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Abstract: Recently developed super nested array families have drawn much attention owing to their
merits on keeping the benefits of the standard nested arrays while further mitigating coupling
in dense subarray portions. In this communication, a new mutual coupling model for nested arrays
is constructed. Analyzing the structure of the newly formed mutual coupling matrix, a transformation
of the distorted steering vector to separate angular information from the mutual coupling coefficients
is revealed. By this property, direction of arrival (DOA) estimates can be determined via a grid
search for the minimum of a determinant function of DOA, which is induced by the rank reduction
property. We also extend the robust DOA estimation method to accommodate the unknown mutual
coupling and gain-phase mismatches in the nested array. Compared with the schemes of super nested
array families on reducing the mutual coupling effects, the solutions presented in this paper has two
advantages: (a) It is applicable to the standard nested arrays without rearranging the configuration
to increase the inter-element spacing, alleviating the cross talk in dense uniform linear arrays (ULAs)
as well as gain-phase errors in sparse ULA parts; (b) Perturbations in nested arrays are estimated
in colored noise, which is significant but rarely discussed before. Simulations results corroborate
the superiority of the proposed methods using fourth-order cumulants.
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1. Introduction

Sensor array signal processing is a significant research area owing to its wide applications
to radar, sonar, navigation, wireless communications, et al. [1–4]. Virtues of array signal processing,
such as direction of arrival (DOA) estimation and beamforming, lie in spatial diversity and capability
to determine the angular information of electromagnetic waves and enhance the reception of signals
of interest while mitigating the interferences [5–9]. The basic but widely employed array geometry
is the uniform linear array (ULA), where the inter-element spacing is usually less than or equal to half
a wavelength to avoid spatial aliasing. However, the performance of ULAs is subject to a limited
degrees of freedom (DOFs) that is linearly dependent on to the number of sensors. For instance,
an M-elements ULA can offer up to M− 1 DOFs, i.e., only M− 1 signals can be resolved at most [10,11].
To increase the DOFs, a simple way is to introduce extra sensors, which may result in to difficulties
in practical implementations. Besides, ULAs with a large number of sensors may suffer from prominent
mutual coupling effects between physical sensors.

Sparse linear arrays (SLAs), a promising countermeasure, can tackle the above issues to a large
extent. The critical operation on the DOFs enhancement is to vectorize the covariance matrix
of the observations, rendering O(M2) virtual sensors with M physical elements in the difference
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coarrays, which means one can probably resolve more DOAs than the physical sensors provided that
there is no correlation between signals [12]. Compared with the ULA, this is a big leap in raising DOFs.
In addition, the electromagnetic cross talk between sensors is alleviates since the inter-element spacing
becomes larger in SLAs [13].

Recently, a new type of sparse array, so-called the nested array [14], is put forward in signal
processing society and causes tremendous repercussions because the positions of sensors can be arranged
in a regular design, the synthetic apertures becomes larger, and the resultant enhanced DOFs have a closed
form expression with respect to the given number of sensors [15–22]. The nested array is constructed
by cascading ULAs that differ in systematically designed inter-element spacing. In particular,
the difference coarray formed from a two-level nested array has consecutive virtual sensors without
any holes, while the hole-free property in the difference coarray cannot be guaranteed by higher level
nested arrays that possess higher DOFs. The DOFs of nested arrays can be further increased by making
the outer ULA much sparser, i.e., enlarging its aperture, as well as putting up an auxiliary sensor [21].
In [23,24], the one-dimensional nested array is extended to the two-dimensional case.

However, the mutual coupling effects of the nested array cannot be ignored at least as physical
sensors in the inner ULA are deployed relatively close [25–38]. In [39], the super nested array
in the context of the second-order statistics is designed to significantly mitigate the cross talk between
sensors while preserving all advantages of the standard nested arrays, by increase the inter-element
spacing of the inner ULA to maintain the coarray but alleviate the adverse electromagnetic effects.
In [40], a high order super nested array is introduced to further reduce the mutual coupling
between sensors. In [41], by splitting the inner ULA into two or four sections and rearranging
them at the two sides of the remaining outer ULA, the so-called augmented nested array (ANA)
is developed. Compared with the super nested array, the ANA can further reduce the unknown
mutual coupling but at a cost of complicated design to guarantee the difference coarray hole-free.
In [42], a new sparse array configuration, namely MISC array, is optimized to obtain maximum
inter-element spacing, where a reasonable distribution of three sparse ULAs and two additional
sensors is necessary. The MISC array is less susceptive to mutual coupling effects while achieving
higher DOFs.

