platform (helicopters
or RPASs). The system time of the computer was set to GPS time prior to flight, so that the thermal data
files could be synchronized with GPS log files. Panchromatic LWIR Photon 320 sensors have poorer
GSD than the visible digital cameras, however, they are used to detect indicators of mine presence via
their thermal characteristics.

2.2.4. Hyperspectral VNIR Sensor

Conventional commercial spectrometers or spectrophotometers are usually able to measure the
optical spectrum from a specified surface area at one point [58,59]. This is done either with one detector
scanning the spectrum in narrow wavelength bands, or with an array detector, in which case all
the spectral components are acquired at once. If the spectrum is to be measured at several spatial
locations of the specified surface, the target under examination or the measuring instrument must be
mechanically scanned. In Section 3.3., the procedure will be shown for creating a hyperspectral cube
from sequential, continuous samples.

An imaging spectrometer instrument, based on an imaging spectrograph like the ImSpector V9,
is “an instrument capable of simultaneously measuring the optical spectrum components and the
spatial location of an object surface” [60]. The ImSpector V9 hyperspectral line scanner is a direct sight
imaging spectrograph and was combined with a PCO PixelFly high performance digital 12-bit CCD
monochrome matrix camera [61] to form a geometric sensor model-imaging spectrograph constructed
for this particular module. The PixelFly matrix camera with a scan area of 8.6 × 6.9 mm and effective
pixels of 1280 (H) × 1080 (V) consists of an ultra-compact camera head, which either connects to a
standard PCI or a compact PCI board via a high-speed serial data link. The available exposure times
range from 5 µs to 65 s [61].

2.2.5. Sensors for Navigation and Positioning

The system for navigation, determining the position and orientation of the system in space, consists
of a single-frequency GPS device integrated with an inertial measurement unit (IMU) iVRU-RSSC by
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iMAR GmbH, and additional GPS units arranged in or on the platform. IVRU-RSSC is a triple-axis
inertial system with three mutually perpendicular MIL-MEMS gyroscopes for determining the angle
elements of the spatial orientation of the sensor, and 3 MEMS-accelerometers to determine the
acceleration components along all three axes. The device has an integrated microprocessor for 16-bit
digitalization of data from the sensor and deviation correction, to improve the accuracy of all measured
elements. The GPS data are used primarily to correct navigation solutions acquired from the inertial
system. Although the internal IMU working rate is 200 Hz, for this purpose, the elements of current
position and sensor orientation in relation to the referential WGS84 coordinate system were stored
with a frequency of 20 Hz. This allowed high-quality fluctuation and raw element bias correction
using the internal processor. On the other hand, the volume of redundant data was reduced, and
further processing was made easier, since the frequency of imaging of the ImSpector V9 sensor is 10 Hz.
The elements of the external orientation of the platform related to the WGS84 coordinate system are
expressed in ellipsoidal coordinates ϕ, λ and h on the GRS80 ellipsoid. Alongside the IMU, a separate
GPS device was used with an aerial to synchronize the computer time with GPS time (UTC).

2.3. Module Control System

The image capture rate was controlled by an operator inside the helicopter or remotely from the
RPAS flight control board. A special command desk was made to gather data from the Mi-8 helicopter
(Figure 2) to manipulate the module. Until 2009, desk-top computers were used to manage sensors in
helicopter platforms. Due to vibration (particularly in the Mi-8) the computers crashed from time to
time and communication with the sensors was lost. So, the desktop computer has been replaced by
industrial controllers with solid-state drives (SSD) which are more robust and resistant to vibration.
Small, custom-made computers were used for the sensor control on RPAS platforms. The Nikon and
Sony cameras were operated in shutter priority mode (a fast shutter speed was required to minimize
motion blur), in which the desired shutter speed (depending on the altitude and speed of the platform
and light) was set before flight and the exposure was adjusted automatically by varying the aperture.
Images from the Sony α6000 camera were captured in RAW format and stored on the memory card in
the camera for post-flight download.
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Figure 2. Control table with module control system component inside Mi-8 helicopter: (1) personal
computer (PC) for manipulation with Nikon D90 and Photon 320; (2) monitor for PC and industrial
controller (switching is performed as needed during recording); (3) laptop for manipulation with
inertial measurement unit (IMU); (4) industrial controller for manipulation with MS4100 and ImSpector
+ PixelFly (not part of the first system configuration, built in 2009); (5) junction box of the electric power
system; (6) converter from 28–30 V direct current (DC) to 220 V alternating current (AC) for PC and
monitor; (7) large battery (210 Ah, 75 kg) for power supply; (8) cables for connection with sensor;
(9) navigation monitor located in the cockpit.

DuncanTech MS-3100 and the ImSector V9 + Pixelfly hyperspectral VNIR system were managed
using the RECORDER program, which was developed and produced specially for this purpose within
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the ARC project. It includes changing sensor parameters before and during flight, individual images
exported to standard TIFF format, and the metadata for each image are stored in the corresponding
table (time of recording, GPS and IMU data). Based on these data, synchronization with GPS and IMU
data is performed.

