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Abstract: Various neural network based methods are capable of anticipating human body motions
from data for a short period of time. What these methods lack are the interpretability and
explainability of the network and its results. We propose to use Dynamic Mode Decomposition with
delays to represent and anticipate human body motions. Exploring the influence of the number of
delays on the reconstruction and prediction of various motion classes, we show that the anticipation
errors in our results are comparable to or even better for very short anticipation times (<0.4 s) than
a recurrent neural network based method. We perceive our method as a first step towards the
interpretability of the results by representing human body motions as linear combinations of previous
states and delays. In addition, compared to the neural network based methods large training times
are not needed. Actually, our methods do not even regress to any other motions than the one to be
anticipated and hence it is of a generic nature.

Keywords: dynamic mode decomposition; human motion anticipation; short-time future prediction;
delay coordinates

1. Introduction

Various kinds of neural network architectures are the main technical basis for the current state of
the art for anticipation of human body motions from data [1–9]. However, as is the case in many other
application domains, there is a fundamental lack of interpretability of the neural networks. In these
approaches the two main conceptual ingredients of human motion prediction are also intermixed:

(a) Modelling the intent of the persons.
(b) Modelling the influence of the previous motion.

Whereas for point (a), mechanistic models might be hard to obtain for point (b) models as
dynamical systems partially reflecting bio-physical knowledge are possible in principle. In this paper,
we will focus on point (b). Instead of suggesting another neural network based anticipation architecture,
we will try to separate several possible constituents:

• Can recently developed so called equation free modelling techniques [10–15] already explain and
predict motions in a short time horizon?

• What is the role of incorporating delay inputs? Many neural network architectures incorporate
delays [16–18], recurrent connections [2,19] or temporal convolutions [5,20,21], but the contribution
of the delays or the memory cannot be separated from the overall network architecture.
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We show that a direct application of the equation free modelling technique of Dynamic Mode
Decomposition (DMD) does not yield good results for motion prediction in general. However, when
incorporating delays, the corresponding technique of Dynamic Mode Decomposition with delays
(DMDd) does not only yield almost perfect reconstructions of human motions, but it is also very
suitable for short-term motion anticipation! Regardless of potential applications of the method, which
we will discuss in the conclusion, we show the relevance of incorporating the information given
by delays.

The paper is structured as follow: In Section 2 we clarify the theoretical background of our work:
Dynamic Mode Decomposition (DMD), Taken’s Theorem, and Dynamic Mode Decomposion with
Delays (DMDd). In Section 3, we explain our experiments with DMDd and give some examples of our
results. In Section 4, we discuss future possibilities given by our method.

2. Theoretical Background

First, we give a motivation for Dynamic Mode Decomposition.
In general, dynamical systems are usually described via a set of differential equations. For many

systems, a variety of appropriate data in form of observables are available. However, if the process
is complex the recovery of the underlying differential equation from data is a challenging task [22].
Instead, the set of m observables sampled at time steps n is used for the investigation of the considered
process. For the identification of temporal structures, the Fourier theory is usually utilized. Therefore,
a Fourier analysis on the observables is performed, to extract amplitude and frequencies leading to a
decomposition into trigonometric series. This approach has some drawbacks for human motion capture
data as these phenomena do not exclusively consist of periodic components. Hence, the decomposition
will be distorted. An algorithm that take this point into account is Dynamic Mode Decomposition
(DMD).

For the application on motion capture, data we assume a vector-valued time series x1, x2, . . . , xn ∈
Rm, where each snapshot consists of marker positions (in 3D) or joint angles of a skeleton to a certain
time step. Before we formulate the algorithm in more detail, we briefly highlight the basic concept
of DMD: In a first step, the data were used to determine frequencies, the so-called DMD eigenvalues.
These are defined by the non-zero eigenvalues of a solution to the following minimization problem:

min
A∈Cm×m

n

∑
j=1
‖Axj − xj+1‖2

2. (1)

Then, the data were fitted to the previously computed frequencies (this process is similar to a
discrete Fourier transformation or a trigonometric interpolation).