It should be noted that: (a) the aforementioned nested array configurations cannot fundamentally
avoid the mutual coupling effects, i.e., all the DOA estimation methods performing on such
arrays still work in the presence of perturbations, and (b) the existing nested array processing
using the second-order statistics is vulnerable to colored noise. To obtain more robust estimates,
we would deal with these two issues from another perspective—consider the array imperfections
and jointly resolve DOAs and the parameterized perturbations—rather than reduce the errors by a
new geometry design. This idea is reasonable in the sense that the super nested arrays and its
successors occupying large areas are not applicable to some circumstances, such as airborne platforms,
with a limited space for devices. In this correspondence, a new cumulant-based DOA estimation
method for nested arrays with perturbations is proposed. The mutual coupling of the nested array
is first analysed and parameterized in terms of the relationship of coupling range and inter-element
spacing, giving a new structure of the mutual coupling matrix (MCM). Then we provide a proof that
the distorted steering vector can be factorized into a new matrix, including angular information only,
multiplied by the coupling coefficient vector. Leveraging this property, we develop a MUSIC-like
estimator to determine the DOA estimates based on the rank reduction (RARE) technique in the context
fourth-order cumulants (FOC). In addition, the proposed method can be extended to adapt to a more
challenging scenario where mutual coupling and gain-phase errors coexist. Analytical specifications
show that our solutions are more robust to array imperfections as compared to the standard nested
array processing.

The remainder of this paper is organized as follows. In Section 2, an nested array model
with unknown mutual coupling is introduced. In Section 3, the MUSIC-like estimators for nested arrays
with perturbations using fourth-order cumulants are developed. Section 4 provides numerical examples
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for demonstrating the validity and efficiency of our proposed algorithms. Finally, some concluding remarks
are given in Section 5.

2. Problem Formulation

2.1. Signal Model

Consider N narrowband non-Gaussian signals impinging on a linear M-elements nested array,
composed of two different ULAs concatenating together. Assume that the inter-element spacing
of the inner ULA with M1 elements is dI and the inter-element spacing of the outer ULA with M2

elements is dO satisfying dO = (M1 + 1)dI . Without loss of generality, we set dI = λ
2 with λ being

the wavelength. To be specific, the sensors of a 2-level nested array are deployed at the positions that
can be formulated as a union of the position set of inner ULA, SI , and the position set of outer ULA,
SO, which can be expressed as

P = SI ∪ SO

= {mdI |m = 0, · · · , M1 − 1} ∪ {(n(M1 + 1) + M1)dI |n = 0, · · · , M2 − 1} (1)

If there exits mutual coupling between the array elements, the corresponding M × 1 array
observation vector is then given by

x(t) =
N

∑
i=1

Ca(θi)si(t) + n(t) = CAs(t) + n(t) (2)

where a(θi) =
[
1, ej 2πp2

λ sin θi , · · · , ej 2πpM
λ sin θi

]T
∈ CM is the steering vector, A =

[
a(θ1), · · · , a(θN)

]
is the array manifold, C denotes the MCM, and s(t) =

[
s1(t), · · · , sN(t)

]T
. We assume that the incident

signals {si(t)}N
i=1 are independent of each other, the noise vector n(t) is amenable to the Gaussian

distribution, and it is independent of the signals. Besides, we assume that A is unambiguous,
i.e., the steering vectors {a(θi)}N

i=1 are linearly independent for any set of distinct {θi}N
i=1.

