Highly selective adsorption on SiSe monolayer and effect of strain engineering: A DFT study

Quan Zhou ¹, Lian Liu ¹, Qipeng Liu ¹, Zeping Wang ¹, Chenshan Gao ¹, Yufei Liu ^{1,2} and Huaiyu Ye ^{1,3,4,*}

- ¹ Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, and College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China;
- ² Centre for Intelligent Sensing Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China;
- ³ Shenzhen Institute of Wide-Bandgap Semiconductors, No.1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen, Guangdong, China;
- ⁴ Electronic Components, Technology and Materials, Delft University of Technology, Delft 2628 CD, the Netherlands;

*Correspondence: h.ye@tudelft.nl;

Figure S1

Figure S1. Front and top views of gas molecules adsorbed on a SiSe substrate in a different molecular orientation. Gas in turn are CO, CO₂, CH₄, H₂S, H₂O, NH₃, SO₂, NO and NO₂.

Figure S2. Front and top views of gas molecules adsorbed on a SiSe substrate. Gas in turn are CO, O₂, CO₂, CH₄, H₂S, H₂O, NH₃, SO₂, NO and NO₂.

Figure S3

Figure S3. Front and top charge distribution view of charge density difference (CDD) maps, in turn are (a) O₂, (b) CO₂, (c) CH₄, (d) H₂S configuration. The isosurface is set as $0.01e/Å^3$.

Figure S4

Figure S4. The distribution of electron localization maps of (a) O_2 , (b) CO_2 , (c) CH_4 , (d) H_2O (e) H_2S and (f) NO configurations. The reference column for the ELF value from 0 to 1 is located on the right side of the figure. The slice of the ELF is parallel to the (100) crystal plane.

Table S1

Table S1. The adsorption energy (E_{ad}), closest distance (d) and Mulliken charge transfer (ΔQ) of strained-
NH₃/SiSe configurations from X-axis, Y-axis, and biaxial directions.

Strain	Eax(eV)	d _x (Å)	ΔQ × (e)	E _{ay} (eV)	dy(Å)	Qy (e)	Eaxy(eV)	d _{xy} (Å)	Q _{xy} (e)
-8%	-0.461	2.323	0.206	-0.460	2.351	0.194	-0.753	2.226	0.223
-6%	-0.430	2.37	0.191	-0.439	2.372	0.19	-0.589	2.273	0.212
-4%	-0.427	2.423	0.176	-0.420	2.392	0.185	-0.450	2.351	0.197
-2%	-0.426	2.443	0.168	-0.404	2.404	0.182	-0.418	2.384	0.188
0%	-0.414	2.471	0.153	-0.414	2.471	0.153	-0.414	2.471	0.153
2%	-0.412	2.492	0.143	-0.411	2.482	0.149	-0.407	2.503	0.139
4%	-0.405	2.508	0.136	-0.375	2.485	0.149	-0.401	2.518	0.134
6%	-0.401	2.52	0.124	-0.406	2.488	0.146	-0.400	2.497	0.122
8%	-0.396	2.526	0.119	-0.405	2.479	0.147	-0.404	2.465	0.121

Table S2

Table S2. The configuration structures of NH₃/SiSe, SO₂/SiSe, NH₃-SO₂/SiSe, SO₂-NH₃/SiSe andSO₂&NH₃/SiSe with adsorption energy (E_{ad}), Mulliken charge transfer (ΔQ) and closest distance(d).

configuration	Ead (eV)	$\Delta Q(SO_2)$	$\Delta Q(SO_2)$	d(NH3)	d(SO ₂)
NH3/SiSe	-0.414	0.178	١	2.471	١
SO ₂ /SiSe	-0.489	١	-0.197	١	2.686
NH3-SO2/SiSe	-0.752	0.243	-0.278	2.226	2.639
SO ₂ -NH ₃ /SiSe	-0.465	0.196	-0.220	2.431	2.760
SO ₂ &NH ₃ /SiSe	-1.161	0.241	-0.276	2.278	2.646