However, in many application areas, the number of observables is considerably larger than the
number of snapshots, i.e. m > n. Therefore, this approach leads to a sufficient number of frequencies
and it can be proven that the reconstruction is error-free [23]. For motion capture data, however, the
converse is true, i.e., m < n. Hence, in most cases we do not have enough frequencies for an adequate
reconstruction, which results in a bad anticipation as well.

We approach this issue by manipulating the data in a preprocessing step, i.e., before applying
EXDMD. To this end, the theory of delays justified by Takens’ Theorem is consulted, which is described
in Section 2.2. Applying this technique leads to Dynamic Mode Decomposition with delay (DMDd) [10].
The exact procedure is explained in Section 2.3.

2.1. Exact Dynamic Mode Decomposition

EXDMD is the most modern variant of DMD that is applied directly on raw data. It was published
in 2014 by Tu et al. [12]. However, we have chosen the algorithmic formulation by Krake et al. [23],
which differs in the computation of DMD amplitudes. Algorithm 1 shows an adjusted version of the



Sensors 2020, 20, 976 3 of 12

algorithm. Since we mainly focus on anticipation, we are not interested in the reconstruction of the
first snapshot and therefore some steps are skipped.

After defining the snapshot matrices X and Y, which are related by one time-shift, a reduced
singular value decomposition of X is performed in line 2. These components are used to determine the
low-dimensional matrix S that owns the dynamic relevant information in form of (DMD) eigenvalues
λj. Therefore, only the non-zero eigenvalues are used to compute the so-called DMD modes ϑj in line
7. Finally, the DMD amplitudes are calculated via a = Λ−1Θ+x2, where the second initial snapshot x2

is used.
Given the DMD modes, DMD eigenvalues, and DMD amplitudes, we can both reconstruct the

original snapshot matrix and make predictions for future states. But as mentioned before a good
reconstruction might not be possible depending on the matrix dimensions. However if all conditions
are met we can achieve an exact reconstruction.

Algorithm 1 Exact Dynamic Mode Decomposition

1: Define X = [x1 . . . xn−1], Y = [x2 . . . xn]

2: Calculate the reduced SVD X = UΣV∗

3: Calculate S = U∗YVΣ−1 with rank(X) = r

4: Calculate λ1, . . . , λr and v1, . . . , vr of S

5: for 1 ≤ i ≤ r do

6: if λi 6= 0 then

7: ϑi =
1
λi

YVΣ−1vi
8: Λ = diag(λ1, λ2, . . . , λr0) with λ1, λ2, . . . , λr0 6= 0

9: Θ = [ϑ1 ϑ2 . . . ϑr0 ]

10: Calculate a = Λ−1Θ+x2 with a = (a1, . . . , ar0)

2.2. Delay Vectors and Takens’ Theorem

Most real world dynamical systems are only partially observable, i.e., we can observe only a
low-dimensional projection of a dynamical system acting on a high dimensional state space. This means
that from a certain observed snapshot of a dynamical system it is even in principle not possible to
reconstruct the full current state of the dynamical system. Fortunately, the information contained in
observations made at several different time steps can be combined to reconstruct, at least in principle,
the complete current state, and (under certain technical assumptions) the dynamics on these delay
vectors is diffeomorphic to the true dynamics on the hidden state space. This delay embedding theorem
is also known as Takens’ theorem, first proved by Floris Takens in 1981 [24]. This result has led to a
branch of dynamical systems theory now referred to as “embedology” [25].

Here, we give a brief sketch of the delay embedding theorem for discrete-time dynamical systems.
Let the state space of the dynamical system be a k-dimensional manifold M. The dynamics is defined
by a smooth map

φ : M→ M, (2)

and the observations are generated by a twice-differentiable map y : M→ R (the observation function),
projecting the full state of the dynamical system to a scalar observable. From a time series of observed
values, we can build m-dimensional delay vectors:

ym(n) = (y(n), y(n− 1), y(n−m + 1))T . (3)

The delay vectors are elements of Rm and by mapping a delay vector to its successor we get a
mapping ρ from Rm to Rm:

ρ(ym(n)) = ym(n + 1) (4)
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The delay embedding theorem now implies that the evolution of points ym(n) in the
reconstruction space Rm driven by ρ follows (i.e., is diffeomorphic to) the unknown dynamics in
the original state space M driven by φ when m = 2k + 1. Here 2k + 1 is a maximal value, faithful
reconstruction could already occur for delay vectors of lower dimension. Thus long enough delay
vectors represent the full hidden state of the observed dynamical system, meaning that the prediction
of the next observed value based on a long enough history of past observations becomes possible.