As described in [27–38,43], it may reasonably consider that there are remarkable negative
correlation between the coupling strength and the inter-element spacing, and the cross talk effects
can be neglected if the distance between two sensors is larger than several times the length
of the minimum inter-element spacing dI . By assuming that the minimum inter-element spacing
of two sensors without mutual coupling to be QdI , the generalized MCM can be approximated by

Cij =

{
c|pi−pj |, |pi − pj| ≤ QdI

0, |pi − pj| > QdI
. (3)

For the case of 2-level nested arrays, if Q < M1 + 1, the MCM can be specifically expressed as

C =



1 c1 · · · cP−1 0

c1 1 c1 · · · . . .
c2 c1 1 c1 · · · cP−1

. . . c1 1 · · · cP−2
. . . . . . . . .

...
. . . c1 1

. . .
0 1
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= blkdiag
{

Toeplitz
{[

1, c1, · · · , cP−1, 01×(M1+1−P)

]}
, I(M2−1)

}
(4)

where Toeplitz {r} denotes a symmetric Toeplitz matrix constructed by the vector r, and 0 <

|c1|, |c2|, · · · , |cP−1| < c0 = 1 are the mutual coupling coefficients.

2.2. Parameters Setting

To make the signal model (simulations) much easier to follow and replicate, it should be
emphasized herein that throughout this communication, the following parameters are variables
in the performance analysis and assessment: signal-to-noise ratio (SNR), the number of snapshots
L, and the number of Monte Carlo runs; the fixed parameters adopted in the numerical calculus,
deductions, and simulations include: the number of total sensors M, inter-element spacing of the inner
ULA dI , the number of sensors the inner ULA M1, the number of sensors the outer ULA M2, the number
of signals N, DOAs {θi}N

i=1, the coupling range P, and the mutual coupling coefficients {ci}P−1
i=1 .

3. Proposed FOC-Based DOA Estimator without Mutual Coupling Compensation

3.1. FOC Matrix Construction

Considering the received signals are assumed to be non-Gaussian, one can establish the array
FOC matrix between the received data blocks as

B = cum
{

x(t), xH(t), x∗(t), xT(t)
}

(5)

The entry of B in the [(k1 − 1) M + k2]-th row and the [(l1 − 1) M + l2]-th column is defined as

B ((k1 − 1) M + k2, (l1 − 1) M + l2)

= cum{xk1(t), x∗l1(t), x∗k2
(t), xl2(t)}

= E[xk1(t)x∗k2
(t)x∗l1(t)xl2(t)]− E[xk1(t)x∗k2

(t)]E[x∗l1(t)xl2(t)]

− E[xk1(t)x∗l1(t)]E[x
∗
k2
(t)xl2(t)]− E[xk1(t)xl2(t)]E[x

∗
k2
(t)x∗l1(t)] (6)

Substituting (2) into (5), and exploiting a series of properties of FOC in [44], one can further get

B = cum
{

CAs(t), (CAs(t))H , (CAs(t))∗ , (CAs(t))T
}

= cum

{
N

∑
p=1

Ca(θp)sp(t),
N

∑
m=1

(Ca(θm))
H s∗m(t),

N

∑
q=1

Ca∗(θq)s∗q(t),
N

∑
n=1

(Ca(θn))
T sn(t)

}

=
N

∑
p=1

N

∑
m=1

N

∑
q=1

N

∑
n=1

(
Ca(θp)⊗

(
Ca(θq)

)∗) (Ca(θm)⊗ (Ca(θm))
∗)H cum

{
sp(t), s∗m(t), s∗q(t), sn(t)

}
=

N

∑
i=1

(
Ca(θi)⊗ (Ca(θi))

∗) (Ca(θi)⊗ (Ca(θi))
∗)H cum {si(t), s∗i (t), s∗i (t), si(t)}

=
N

∑
i=1

γi
(
Ca(θi)⊗ (Ca(θi))

∗) (Ca(θi)⊗ (Ca(θi))
∗)H

=
(
CA ◦ (CA)∗

)
Cs
(
CA ◦ (CA)∗

)H (7)

where γi , cum
{

si(t), s∗i (t), s∗i (t), si(t)
}

, and Cs , diag {γ1, · · · , γN} ∈ RN×N .
To resolve the DOA estimates from the FOC built above, some approaches [45–48] have been proposed.