2.4. Module Power Supply

The acquisition systems on board the Mi-8 and Bell-206 helicopters used their own sources
of electric power, but on the Mi-8, could also use electricity from the helicopter’s power supply
system. Previous practice has shown certain problems when connecting to the helicopter’s electrical
system (a special type of connector is needed, equipment is subject to obsolescence, and installation
is impossible on helicopters which are over 50 years old). Therefore, it is essential to ensure the
independence of the system’s power supply from the platform’s power supply. The variety of electrical
power sources used in the helicopter also decreases the operational availability of the system. A
continuous, stable electricity supply for aerial data acquisition is mandatory. It is also essential for
the stable, continuous operation of the module during flight. The major obstacle in this regard was
the need to convert electricity from 28–30 V direct current (DC) to 220 V alternating current (AC) 50
Hz (in the initial variant of the system). Therefore, the power supply for the module for aerial data
acquisition was re-designed in 2012. This was done by replacing the desktop PC with two industrial
controllers (one was already embedded in 2009) and a monitor operated by 24 V (controllers) and 12 V
(monitor) DC. The instruments and equipment for the modules on the helicopters were powered by an
independent power supply consisting of two large batteries (210 Ah, 75 kg each) in the Mi-8 helicopter
and one in the Bell-206 helicopter. Small batteries were used to power a module installed on the RPASs.

2.5. Platforms

Mi-8, Bell-206 and Gazela helicopters, RPAS X8 MK and RPAS 8 ZERO and a blimp (Figure 3)
were operationally tested over the sites in question.
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2.5.1. Helicopters

The first platform used in 2003 for an aerial multisensory system during the trial data acquisition
on the current situation in the suspected hazardous areas, as part of project ARC, was a Bell-206
helicopter. The crew comprised the pilot, co-pilot and two systems operators. Based on the results and
experience gained, the first AIDSS module for aerial images acquisition was planned, made and used
on an Mi-8 military helicopter (Figure 3a) and a Bell-206 (Figure 3c). The crew of the Mi-8 comprised the
pilot, co-pilot, technician, systems operator, navigator and mission leader (it is possible to increase the
number of people involved in each segment of the system). In order to extend the system and increase
the amount of equipment carried, the current crew consists of three members, the pilot, co-pilot and
systems operator. The maximum endurance (along with an additional tank of fuel inside the helicopter)
of the Mi-8 is 4 h 15 min, and of the Bell-206, 2 h 15 min. So, if the endurance is at least 3 h for the
Mi-8 (1 h 15 min for the Bell-206) it is theoretically possible to acquire high-resolution multi-sensor
imagery from an area of about 45 sq. km (≈ 25 sq. km for the Bell-206) per flight over flat terrain, at a
relative height of 1000 m in one continuous sequence, without loops. The Gazelle helicopter (Figure 3f)
was used in Bosnia and Herzegovina in 2014, and can transport up to five passengers, with 500 kg
of internal space in the rear of the cabin. There was an advantage when using the module, as the
helicopter already had an opening in the floor, which made it easier to install the equipment without
compromising the flying ability of the platform.

2.5.2. Remotely Piloted Aircraft Systems (RPAS) and Blimp

Since the suspected hazardous areas were not compact, but comprised a large number of scattered
areas, and in the interests of economizing resources for data acquisition on such areas, several RPAS
platforms were tested for the specific task of collecting high spatial resolution hyperspectral data. For
this purpose, the TIRAMISU Light Hyper Spectral Imaging System (T-LHSIS) for aerial data acquisition
was developed, installed and tested on two RPAS platforms, X8 MK and 8 ZERO, and a blimp [53].
Both multirotor RPASs tested fall into the category of small RPAS s with take-off mass below 10 kg. X8
MK was tested on several occasions at several locations. The main problem in this project [62] was to
provide RPAS for a payload of about 4 kg with several additional requirements related to collecting
hyperspectral data with a line scanner. Today, the problem no longer exists due to general technical
developments in the RPAS industry. This is a fast-growing industry with numerous new opportunities.
New materials and lighter and more efficient batteries create better tradeoffs between the RPAS and its
flight range, maximum altitude, and maximum payload [63]. The requirements for any platform used
for hyperspectral survey for the purposes of vegetation stress inside and outside mine-contaminated
areas are:

• flight velocity—as low as possible;
• flight altitudes—as low as possible (depending on the size of the observed object);
• swing and vibration—minimal for obtaining correct geometric images;
• controllability of platforms and navigation during flight, or GPS tracking during flight (flying the

given routes and controlling the coverage area with images).

3. Methods

The main steps within the module for data acquisition (Figure 4) are described in the
following sections.
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3.1. Mission Planning and Image Acquisition

The use of airborne multi-sensor systems for remote-sensing applications have been increasingly
spreading out nowadays. This is due to the flexibility and the ability to gather high-resolution
imagery data and wide pallets of RPAS in the field of remote sensing [64–66]. The mission planning
in airborne photogrammetry and remote-sensing applications depends on the system of acquisition
and the selected platform. A detailed planning of a flight mission is a fundamental precondition for a
successful acquisition of airborne data sets. It is important to emphasize that manned and unmanned
surveys have differences in several aspects, such as flight duration, ground coverage and data capture
techniques and the fact that the user does not have the direct control of the sensor (with RPAS), but
they share a common background. The mission planning accounts for multiple steps that could be
grouped as follows [46]:

• Selection of a suitable sensor and platform;
• Flight plan design; and
• Analysis of the factors to be controlled during flight operations.

In order to scrupulously describe the mission planning in remote sensing, it is necessary to analyze
the passive sensors according to their data acquisition geometry, which is generally based on the
central perspective collinearity [67]. The image projection principle (ideal imaging process of a real
object onto the image plane) is based on a geometric principle of the central perspective. The footprint
of the image frame on the ground is closely connected to the relative altitude and the field of view
(FoV). Based on the parameters of the camera (image resolution, pixel size, focal length) and flight
height, the theoretical values of the GSD can be calculated, according to [68] as:

Mb =
1

mb
=

f
h

(1)

where Mb is the scale of the image, mb the scale denominator, f the focal length and h the flight height,
or [68]:

s
f
=

S
h

(2)

where s is the sensor size and S the size of the scanned scene, and [69]:

GSD = pel ∗mb (3)
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where pel is the pixel size. With the known GSD and number of pixels in the sensor, the swat can be
calculated. This is the value used for mission planning. The actual value of GSD is calculated after data
acquisition, using calibration markers with striped black and white bars of decreasing width. This
value depends mainly on the number of pixels, platform flight height, focal length and field of view of
optic sensors.