For our purposes, we take the delay embedding theorem as an indication that adding delay
dimensions to the observed state vector can improve the anticipation quality of a DMD model.

2.3. Dynamic Mode Decomposition with Delays (DMDd)

Our motion capture data has the following form:

X =
[

x1 . . . xn

]
(5)

Each state xi at time step 1 6 i 6 n, is a vector of length m. To augment this matrix with d delays
we use a window of size m × (n − d), with 1 < n − d < n, to move along the motion data. This
window starts at the first frame of X and makes a copy of the first n− d frames of the data, before
taking a step of one frame along X. We continue with this process until the window reaches the end of
the motion data. The copied data are then stacked one above the other resulting in a matrix X̃ with
n− d columns and (d + 1)m rows:

X̃ =


x1 . . . xn−d
x2 . . . xn−d+1
...

. . .
...

xd+1 . . . xn

 (6)

Depending on how we choose d, the problem where our data has more columns than rows is no
longer given. Applying the DMD algorithm to X̃ provides us with a good representation of the data
and a good short-term future prediction is also possible, as will be detailed in Section 3.

3. Results

We tested DMDd on the Human3.6M dataset [26], which consists of different kinds of actions
like walking, sitting and eating. These actions are performed by different actors. For our experiments
we first choose the motion sequences performed by actor number 5 (to have comparable results to
the literature, as this actor was used for testing in the neural network based approaches, whereas the
motions of the other actors were used for training). The data we use is sampled at 50 Hz and contains
absolute coordinates for each joint. For each experiment we divide each action sequence into several
sub-sequences of 100 or 150 frames length. The first 50 (1 s) or 100 frames (2 s) are taken as input
for our methods and we compute a prediction for the next 5 frames (0.1 s), 10 frames (0.2 s) and 20
frames (0.4 s). To measure the distance between the ground truth GT and our prediction P we use two
different distance measures. The first measure we use is the mean squared error (MSE):

L(GT, P) =
1
K

K

∑
k=1

1
mp ∑

i,j
(GTijk − Pijk)

2 (7)

K is the number of motion sequences taken form the same action class and hence the number of
predictions made for this action. Both GT and P consist of m observables and p frames. The second
distance measure we use is the Kullback-Leibler divergence as it was used in [8].
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3.1. Comparison with Neural Network Based Methods

First we compare the setting of having the information of 1 s of motions as inputs (50 frames)
using DMD with 80 delays with a RNN baseline as the one used in [27]. We use the mean squared
error (MSE) as well as the Kullback-Leibler divergence as error measures for anticipation times of 0.1 s,
0.2 s, and 0.4 s.

The results given in Tables 1 and 2 indicate that our method shows better results for 0.1 s, 0.2 s and
for most motion classes even for 0.4 s, although they are not only unsupervised but even no knowledge
about any other motion is taken into account! Interestingly, the error of the RNN slightly decreases
with the anticipation times. This counter-intuitive behavior of the RNN approach might be explained
by the fact that the anticipations yielded by the RNN baseline in general shows small jumps at the
beginning of the anticipation period [28].

Table 1. Comparison of anticipation error using a RNN and Dynamic Mode Decomposition with 80
delays for various anticipation times. The error measure is the mean squared error of 17 markers on
the pose sequences for anticipation times of 0.1 s (5 frames), 0.2 s (10 frames), and 0.4 s (20 frames) on
the different motion classes of the Human 3.6M dataset for actor #5. The squared errors are expressed
in mm2, but notice that the error is measured in R3·17.