However, these methods are developed for ULAs in the presence of unknown mutual coupling,
and cannot be directed applied to the case of nested arrays as the mutual coupling effects of the two
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array geometries are distinct from each other. By this reason, a new estimator using FOC
should be investigated for combating the unknown mutual coupling.

3.2. Robust DOA Estimation Against Unknown Mutual Coupling

By examining the special structure of the MCM of the nested arrays, one finds that the actual
steering vector can be factorized in another way by

Ca(θ) = T(θ)c (8)

where c = [1, c1, · · · , cP−1] ∈ CP, and T(θ) =

[
T1 + T2

T3

]
∈ CM×P where T1, T2 ∈ C(M1+1)×P,

and T3 ∈ C(M2−1)×P are given by

[T1]p,q =

{
[a1]p+q−1 , p + q ≤ M1 + 2

0, otherwise
(9)

[T2]p,q =

{
[a1]p−q+1 , p ≥ q ≥ 2

0, otherwise
(10)

T3 =
[
a2, 0(M2−1)×(P−1)

]
(11)

with a1 = F1a(θ), F1 =
[
IM1+1, 0(M1+1)×(M2−1)

]
, a2 = F2a(θ), and F2 =

[
0(M2−1)×(M1+1), IM2−1

]
.

Proof of (8). One can first rewrite the left-hand side of (8) as

Ca(θ) =

[
C1 0
0 IM2−1

] [
a1

a2

]
=

[
C1a1

a2

]
(12)

where C1 = Toeplitz
{[

1, c1, · · · , cP−1, 01×(M1+1−P)

]}
∈ C(M1+1)×(M1+1). By Lemma 3 in [25],

C1a1 = T̄(θ)c where T̄(θ) = T1 + T2. Considering the first entry of c is 1, one can make an identical
transformation between a2 and c, that is, a2 =

[
a2, 0(M2−1)×(P−1)

]
c = T3c. As a result, one has

Ca(θ) =

[
(T1 + T2) c

T3c

]
=

[
T1 + T2

T3

]
c = T(θ)c. This completes the proof of (8).

Now performing the singular value decomposition (SVD) on B, one has

B = UΣVH (13)

where Σ = diag {λ1, · · · , λM2} consists of M2 singular values satisfying λ1 ≥ · · · ≥ λN > λN+1 =

· · · = λM2 = 0. The columns of Us , U(:, 1 : N) are the singular vectors corresponding to the N largest
eigenvalues, while the columns of Un , U

(
:, N + 1 : M2) are the singular vectors corresponding

to the M2 singular values which are all zeros. The signal subspace is spanned by the columns of Us,
whereas the noise subspace is spanned by the columns of Un. One can construct the following function

p (θ, c) =
∥∥∥((Ca(θ))⊗ (Ca(θ))∗

)H Un

∥∥∥2

2

=
∥∥∥((T(θ)c)⊗ (T(θ)c)∗

)H Un

∥∥∥2

2

= (c⊗ c∗)H (T(θ)⊗ T∗(θ))H UnUH
n (T(θ)⊗ T∗(θ)) (c⊗ c∗)

= gH (c)M(θ)g (c) (14)
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where g (c) = c⊗ c∗ ∈ CP2
, and M(θ) = (T(θ)⊗ T∗(θ))H UnUH

n (T(θ)⊗ T∗(θ)) ∈ CP2×P2
. Next one

can estimate DOAs from the determinant M(θ). It can be found that the size of (T(θ)⊗ T∗(θ))H Un

is P2 × (M2 − N) and if P2 ≤ M2 − N, the matrix (T(θ)⊗ T∗(θ))H Un is normally of full row rank
and M(θ) is of full rank. However, when θ is equal to any DOA of interest, i.e., θ = θi, i = 1, · · · , N,
Equation (14) is zero according to the orthogonality between the signal and noise subspaces.
Since g (c) 6= 0, (14) is available only if the matrix M(θ) is rank deficient, i.e., the determinant
of M(θ) is zero. Hence, one can determine DOA estimates by searching the minimum of det {M(θ)}
that is close to zero as

θ̂ = arg min
θ

det {M(θ)} . (15)

3.3. Mutual Coupling Coefficient Estimation

With the DOA estimates, the orthogonality between the signal and noise subspaces
can be exploited to estimate the mutual coupling coefficients. To this end, one can stack a series
of equations as 

UH
n

((
Ca(θ̂1)

)
⊗
(
Ca(θ̂1)

)∗)
...