Planning the flight route was complicated by the fact that the suspected hazardous areas are not
one compact area, but fragmented over a large area, so the acquired data covered a much larger area
than the area of interest (105 sq km). Single or parallel flight routes were planned and performed at
different altitudes, repeated over certain areas. The standard flight altitude selected was 600 m above
the mean terrain altitude, as these parameters proved the best and most economic for planning the
flight route and the time required to take the images in each pass. At that altitude, GSD for the visible
digital cameras was ≈7 cm, multi-spectral VNIR sensors ≈17 cm, for the panchromatic LWIR sensor
≈45 cm, and for ImSpector V9≈16 cm. As part of the effective flight time spent in the air, supplementary
flights were carried out to obtain better GSD (lower-altitude flights), that is, a better insight into the
terrain, where necessary. GPS and IMU data were also collected during each flight. These data provide
the ability to create hyperspectral cubes and conduct georeferencing of collected images.

It should be emphasized that this module is not intended for photogrammetric surveys or planning,
and the image collection is not always conducted so as to satisfy the strictest geometric conditions
for their use (ensuring longitudinal overlaps greater than 60%, or transversal overlaps greater than
20%) [67,70]. However, it is still possible to mosaic the images and geocode the mosaics. The technical
characteristics of the current sensors in the module allow enough overlap for photogrammetric surveys
(particularly with a flight height of more than 500 m), but this is not a priority in conducting aerial
non-technical surveys for humanitarian mine action purposes.

3.2. Image Quality Assessment

The interpretability of images is determined objectively and subjectively. A subjective assessment
of the usability of images is done by an experienced scene interpreter, by visually reviewing the images
with the use of contextual data. Therefore, a robust method is needed to allow an objective evaluation
of the image quality which will correlate well with a visual, subjective judgement. For the objective
determination of the interpretability of images, the image quality measure (IQM) [71] was used, with
the Johnson criteria [72]. The IQM method is based on an analysis of image spectral density. Based on
IQM values, National Image Interpretability Rating Scales (NIIRS) values are calculated, which provide
the measure of interpretability, or usability. The image quality and interpretability are described by
creating a NIIRS [73] scale (based on an analysis of the interpreter’s results), ranging from 1 (an image
with the lowest interpretative quality) to 9 (an image with the highest interpretative quality). This has
been used for over 20 years in the aerial imaging community (it was developed for military purposes)
and was later adapted for civilian needs [74]. The concept underlying the NIIRS is that imagery analysts
should be able to perform more demanding interpretation tasks as the quality or interpretability of
the imagery increases. The method is not standard or developed for all types of objects for civilian
use but gives a widely accepted assessment of the usability of images. The Johnson criteria, initially
formulated as a method of predicting the probability of target discrimination, were created in 1958 [72].
The model uses the synergy of knowing the origin of how the image was created in the sensor and the
interpreter’s experience and has been analyzed in detail in [75]. Johnson characterized the probability
of detecting an object based on its actual resolution in the image. The concept has been substantiated by
its own findings. He found that as the number of resolvable cycles across a target increased, so did the
probability of an observer successfully locate a target. The Johnson criteria are the number of line pairs
across a target needed for a group of observers to have a 50% possibility of discriminating the (target)
object. From 1958 up to the present, this prediction and metrics model has been improved, although
there is still no model that accurately predicts target detection in all inclement weather situations [75].
However, the method was used in AIDSS only to assess interpretability before visually interpreting the
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images, done by human interpreters, who make final decisions on target discrimination. That is, they
determine the flight height in order to ensure the necessary size of GSD for the detection, recognition
or identification of objects of interest with certain sensors by human interpreters. The methodology for
extracting indicators of mine presence from hyperspectral VNIR images is described in [14,53].

Measuring positional errors in geocoded and/or georeferenced images or mosaics is difficult in
these cases. This is because the places where data are stored are inaccessible (suspected hazardous
areas or oil slicks at sea), and some scenes have changed drastically, so it is difficult to find the same
points in the terrain before and after a crisis situation (for example, the munitions depot in Padjene
before and after the fire, explosion and clearance). However, even in such situations, it proved possible
to find a certain number of control points on the basis of which accuracy estimates were conducted for
the operations implemented. For the orthomosaic, the positional error of these points was measured.
The root mean square error (RMSE) was computed between check point coordinates determined on
digital orthophoto and coordinates retrieved from georeferenced image mosaics, to assess the overall
spatial accuracy of each dataset.

Before using and processing hyperspectral VNIR imagery, rigorous pre-processing steps
were undertaken to ensure the quality, accuracy and interoperability of the data used. After
parametric geocoding of hyperspectral data acquired using a V9 ImSpector line scanner, sensor
radiance performance was inspected and validated. We used a calibration procedure based on the
supervised vicarious calibration method [76] which included: (I) quality assurance of radiometric
information, (II) stability and general performance analysis, (III) radiometric calibration and (IV)
atmospheric calibration.

In the quality assurance procedure, MODTRAN was used to reconstruct the atmosphere above
selected targets with ground-truth measured reflectance, and then compare the results with the
at-sensor radiance obtained [77]. Two indices, Rad/Ref (at-sensor radiance divided by ground truth
reflectance) and RRDF (radiance to reflectance difference factor) indices were used to spot faulty
performance of the sensor prior to the next data processing stages.