Action RNN 0.1 s RNN 0.2 s RNN 0.4 s DMDd 0.1 s DMDd 0.2 s DMDd 0.4 s

Directions 787.18 687.42 1202.92 9.09 103.03 1097.34
Discussion 964.55 874.03 1536.45 26.1 187.37 1459.77
Eating 626.26 490.74 599.55 13.16 119.89 1250.54
Greeting 1316.82 1337.01 2748.43 46.86 471.66 4096.82
Phoning 832.94 699.94 945.87 15.6 150.46 6755.74
Posing 1184.45 1118.47 2067.22 16.12 193.23 1981.44
Purchases 1176.26 1069.58 1905.41 74.84 510.89 5717.04
Sitting 1008.65 917.76 1390.35 14.05 86.67 665.49
SittingDown 11,164.34 8584.16 8784.89 207.44 750.49 4183.22
Smoking 778.76 610.34 754.22 14.37 95.79 789.76
Photo 2705.89 2070.79 2576.26 15.09 113.18 1038.58
Waiting 1081.52 886.59 1314.19 18.77 169.84 1862.09
Walking 821.12 635.70 776.37 53.82 397.00 3054.54
WalkDog 3083.24 2730.66 4248.07 91.59 588.56 3851.82
WalkTogether 1163.97 919.58 1198.45 15.00 144.91 1306.06

Table 2. Comparison of anticipation error using a RNN and Dynamic Mode Decomposition with
80 delays for various anticipation times. The error measure is the Kullback-Leibler divergence for
anticipation times of 0.1 s (5 frames), 0.2 s (10 frames), and 0.4 s (20 frames) on the different motion
classes of the Human 3.6M dataset for actor #5.

Action RNN 0.1 s RNN 0.2 s RNN 0.4 s DMDd 0.1 s DMDd 0.2 s DMDd 0.4 s

Directions 0.38 0.18 0.07 0.02 0.02 0.03
Discussion 0.40 0.13 0.07 0.01 0.02 0.03
Eating 0.37 0.15 0.06 0.03 0.04 0.07
Greeting 0.53 0.17 0.10 0.04 0.03 0.04
Phoning 0.26 0.16 0.07 0.02 0.03 0.03
Posing 0.50 0.19 0.10 0.02 0.03 0.03
Purchases 0.32 0.14 0.08 0.01 0.02 0.02
Sitting 0.57 0.28 0.10 0.02 0.02 0.04
SittingDown 0.74 0.35 0.17 0.01 0.02 0.03
Smoking 0.45 0.14 0.06 0.02 0.02 0.02
Photo 0.54 0.27 0.12 0.02 0.02 0.03
Waiting 0.28 0.12 0.05 0.01 0.03 0.03
Walking 0.27 0.12 0.06 0.03 0.03 0.03
WalkDog 0.48 0.19 0.09 0.03 0.03 0.04
WalkTogether 0.48 0.18 0.08 0.03 0.04 0.04
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3.2. Reconstruction and Anticipation of Motions Using DMD and DMD with Delays

Adding time delays already improves the reconstructibility of motions. In Table 3, we show
the average reconstruction errors of motion clips of 2 s length (100 frames) for the different motion
classes. Already adding 10 time delays yields a dramatic improvement. After adding 60 delays the
reconstruction error drops to less than 10−5 for all motion classes.

Table 3. Comparison of reconstructions errors using Dynamic Mode Decomposition (DMD) and
Dynamic Mode Decomposition with delays for various numbers of delays (10, 20, 30, 40, 50, and 60).
The error measure is the mean squared error on the pose sequences of 2 s length on the different motion
classes of the Human 3.6M dataset for actor #5.