UH
n

((
Ca(θ̂N)

)
⊗
(
Ca(θ̂N)

)∗)
 =


0(M2−N)×1

...
0(M2−N)×1

 . (16)

Substituting (8) into (16), one gets UH
n
(
T(θ̂1)⊗ T∗(θ̂1)

)
...

UH
n
(
T(θ̂N)⊗ T∗(θ̂N)

)


︸ ︷︷ ︸
H

(c⊗ c∗) = [h, H̄]

[
1
c̄

]
= 0N(M2−N)×1. (17)

where h is the first column of H while H̄ contains the remaining columns of H, and c̄ =[
0(P2−1)×1, IP2−1

]
(c⊗ c∗) ∈ CP2−1.

One can carry out the estimation of c̄ in the least squares sense, that is

c̄ = −H̄+h. (18)

Then the mutual coupling coefficients c1 = [c1, c2 · · · , cP−1] can be extracted from c̄ by

c1 = F̄1c̄∗ (19)

c1 = F̄2c̄ (20)

where F̄1 =
[
IP−1, 0(P−1)×(P2−P)

]
and F̄2 =

[
eP, e2P, · · · , eP(P−1)

]T
with ei ∈ RP2−1, i =

P, 2P, · · · , P(P− 1), is a column vector with 1 at the i-th entry and 0 elsewhere. Finally, an improved
estimate of c1 can be obtained by averaging the above results as

c1 =
1
2
(F̄1c̄∗ + F̄2c̄) . (21)

3.4. Extension to Partly Calibrated Nested Array with Unknown Mutual Coupling

In this section, the nested array is partly calibrated, i.e., the inner ULA suffers from the mutual
coupling effect while the outer ULA has unknown gain and phase errors.
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In practice, one may encounter an even more challenging scenario where the mutual coupling and
gain-phase mismatch coexist in the nested array. However, it is difficult or even not able to get the issue
solved as there are too many unknowns to be handled by the limited DOFs. To make DOA estimation
feasible, one has to relieve the nuisance imperfections on the array to some extend, by calibrating
a portion of sensors well. This class of arrays, referred to as partly calibrated nested arrays, is common
in practice as the aperture of the inner ULA is typically much smaller than that of the whole array and,
hence, the inner ULA can be assumed to be well calibrated for gain-phase error while the calibration
of the outer ULA may be poor due to unknown channel imbalances between sensors that are located
far away from each other. Through above analysis, the MCM is rectified as

C̄ = blkdiag
{

Toeplitz
{[

1, c1, · · · , cP−1, 01×(M1+1−P)

]}
, Υ(M2−1)×(M2−1)

}
(22)

where Υ = diag {β} with β =
[
β1, β2, · · · , βM2−1

]T ∈ CM2−1 containing the element gains |βi|M2−1
i=1

and phases {arg (βi)}M2−1
i=1 . Following a similar idea, one can derive

C̄a(θ) = T̄(θ)α (23)

where α =
[
cT , βT

]T
and T̄(θ) = blkdiag {T1 + T2, T̄3} ∈ CM×(P+M2−1) with T̄3 =

diag
{[

ej
2πpM1+2

λ sin θ , · · · , ej 2πpM
λ sin θ

]}
. To prove (23), one needs to prove Υa2 = T̄3β that can be easily

verified by the fact that diag {b}d = diag {d}b holds for arbitrary vectors b and d with the same size.
Then, by the same principle behind (13)–(15), one can determine the DOA estimates by

θ̂ = arg min
θ

det {M̄(θ)} , (24)

where M̄ =
(
T̄(θ)⊗ T̄∗(θ)

)H UnUH
n
(
T̄(θ)⊗ T̄∗(θ)

)
∈ C(P+M2−1)2×(P+M2−1)2

.
Following the same procedures (16)–(21) and denoting ᾱ =[

0((P+M2−1)2−1)×1, I
(P+M2−1)2−1

]
(α⊗ α∗) ∈ C(P+M2−1)2−1, one can get the estimate of ᾱ by

ᾱ = −H̃+h̄. (25)

where h̄ is the first column of H̆ that is defined as

H̆ =

 UH
n
(
T̄(θ̂1)⊗ T̄∗(θ̂1)

)
...