In the present study, reflectance-based vicarious calibration was used for radiometric recalibration,
as the image at-sensor radiometric data were calibrated by comparison against the modelled at-sensor
radiance based on the in situ measured reflectance of the selected, well-defined ground targets. The
simplest, fastest method for atmospheric correction is the empirical line method (ELM). It uses a set of
ground targets of known reflectance to derive a relationship between sensor-spectral radiance and
scene-spectral reflectance. ELM assumes that the radiance image contains some pixels with a known
reflectance spectrum, and also that the radiance and reflectance values for each wavelength of the
sensor are linearly related. Therefore, the image can be converted to reflectance by applying a simple
gain and offset derived from the known pixels.

The at-sensor measured radiance is given in an equation for each wavelength:

Ls =
τρE0

π
+ Lpath (4)

where E0 is the sun’s radiance above the atmosphere at a certain zenith angle, τ is the atmospheric
transmittance, ρ is the surface reflectance and Lpath is the selective scattering (Rayleigh and Mie)
contribution to the sensor output [76]. Assuming that during the operation, the sensor keeps the
calibration coefficients that were generated in the laboratory during the system calibration stage,
Equation (4) is valid as it stands. In the case of a non-calibrated sensor (or divergence from the
laboratory calibration), the achieved at-sensor radiance (Ls) is a product of the real radiance multiplied
by gain and offset coefficients that adjust the mis-calibrated laboratory information to at-sensor radiance
as follows:

Ls =

[
L(gain)

(
τρE0

π
+ L(path)

)]
+ L(o f f set) (5)
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where L(offset) is the unknown noise that has entered the sensor since the time of the last laboratory
calibration and L(gain) is an amplification factor that depends on the sensor’s functionality and
surrounding conditions that diverges from the laboratory calibration process [76].

3.3. Production of the Hyperspectral Cube

The robust structure of ImSpector V9 suits both industrial and scientific applications that require
rapid, precise spectral measurements at low cost. The last configuration in AIDSS uses a narrow slit
(8.8 mm × 50 µm) at the front end of the optical system and enables a spectral resolution of 4.4 nm of
80 channels in a spectral range from 430 nm to 900 nm. At the nadir, the system provides mapping of
a narrow strip (0.333 × H) × (0.0028 × H), where H denotes the height above ground. The scanner
was used to acquire reflectivity samples from the suspected hazardous area in several different types
of terrain. The usefulness of the radiance is limited, due to its strong dependence on illumination,
which can change during the acquisition mission. Thus, we did not attempt to measure the radiance,
but calculated the reflectance coefficient. The reflectance coefficient is the ratio of the volume of
electromagnetic waves recorded by the sensor to the volume of electromagnetic waves recorded by
an aerial near the sensor. It is a property of the observed material and is equivalent under different
illumination conditions. The spatial accuracy of airborne discrete measurements depends on the
platform movements, positioning accuracy, and orientation system. When the system is placed on a
mobile platform, it is possible to scan the terrain linearly, from the interval of line ∆s. The interval
of line ∆s depends on the flight speed and frequency of storing fs images in the acquisition system
(Figure 5a). Using the hyperspectral VNIR sensor and parameters, recording is manipulated via
RECORDER program. For example, with a flight height of 750 m, vertical binning ×1 (for storage,
the entire surface area of the PixelFly sensor is used), w = 218 m, GSD = 0.19 m. With a flight speed of
120 km/h (33.3 m/s), the frequency of image storage is fi = 20, and the interval between the lines is 1.6 m.
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To use the line scanner in full imaging mode (acquiring contiguous scan lines), it is necessary to
find the optimal ground speed of the platform. It is a function of the required GSD and scanner imaging
frequency, according to a simple Equation (6) used to arrive at optimal distance per second [78]:

GS =
GSD

fi
(6)
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where:

• GS = ground speed of the platform in (m/s);
• GSD = ground sampling distance in (m); and
• fi = Imaging scan period in (s).

The maximum frame per second is around 24 Hz and depends on radiometric parameters during
collection reflected radiation (exposure time and sensor sensitivity). Line scanning of the ImSpector
V9 hyperspectral VNIR sensor demands a very complex calibration procedure and time-consuming
processing (Figure 5a). Software solutions in the Matlab package have been developed to produce a
raw hyperspectral cube (Supplementary Materials), which is then parametrically geocoded using the
PARGE 2.3 software package [79].

3.4. Geotagging and Triage

Based on GPS data, geotagging [80] and parametric geocoding [81] can be performed (Figure 6).
The mine scene interpreter can then conduct triage on the geotagged raw images. It is important
to emphasize that raw images are interpreted, because using orthography procedures on hilly,
mountainous terrain (where there are great differences in elevation) can lead to geometric deformities
on the images, making high-quality interpretation impossible. In addition, triage is carried out by
inspecting raw images and selecting those where indicators of mine presence have been detected
(Figure 6b). If indicators of mine presence are detected on several neighboring images, mosaicking
is performed. After that, the selected images and mosaics must be geocoded in order to locate the
indicators of mine presence in space, and so that images from different sensors can be co-registered.
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3.5. Mosaicking and Georeferencing