Action DMD DMDd10 DMDd20 DMDd30 DMDd40 DMDd50 DMDd60

Directions 3.20 × 1013 1.11 × 101 5.99 × 10−3 2.56 × 10−5 2.22 × 10−5 1.15 × 10−5 7.61 × 10−6

Discussion 2.20 × 1040 5.02 × 10−4 7.93 × 10−5 3.76 × 10−5 3.39 × 10−5 1.51 × 10−5 9.89 × 10−6

Eating 1.61 × 108 1.07 × 10−4 5.54 × 10−5 3.42 × 10−5 1.90 × 10−5 1.21 × 10−5 7.84 × 10−6

Greeting 2.77 × 107 8.85 × 10−4 9.43 × 10−5 3.57 × 10−5 2.14 × 10−5 1.07 × 10−5 7.80 × 10−6

Phoning 1.70 × 1018 7.55 × 109 1.74 × 108 1.01 × 103 3.30 × 10−3 1.73 × 10−5 7.46 × 10−6

Posing 1.00 × 1050 9.75 × 103 5.03 × 10−4 9.42 × 10−5 1.71 × 10−5 1.42 × 10−5 8.38 × 10−6

Purchases 7.94 × 1044 7.30 × 10−4 6.63 × 10−5 2.52 × 10−5 2.58 × 10−5 1.70 × 10−5 6.78 × 10−6

Sitting 3.45 × 1027 9.67 × 107 2.15 × 108 1.95 × 106 5.61× 100 1.57 × 10−5 3.46 × 10−6

SittingDown 1.09 × 1045 4.64 × 105 1.19 × 10−4 1.41 × 10−5 1.11 × 10−5 6.51 × 10−6 3.34 × 10−6

Smoking 1.32 × 1020 2.45 × 100 1.95 × 10−2 1.15 × 10−4 2.18 × 10−5 1.18 × 10−5 6.70 × 10−6

Photo 7.66 × 1024 1.27 × 100 6.56 × 10−3 3.47 × 10−5 4.04 × 10−5 2.16 × 10−5 8.31 × 10−6

Waiting 3.27 × 1027 6.59 × 101 5.86 × 10−1 2.26 × 10−4 6.55 × 10−5 1.49 × 10−5 4.43 × 10−6

Walking 5.12 × 1013 1.07 × 10−4 7.83 × 10−5 3.57 × 10−5 3.05 × 10−5 2.51 × 10−5 1.51 × 10−5

WalkDog 3.27 × 1019 2.37 × 105 1.68 × 10−4 5.02 × 10−5 2.47 × 10−5 2.42 × 10−5 1.07 × 10−5

WalkTogether 7.34 × 106 7.36 × 10−5 7.03 × 10−5 1.87 × 10−5 3.30 × 10−5 2.28 × 10−5 1.18 × 10−5

The results of the anticipation errors for 0.4 s (20 frames) of anticipation using 2 s (100 frames) as
context length is given in Table 4. The anticipation errors for DMD without delays is large (>1010 for
all motion classes and is not reproduced in the table. In contrast to the reconstruction case, in which
the error monotonically decreases with adding additional delays, the anticipation errors have minima
at a certain number of delays (ranging between 40 and 90 for the different motion classes.

Table 4. Comparison of anticipation errors for 0.4 s (20 frames) using Dynamic Mode Decomposition
with delays for various numbers of delays (10, 20, 40, 50, 60, 70, 80 and 90). The error measure is the
mean squared error on the pose sequences of 2 s length on the different motion classes of the Human
3.6M dataset for actor #5.

Action DMDd10 DMDd20 DMDd40 DMDd50 DMDd60 DMDd70 DMDd80 DMDd90

Directions 1.87 × 104 1.84 × 103 1.03 × 103 1.13 × 103 9.29 × 102 8.46 × 102 8.39 × 102 8.45 × 102

Discussion 2.30 × 103 1.47 × 103 1.38 × 103 1.31 × 103 1.24 × 103 1.23 × 103 1.19 × 103 1.16 × 103

Eating 1.62 × 103 8.71 × 102 6.24 × 102 7.48 × 102 7.29 × 102 7.23 × 102 7.11 × 102 6.93 × 102

Greeting 4.56 × 103 2.86 × 103 2.53 × 103 2.64 × 103 2.51 × 103 2.20 × 103 1.99 × 103 1.99 × 103

Phoning 2.13 × 1013 2.30 × 1013 1.87 × 103 1.25 × 103 9.71 × 102 8.59 × 102 8.12 × 102 8.29 × 102