UH
n
(
T̄(θ̂N)⊗ T̄∗(θ̂N)

)
 , (26)

and H̃ includes the rest columns of H̆. The final mutual coupling coefficient and gain-phase error
estimates are determined by ᾱ as

c1 =
1
2
(
F̃1ᾱ∗ + F̃2ᾱ

)
(27)

β =
1
2
(
F̃3ᾱ∗ + F̃4ᾱ

)
(28)

where F̃1 =

[
IP−1, 0

(P−1)×((P+M2−1)2−P)

]
, F̄2 =

[
ēP+M2−1, ē2(P+M2−1), · · · , ē(P−1)(P+M2−1)

]T
, F̃3 =[

0(M2−1)×(P−1), IM2−1, 0
(M2−1)×((P+M2−1)2−P−M2+1)

]
, and F̄4 =

[
ēP(P+M2−1), ē(P+1)(P+M2−1), · · · ,
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ē(P+M2−2)(P+M2−1)

]T
with ēi ∈ R(P+M2−1)2−1, i = P + M2 − 1, 2(P + M2 − 1), · · · , (P + M2 − 2)(P +

M2 − 1), is a column vector with 1 at the i-th entry and 0 elsewhere.
The major steps of the proposed algorithm are summarised in Table 1.

Table 1. Summary of the proposed method against the perturbations of nested arrays.

Step 1. Compute the cumulant matrix B from observations x(t) according to (5).
Step 2. Extract the noise subspace Un by performing SVD on B.
Step 3. Construct T (θ) (or T̄ (θ)) composed by T1 in (9), T2 in (22),

and T3 in (11) (or T̄3 in (23)).
Step 4. Determine the DOA estimates

{
θ̂i
}N

i=1 by searching for N
minima of det {M(θ)} defined in (14) (or M̄(θ) in (24)).

Step 5. Reconstruct H with the DOA estimates θ̂i in (17) (or H̆ in (26)).
Step 6. Estimate c̄ in (18) (or ᾱ in (25)).
Step 7. Obtain estimates of the mutual coupling coefficients ĉ1 in (21)

(or ĉ1 in (27) and estimates of gain-phase errors β̂ in (28)).

Remark 1. The methods presented in this paper are valid on condition that the MCM is isolated
from any angular information of the incident signals and are not applicable to arbitrary geometries of antenna
arrays. However, they still work for some commonly used antenna arrays like dipole, monopole, and slot
arrays [49]. On the other hand, the MCM could be direction variant for directional antenna arrays.
In such a case, the proposed methods preform well as long as the MCM possesses a similar structure to (4) or (22),
even if the mutual coupling coefficients c1 are direction-dependent. This is because the transformation of product
of the nominal steering vector and the direction-independent MCM still holds for the direction-dependent
MCM by (8) or (23). To be specific, the array observation vector, of size M × 1, can be expressed
as x(t) = [C1a(θ1), C2a(θ2, · · · , CNa(θN))] s(t) + n(t) where Ci is reliant upon θi, different from each other
in general. It should be noted that if {Ci}N

i=1 have the same banded symmetric Toeplitz structure as shown
in (4), then one still has Cia(θi) = T(θi)ci. As a result, one can readily deduce that det {M(θ)} = 0 holds
for θ = θi, i = 1, 2, · · · , N, and the DOA estimates can be obtained by searching the minimum of det {M(θ)}.
It should be noted that the structure of MCM of directional antenna arrays may not stay the same for all
angles in practice, causing an arbitrariness on the composition of M(θ) and, hence our solution is inapplicable
to arbitrary direction-dependent mutual coupling via searching the spatial spectrum of a unified function
det {M(θ)}. Only the direction-independent model is discussed herein while its direction-dependent counterpart
will be investigated in the future.