Image mosaics can be produced and geocoded manually and automatically. Geocoding of
image mosaics has been performed using automatically or parametrically specialized PhotoScan
(AgiSoft Metashape, Russia) software for visible, multispectral or thermal imagery or ENVI
(Harris Geospatial Solutions, Inc., Boulder, CO, USA) for hyperspectral cubes. Digital orthophoto maps
are the best reference for manual geocoding of images or mosaics of images. Their main application is
in photo echometrics of various indicators in a suspected hazardous area, where ground control is
neither available nor needed, and where directly georeferenced digital imagery is acquired to solve the
exterior orientation problem [21]. However, if necessary, georeferencing can be performed without in
situ ground control points [82].
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Digital image mosaics and digital surface models (DSM) are produced using a feature-matching
algorithm of structure-from-motion (SfM, [83]) that analyses all images of the aerial data set and
searches for matching points. PhotoScan Professional (Agisoft, Russia) uses this concept and was
selected for geocoding the images and image mosaics of matrix cameras. While working with it,
PhotoScan proved to be robust software and less demanding in terms of entering parameters for a
photographic survey. All the subsequent procedures for producing the image mosaic were conducted
without significant difficulties. To improve the absolute spatial accuracy of the image mosaics, ground
control points were manually distributed within the imagery. In this system, the information from GPS
and IMU was used to perform aerial triangulation without classic ground control points marked on
the ground. Small details were selected for ground control points, which were visible on the digital
orthophoto map and raw images. PhotoScan Professional provided an interface to mark the location
of a ground control point on each image and its location was then automatically marked on all the
images where this ground control point appeared.

The procedure for parametric geocoding means assigning precise spatial positions for each pixel
in the hyperspectral cube. This requires knowing in advance the elements of external orientation
(GPS and IMU data) for each line of the hyperspectral cube. The parametric process begins with an

estimate of the theoretical view vector (
⇀
L ) which is the imaginary line of sight to the current pixel,

oriented from a horizontal platform facing north. This vector must be turned in three dimensions to

obtain the effective view vector (
⇀
Lt) [81]:

⇀
Lt = K ∗Ω ∗Φ ∗

⇀
L (7)

where K, Ω and Φ are the coordinate transformation matrices for roll, pitch and true
heading, respectively.

Data preparation for parametric geocoding includes adapting the format of the data received by
the system. Before arranging spectral lines in a raw hyperspectral cube, mean data are created on
insolation (data written using the aerial), and the coefficients of reflectance and subtracting the dark
current are calculated. The data are finally converted to create a visual pyramids in BSQ format with
ENVI heading, which allows direct reading of the raw hyperspectral cube in the PARGE program
for parametric geocoding. These operations are carried out automatically, with code written in the
Matlab development environment specifically for this purpose. Next, data is synchronized with iMAR
(inertial measurement unit) and recording so that the corresponding orientation elements for each
image are found using interpolation of linear and angle orientation elements (GPS and IMU data), and
correspond to the moment when each image was taken (Figure 7). This process is also fully automated
with code written in the C # development environment. This means that only data recorded during
the system operation, using its frequency, are recorded, while the rest of the big data from iMAR is
discarded as superfluous and does not overload the computer resources. The program can be used,
in addition to interpolation, to acquire data in a format adapted to PARGE parametric geocoding.
Because of the mutual independence of data groups (images, metadata on images, and data from GPS
and IMU), and the different programs used to access them, this kind of configuration allows parallel
processing on multi-core systems, which speeds up overall data processing considerably.
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Figure 7. Schematic view of the integrated hyperspectral imaging system comprising ImSpector V9 +

PixelFly camera.

4. Results

4.1. Sensor Pods and Platforms

Sensor pods were designed and made especially for each individual platform. For the Mi-8 and
Bell-206 helicopters (Figure 8a), two types of large aerodynamic sensor pods were made (weighing over
20 kg). The Gazela helicopter has a hole in the floor, which made the development of the sensor system
easier (Figure 8c). For the RPAS platform, smaller sensor pods were designed and made, depending
on their payloads (the weight of the system varied from 3.5 to 5 kg, Figure 8c). Micro computers were
built into these sensor pods so that the sensors could be activated remotely from the ground. The
results of the operational testing performed for platforms: Mi-8 and Bell-206 helicopters, RPAS s X8
MR and 8 ZERO and blimp are shown in Table 2.
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Table 2. Summarized results of tests performed in different operational conditions for the following
platforms: Mi-8 and Bell-206 helicopters, RPAS X8 MR, RPAS 8 ZERO, and a blimp with hyperspectral
line scanner V9, multirotor UAV with hyperspectral frame sensor UHD-185.

Platform Min. Velocity
(m/s) Swinging Payload

(≈4 kg) Vibration Controllability

Mi-8 helicopter 33 Relatively stable High High Good

Bell-206
helicopter 20 Relatively stable Relatively high Medium Good

RPAS X8 MR
(smaller) 1–4

Medium—roll span:
2.8◦–4.5◦, Borderline Low

Executed routes
significantly deviated
from the planned ones—pitch span:

1.2◦–2.0◦

RPAS 8 ZERO
(smaller) 4–5

Medium—roll span:
3.3◦–5.6◦, Sufficient Low

Executed routes
significantly deviated
from the planned ones—pitch span:

1.2◦–2.0◦

Blimp 4–5
Very high—roll span

>20◦, Sufficient Low
Difficult to navigate

during flight
—pitch span >10◦ (large yaw)

4.2. Analysis Vibration of the Sensor Pod Installed on the Mi-8 Helicopter

Experience with different aerial platforms (Bell-206, Mi-8, and Gazela helicopters, RPAS Fenix
fixed-wing, and several multirotor RPAS s) used for airborne imagery acquisition has shown that
sensor vibration is the main cause of image blurring. There are no published data about the vibration
of these aerial platforms. This fact motivated us to analyze the vibration which occurred in a pod
containing electro optical sensors (Figure 9b,c). We selected the pod installed underneath the Mi-8
helicopter. Data on vibrations were collected using the inertial positioning system (iMAR), along with
data provided by the GPS receiver. By analyzing the collected acceleration in flight direction X, in a left
or right direction Y, and in a vertical direction Z (Figure 9b), we were able to identify several flight
phases: (a) engines on, helicopter on the ground, (b) take-off, helicopter climbing, and (c) the stationary
phase of the helicopter’s flight. Since only the stationary parts of the flight route were usable for image
acquisition, the spectral analysis of vibration was carried out on segments of this phase (Figure 10a,b).
The results obtained (Figure 10c–e) enabled the design, development and implementation of passive
vibration damping to decrease image blurring.
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4.3. ImSpector V9 Line Scanner Calibration Procedure Results 

A quality assurance procedure performed via MODTRAN reconstructed the atmosphere above 
for selected targets with ground-truth measured reflectance. The calculated at-sensor radiance and 
modelled at-sensor radiance based on in situ measured reflectance. The results obtained 
demonstrated obvious radiometric/spectral defects, which had been corrected before undertaking 
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Figure 10. (a) Vibration phases: AB engines off, BCD engines on, EF increase power and take off,
> F flight; (b) the diagram shows the speed (velocity, m/s) and acceleration dependence on the X, Y and
Z axes (ACCS_X, ACCS_Y, ACCS_Z, m/s2) in relation to the number of samples. Speed was calculated
based on data from the GPS receiver with a frequency of 1 Hz, and acceleration was read from iMAR
with a frequency of 20 Hz on the measured platform accelerations per axis: (c) X axis, (d) Y axis and
(e) Z axis.

The analysis of spectral density of the power of vibration showed that vibration occurred at the
following frequencies: ~3.2 Hz, ~4.0 Hz and ~7.5 Hz. The first is the direct frequency caused by the
rotation of the main rotor (without blades). The second is the frequency caused by aliasing vibration at
16 Hz, which is the result of the rotation at 3.2 Hz of the five blades of the main rotor depicted in reverse
under 10 Hz; 16 Hz − 10 Hz = 6 Hz, which is shown counting down from 10 Hz and gives ~4 Hz. The
last is the actual frequency of vibration or occurs due to aliasing wrongly depicted frequencies ~12.5 Hz,
for unknown reasons. Based on these measures and the results of the analysis, passive dampers were
designed for 3.2 Hz, 16 Hz, 7.5 Hz and 12.5 Hz using Enidine vibration insulators (Figure 9a).

During the 2010 AIDSS mission in Bosnia and Herzegovina, the first tests were conducted
(to reduce the colour blurring in images after passive vibration damping), in which Enidine vibration
isolators were (a) blocked (no vibration damping), or (b) isolators were enabled to damp the vibrations.
The images were collected in both cases and excellent results achieved: images with activated isolators
could be zoomed seven to eight times before discernible blurring occurred and have larger standard
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deviation (27.921 without isolators v.s 30.906 with isolators, Figure 11). When vibration isolators were
disabled, zooming two or three times made the images blurred.
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indicators of mine presence (trenches). (b) Passive damping of vibrations keeps the image sharper with
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4.3. ImSpector V9 Line Scanner Calibration Procedure Results

A quality assurance procedure performed via MODTRAN reconstructed the atmosphere above
for selected targets with ground-truth measured reflectance. The calculated at-sensor radiance and
modelled at-sensor radiance based on in situ measured reflectance. The results obtained demonstrated
obvious radiometric/spectral defects, which had been corrected before undertaking any other action.
First, there was full saturation of the brightest targets, which is a typical sign of the poorly calibrated
or uncontrolled dynamic range of the system. Second, a highly distorted albedo sequence and lack of
gas absorption were clearly demonstrated. Therefore, the spectral/spatial saturation and local spectral
stagnation were inspected together with the spectral accuracy of atmospheric gas absorption of the
at-sensor radiance data. Figure 12c shows image at-sensor radiance against modelled radiance based
on in situ reflectance measuring the reflectance of one selected target. The comparison reveals clear
spectral/radiometric differences and distortions. Calculated Rad/Ref and RRDF indices indicated the
faulty performance of the sensor.

In order to avoid saturation of the brightest targets on the image at-sensor radiance, we made an
additional RRDF calculation, which did not involve the brightest spectra (radiance and reflectance).
Since the sensor was not performing well, the estimation of L(gain) and L(offset) was performed by
vicarious calibration. Reflectance-based vicarious calibration is used for radiometric recalibration,
as image at-sensor radiometric data are calibrated by comparison with the modelled at-sensor radiance
based on in situ measured reflectance of selected, well-defined ground targets. During the validation
stage, two ground targets were selected and compared. It is important to note that these targets were
never included in the recalibration process. They were spectrally measured in situ (reflectance) and
stored for the validation stage. At this stage, we can declare that the recalibrated image at-sensor
radiance obtained is ready for the next stage—atmospheric correction via calculated coefficients. The
final results of the calibration procedure obtained in ENVI (Figure 12d,e).
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Figure 12. (a) Image at-sensor radiance and (b) modelled at-sensor radiance based on in situ measured
reflectance (right side) of four selected ground targets. (c) Illustration of radiometric/spectral defects -
investigation of image spectral accuracy based on atmospheric gas absorption (blue spectrum) compared
with simulated radiance (red) spectrum for the same ground-truth target. (d) The modelled at-sensor
radiance based on in situ measured reflectance and (e) image at-sensor radiance.