Remark 2. As with the previous work [49], the coupling range P in (4) is assumed to be known a priori,
otherwise it has to be determined properly. If P is selected to be smaller than the true value, the remaining mutual
coupling may still deteriorate the estimation performance, whereas if the chosen P is larger than the true one,
the accuracy and resolution of estimates are confined due to the loss of array aperture. A pragmatic approach
to identify P is to measure the minimal distance between two antennas where the coupling effect is negligible.
In practice, the coupling range depends on various factors of antenna design, such as array geometry, ground
structure, material characteristic, etc, and the effect of mutual coupling is weak enough to be neglected in many
applications when the inter-element spacing of an antenna array is larger than half a wavelength, which means
that P is relatively small.

Remark 3. It should be noted that one may get some pseudo estimates in addition to the true DOAs, satisfying
(15) or (24). Without loss of generality, we assume that there are N0 ≥ N DOA estimates, pseudo and true, one
obtains by a spectral search of (15) or (24). Substituting the DOA estimates into (21) or (27), on can determine
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N0 mutual coupling coefficients vectors and reconstruct the corresponding MCM
{

Ĉi
}N0

i=1. Defining a spatial
spectrum equation as follows

f =

∥∥∥∥((Ĉia(θ̂i)
)
⊗
(
Ĉia(θ̂i)

)∗)H
Un

∥∥∥∥2

2
, i = 1, 2, · · · , N0, (29)

one can sift the estimates of true DOAs and mutual coupling coefficients from the pseudo ones by identifying
whether f = 0 or not as the orthogonality between the signal subspace

(
Ĉia(θ̂i)

)
⊗
(
Ĉia(θ̂i)

)∗ and the noise
subspace Un does not hold for the false DOAs and mutual coupling coefficients. In practice, only finite snapshots
are available, so the true DOA and mutual coupling coefficient estimates correspond to the minima of (29)
that returns large values for the rest N0 − N pseudo estimates. By this means, one can tell the true estimates
from the false ones.

Remark 4. It is known that (T(θ)⊗T∗(θ))H Un ∈ CP2×(M2−N) and
(
T̄(θ)⊗ T̄∗(θ)

)H Un ∈
C(P+M2−1)2×(M2−N), so the proposed method works on condition that P2 ≤ M2−N for the case of unknown mutual
coupling only and (P+ M2− 1)2 ≤ M2−N for the scenario where unknown mutual coupling and gain-phase error
occur on dense ULAs and sparse ULA parts, respectively. This provides upper bounds on the number of resolvable
signals for these two circumstances: one is N ≤ M2 − P2, and the other is N ≤ M2 − (P + M2 − 1)2,
which means that the developed algorithm can handle more signals in the former than in the latter, or equivalently,
more DOFs and effective aperture are available when mutual coupling takes place only. Therefore, the proposed
Method 1 has better performance than Method 2 in that intuitively, the more the unknowns are, the worse
the estimation arises, while a reverse phenomenon can be observed since Method 1 does not take the gain-phase
error into consideration, causing a considerable model mismatch.

4. Simulation Results and Discussion

In this section, various numerical experiments under different conditions are carried out to
examine the performance of the proposed algorithms. Simulations are conducted for 2-level
nested array with four elements in each level. For simplicity, we assume that all signals have
an identical power. Similar to the settings in [50,51], the signals are modeled as s(t) = F(t)r(t),
where F(t) = diag { f1(t), · · · , fK(t)}, r(t) = [r1(t), · · · , rK(t)]

T with fi(t) and ri(t) being zero-mean
Gaussian processes with unit-variance and σ2

s -variance, respectively. The noise is assumed to be a first
order spatial autoregressive process, and the (a, b)-th entry of the noise covariance matrix is given

by R(a, b) = σ2
n0.8|

pa−pb
λ | [52,53]. The SNR is defined as SNR = 10 log10(σ

2
s /σ2

n). The accuracy
of the DOA estimate, the statistical performance of the algorithms, is measured from 800 Monte Carlo
runs in terms of the root mean square error (RMSE) which is defined as

RMSEθ =

√√√√ 1
800N

800

∑
n=1

N

∑
i=1

(θ̂
(n)
i − θi)2 (30)