4.4. Imagery

Images collected with visible digital cameras had the best GSD and depicted the largest recorded
terrain, compared to other sensors (Figure 13). Hyperspectral VNIR sensor images have poorer GSD
than the multi-spectral VNIR sensors (Figure 13a), but they exploit the full spectral dimension, which
better reflects the continuous nature of actual spectra. Panchromatic LWIR Photon 320 sensor also have
poorer GSD than the visible digital cameras (Figure 13b), however, they are used to detect indicators
of mine presence via their thermal characteristics. LWIR images acquired by a panchromatic LWIR
sensor showed trenches that could not be seen from the ground. These images revealed details not
seen on multi-spectral VNIR images, which justified their use in the module (Figure 14a,b). On the
multi-spectral VNIR image inside the suspected hazardous area the top part of the trench was only just
showing, while on the LWIR image, it can be seen in its entirety. Detection of strong indicators of mine
presence is carried out by mine scene interpreters through visual interpretation of images collected
with visible digital cameras and LWIR sensors.
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Mb ≈ 1:10,800) collected using sensors (a) multi-spectral VNIR and (b) panchromatic LWIR on which
trenches can be seen (yellow ellipses).

The confidence values of subjective assessment of identifying indicators of mine presence by mine
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Table 3. Some examples of radiometric characteristics, theoretical GSD of selected images with indicators
of mine presence, cameras with which the images were collected and the subjective confidence of the
human image interpreter in his findings.

Indicator of Mine
Presence

Sensor
(Image No.) GRD (m) IQM NIRS Subjective Confidence of the

Human Image Interpreter

Bunker
MS-4100 (313)

Nikon D90 (338)
0.29
0.10

0.00893
0.00107

5.38
5.51

1
Drywall 1
Trench 1

Trench
Canon 5D (1310) 0.19 0.00913 5.28

1
Battlement 1

Shelter 1

Unexploded
ordnance (UXO) Sony α6000 (1308) 0.03 0.0595 6.7 1

5. Discussion

AIDSS is the first mine-action technology to successfully combine remote sensing with advanced
intelligence methodology for non-technical surveys proposed to mine action centres worldwide,
because it is adaptable to specific terrains and situations. Therefore, the primary goal of the AIDSS
module for aerial data acquisition in crisis situations is to acquire high-quality inputs for further
processing according to the AIDSS methodology. The AIDSS multi-sensor imaging system includes
multiple sensors integrated onto the same substrate forming a single multi-sensor platform but does
not provide the known consistent physical relationship between the multiple sensors. However,
it ensures synchronization of all sensors and computers guiding them, and so links the storage times of
individual images with IMU and GPS data. Radar technology was not considered within the scope of
AIDSS research, but we encountered aerial radar technology in the SMART [84], and TIRAMISU [85,86]
projects. Synthetic aperture radar from SMART was used in 2001. It had four wavelengths, polarization
modes, and showed the potential to distinguish between several kinds of target (trenches, pioneering
vegetation invading former cultivated areas). Between 2001 and 2019, significant advancement in
radar technology occurred which could be applied to mine action, even for the direct detection of
land mines, for example [87]. However, the most important aspect was that AIDSS could be used in a
non-technical survey, not for locating mines, but for strong indicators of mine presences, and it could
be used in synergy with other technologies applied in humanitarian mine action.

The efficient use of AIDSS and thus the module for aerial data acquisition, depend on a quality
analytical assessment of existing data and the creation of a list of indicators, in cooperation with experts
in particular crisis situations. As part of the module creation process, software solutions have been
developed in the Matlab environment for making a hyperspectral cube of sequential spectral lines
collected by a hyperspectral VNIR system consisting of an ImSpector V9 line scanner and PixelFly
matrix camera. In this way, the line scanner is can be used in full imaging mode. A calibration
procedure for the hyperspectral data also has been established.

Mission planning for the purpose of aerial data acquisition regarding suspected hazardous areas
is specific and is not intended for classical photogrammetric surveys. Suspected hazardous areas
are mainly fragmented over a large area, so flight routes need to be planned accordingly. Within
mission planning of aerial data acquisition, Johnson criteria are used to determine flight altitude, in
order to ensure the necessary GSD size for detecting, recognizing or identifying an indicator. After
a mission, image-quality assessments (IQM and NIIRS values) are conducted for the purpose of
analyzing the interpretability and usability of the images. Thus, all procedures within the survey
mission are optimized, and high-quality imagery is provided for further operations within AIDSS.

Visible digital cameras provide GSD from 1 to 11 cm for flight heights from 50 to 1000 m,
multi-spectral VNIR and hyperspectral VNIR sensors from 2 to 28 cm, and thermal infrared sensors
from 3 to 60 cm. For an initial insight into the scene, imaging from a height of 600 m was conducted All
the images of the visible sensors had sufficient GDS to detect the target AIDSS indicators according to
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the NIIRS scale and Johnson’s criteria (Figure 15). Other sensors were used to supplement the insight
into the situation at the scene (potential elimination of dubious elements when drawing conclusions)
and for specific purposes. In the case of the hyperspectral VNIR sensor, to stress vegetation spectral
response inside and outside the minefields and image classification of the oil slick. Based on GPS and
IMU data, orthomosaicking, digital surface models and parametric geocoding can be performed within
this module, although no classical photogrammetric survey was performed. A problem encountered
in geocoding gathered images in this way was the impossibility of setting ground control points
within a dangerous suspected hazardous area, or where entry was prohibited. The problems of small
longitudinal and transversal overlaps on images, and the lack of ground control points, were resolved
using a feature-matching SfM algorithm.

The specifics of this module are also reflected in the easy adaptation of sensor pods to various
types of platforms in relation to the task to be performed. This kind of system is suitable for collecting
images of large and/or relatively small areas, since it can be mounted on helicopters and RPASs.
Data collection is economized by combining the use of both types of platform. All sensor pods were
designed and produced for a specific platform. The module ensures the stability and reliability of
aerial data acquisition on each platform via an independent power supply. Wire rope dampers for
passive vibration damping were designed, developed and installed in sensor pods to reduce image
blurring. The size of the fragmented parts influenced the decision on which platform, or platforms,
would be selected for data collection. Multiple platforms can be used for one suspected hazardous
area, depending on the size of the fragmented parts of it.

Operational testing performed for platforms: Mi-8 and Bell-206 helicopters, RPAS s X8 MR
and 8 ZERO and blimp (Table 2). RPAS was used to record individual parts of scenes of particular
importance, with sufficient GSD to identify the indicators in them. The blimp was rejected as a suitable
platform due to several drawbacks: (I) sudden, large changes of roll and pitch values during flight
caused major distortions of hyperspectral images, (II) it required relatively high velocity and altitude
values to obtain stable platform flight regime, (III) there was low controllability during flight.

The results (Table 2) showed that the helicopters tested were the right choice for surveying larger
regions of interest with coarser spatial resolution data requirements. In comparison with RPASs,
helicopters have higher payload limits and endurance, but velocity and altitude values are much
higher, as are vibrations. When choosing between the smaller helicopters (Bell-206, Gazela) and the
larger Mi-8, the following should be taken into account: smaller helicopters have lower altitudes,
velocity, and vibrations, but have payload limitations—they can carry a multispectral survey system
and only one system operator. In addition, validation tests of the helicopters show that controlling
the platform when executing planned survey routes can be a challenge, since correction of the yaw
(direction angle) dramatically enlarges the values of the roll and pitch parameters (swinging). The
results of the operational testing performed for two RPASs (Table 2) showed that these particular
models struggled to maintain stability due to borderline payload, which caused deviation from
planned routes. Payload limitation also dramatically affected the endurance of the system, restricting
operational deployment. On the other hand, these platforms performed at low altitudes and velocities
with low vibration and showed a satisfactory reduction in the value of pitch and roll parameters. For
the operational deployment of the hyperspectral VNIR sensors, heavy lift RPAS should be used (RPAS
8 ZERO, Figure 3b).

Of course, there are limitations to the use of this module. The main limitation is aerial data
acquisition over forested regions and snow-covered mountains, where it is impossible to see and detect
indicators beneath the foliage. Furthermore, it is hard to find and set ground control points on the
terrain for the purpose of more accurate image georeferencing. The problem is greater in evergreen
forests, but it could be solved by introducing Lidar into the module. However, the use of program tools
such as UgCS Mission Planning Software (https://www.ugcs.com/) within the AIDSS data acquisition
module may reduce such limitations and enhance the value of the entire system. Another problem in
such areas is the difficulty of accommodating to strong winds, which prevented data acquisition on

https://www.ugcs.com/
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the planned route. Air currents affected the stability of all platforms (especially for RPASs), requiring
flight downwind or parallel to the wind. Therefore, the flight route in such cases depended strongly on
atmospheric conditions. In sparsely populated mountain areas, a problem may also be created by the
lack of satellites for orientation and navigation during aerial data collection. Furthermore, RPAS-based
applications limitations are largely related to the currently large weight of the hyperspectral system and
power supply requirements of its sensors, highlighting the need for future miniaturization in such devices.

The module architecture allows the integration of more sensors, replacing existing ones or choosing
other platforms to improve the module’s results. For example, light detection and ranging (Lidar)
is a potential sensor that could contribute to better understanding of the situation in the suspected
hazardous area and discrimination indicators in relation to the environment. Recent advances in
RPAS technology, combined with lightweight sensors and a power supply (battery) provide a greater
autonomy and longer flight time for aerial data acquisition at high resolution. These opportunities
should be exploited in the subsequent projects.

6. Conclusions

Within the framework of the research conducted in six international and domestic scientific
projects, an AIDSS module for aerial data acquisition in crisis situations and environmental protection
was developed, tested and implemented in operational (real) conditions. Designing, production and
use of AIDSS module for aerial data acquisition are interdisciplinary tasks that require harmonious
and efficient behaviour among components at play. This paper has described the role of that module
within AIDSS. The module was found to be effective at aerial data acquisition in crisis situations
and environmental protection, and especially in humanitarian mine action. It adds significant
value for the demining community because it is designed to meet the real needs of mine-clearance
experts and encompasses all the necessary actions from analytical preparation, data collection and
pre-processing data for DSS. In spite of the fact that the module was not conceived as a system for
strict photogrammetric recording of inaccessible terrains, it provides the potential for georeferencing
images and creating orthomosaics. This demonstrates the usability of its results in further processing
and obtaining final results of AIDSS or some similar decision-supported system about crisis situations
and environmental protection. The specificity of this module is also that it is customizable for different
types of platform, for which special pods are constructed with different sensor and electricity power
supply configurations. Mostly off-the-shelf equipment and software were used, but some software
solutions for the image collection of hyperspectral VNIR data and production of raw and parametrical
georeferenced hyperspectral cubes were made especially for this module in Matlab programme. One
type of programme developed and described in the research is the RECORDER for control and
management (selecting various parameters for the best adjustment to atmospheric conditions) during
recording by DuncanTech MS-3100 and ImSpector V9 + PixelFly VNIR sensors. The development of
the system began using helicopters as platforms and continued using RPAS, as they developed and
increased their flight and load-bearing characteristics. The module was developed to be as independent
as possible of the platform used, with the potential to adjust and use it on various airborne platforms
with minimal modifications.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/5/1267/s1,
3 Matlab M files and one Excel file, for hyperspectral cubes creation.
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