RMSEc =

√√√√ 1

800 ‖c1‖2
2

800

∑
n=1

∥∥∥ĉ(n)1 − c1

∥∥∥2

2
× 100% (31)

where θ̂
(n)
i and ĉ(n)1 are the estimates of θi and c1, respectively, for the n-th trial, and N is the number

of signals.
In the first scenario, we consider that two independent sources from [−17◦, 43◦] impinge

on the nested array. The resultant RMSEs of DOA estimates are illustrated in Figure 1. It can be
seen that the proposed Method 1 approaches the FOC-based estimator with known coupling
asymptotically and significantly outperforms the Method 2 with the increase of SNR. The main reason
is that Method 1 deals with the outer ULA as calibrated and, hence more DOFs are obtained for DOA
estimation, whereas Method 2 considers a even worse case, where the outer ULA has gain-phase errors,
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and the corresponding DOFs are occupied by the nuisance parameters. Besides, the estimation error
of Method 2 decreases clearly as the number of snapshots increases and stabilize at approximately
0.35◦ with the observation size larger than 500 snapshots, while both Method 1 and 4-MUSIC provide
much better accuracy, saturating at RMSEs of 0.05◦ and 0.03◦, respectively, than Method 1 through all
snapshot sizes when SNR is fixed at 5 dB.
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Figure 1. RMSE of the DOA estimates of 2 independent signals versus (a) SNR when N = 500;
(b) N when SNR = 5 dB.

Tables 2 and 3 list the RMSEs of the mutual coupling coefficient estimates under different SNRs
and snapshot sizes. Similar to the performance of DOA estimation in the first scenario, the above
tabular results show that the proposed Method 1 is able to offer satisfactory estimation of mutual
coupling, especially for moderate SNRs and the numbers of snapshots. A plausible explanation
is that compared with Method 2, using the calibrated subarray has implicit superiorities, such as a
lower Cramer-Rao lower bound for mutual coupling estimation, since its unknowns are less than
those with the partly calibrated array. As a result, Method 1 can achieve better performance on mutual
coupling calibration.

Table 2. Root mean square error (RMSE) of c1 versus SNR when L = 500.

Method 1 Method 2

SNR RMSEc RMSEc

5 dB 8.534% 35.94%
7 dB 5.621% 23.413%
9 dB 3.7062% 13.881%

11 dB 2.5199% 8.2154%
13 dB 1.7612% 4.9845%
15 dB 1.2811% 3.2019%

Table 3. RMSE of c1 versus the number of snapshots when SNR = 5 dB.

Method 1 Method 2

The Number RMSEc RMSEc
of Snapshots

1000 8.1907% 35.118%
1200 8.0853% 34.504%
1400 8.0204% 34.884%
1600 8.0126% 34.465%
1800 7.9647% 34.305%
2000 7.9368% 34.043%
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5. Conclusions

In this paper, an FOC-based DOA estimation method for nested arrays is proposed
to simultaneously improve the robustness of direction finding of non-Gaussian signals to array
imperfections and mitigate the spatially colored noise. Under the assumptions that the mutual
coupling effects are direction-independent and its range is known a priori, the mutual coupling effects
of nested arrays is analytically specified from the aspect of the relationship between coupling strength
and inter-element spacing, and a new factorization of the distorted steering vector into a matrix,
containing bearing information only multiplied by the coupling coefficient vector. Combining
this property with RARE technique, a MUSIC-like estimator is developed to obtain the DOA estimates
in FOC. Additionally, the proposed estimator can be extended to handle a much harsher issue
that mutual coupling and gain-phase mismatches separately occur on dense and sparse sunbarrays,
respectively. Analytical specifications show that our solutions are more robust to array imperfections
as compared to the standard nested array processing. Compared with the schemes of super nested array
families on reducing the mutual coupling effects, our solutions enjoy two merits: (a) It is applicable
to the standard nested arrays without rearranging the configuration to increase the inter-element
spacing, isolating the cross talk in dense subarrays as well as gain-phase errors in sparse ULA parts;
(b) Perturbations in nested arrays are estimated in colored noise, which has not been fully addressed.
Simulations results corroborate that the proposed methods are advantageous to self array calibration
as well as immunity to colored noise.
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