Posing 2.71 × 108 2.14 × 103 1.90 × 103 1.45 × 103 1.20 × 103 1.06 × 103 1.06 × 103 1.06 × 103

Purchases 2.64 × 103 3.28 × 103 2.79 × 103 2.22 × 103 2.09 × 103 1.51 × 103 1.35 × 103 1.30 × 103

Sitting 6.07 × 1012 5.31 × 1013 2.43 × 103 8.01 × 102 5.88 × 102 5.81 × 102 5.69 × 102 5.64 × 102

SittingDown 1.64 × 1010 1.85 × 103 1.42 × 103 1.31 × 103 1.14 × 103 1.11 × 103 1.09 × 103 1.13 × 103

Smoking 3.83 × 103 9.47 × 102 8.08 × 102 8.30 × 102 8.04 × 102 7.49 × 102 7.65 × 102 7.21 × 102

Photo 1.00 × 104 2.00 × 103 1.50 × 103 1.48 × 103 1.35 × 103 1.22 × 103 1.16 × 103 1.11 × 103

Waiting 1.90 × 106 1.30 × 104 1.27 × 103 1.18 × 103 1.20 × 103 1.19 × 103 1.19 × 103 1.18 × 103

Walking 2.99 × 103 1.72 × 103 1.70 × 103 1.87 × 103 2.06 × 103 2.05 × 103 2.07 × 103 2.12 × 103

WalkDog 8.73 × 1010 4.14 × 103 3.95 × 103 3.68 × 103 3.82 × 103 3.80 × 103 4.05 × 103 4.75 × 103

WalkTogether 1.35 × 103 9.91 × 102 9.93 × 102 1.04 × 103 1.09 × 103 1.11 × 103 1.08 × 103 1.12 × 103
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In Figure 1, we give skeleton visualizations of a walking motion, and the anticipated skeleton
frame for 2 s of input motion length and 0.4 s of anticipation time. Visually the anticipated skeleton
pose is not distinguishable from the ground truth skeleton pose.

Figure 1. Skeleton visualization of a walking motion, and the anticipated frame of the full
skeletonskeleton frame for 2 s of input motion length and 0.4 s of anticipation time. (Left) ground truth
motion, i.e. the red-blue frames are recorded. (Right) initial motion segment and anticipated motion,
the red-blue frames are from the recorded initial segment, the green-orange frame is the skeleton frame
of the 17 markers anticipated by DMDd80.

3.3. Using Different Input Lengths of Motions to Be Anticipated

We compare the previously used setting of having the information of 1 s of motions as inputs
(50 frames) to the one with 2 s of motions as inputs (100 frames), and 4 s of motions as inputs
(200 frames). In Figure 2, we show the MSE for the anticipation of a trained RNN with 1 s of motions
as inputs, the DMDd with 1 s of motions as inputs, DMDd with 2 s of motions as inputs, and DMDd
with 4 s of motions as input (for anticipation times of 0.1 s, 0.2 s, and 0.40 s).

Figure 2. Comparison of anticipation errors for anticipations of 0.1 s (5 frames), 0.2 s (10 frames), and
0.4 s (20 frames). The result of a trained RNN using inputs of 1 s, and DMDd80 on inputs of 1 s, 2 s, and
4 s. The error measure is the average of the mean squared error on the pose sequences on the different
motion classes of the Human 3.6M dataset for actor #5.
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3.4. Reconstruction and Anticipation of Inertial Measurements of Root and End-Effectors

For assessing short term anticipation on the basis of sparse acceplerometer data attached to the
end effectors and the hip we used the marker position data of the Human 3.6M database to have a large
collection of motions and “ground truth data”. As it has already been shown in [29] using the second
time derivatives of marker position data yields reliable estimates for tests using data of accelerometers.

In Figure 3, the results of the anticipation error of just the marker of the right hand is given.
The anticipation error of performing the DMDd80 on the time series of just this one marker is given as
M1F1. The error of this one marker but using DMDd80 on the end effectors and the root is given as
M5F1; the one performing DMDd80 on all 17 markers is given as M17F1. Using second derivatives as
simulation of accelerometer sensor data are given similarly as A1F1, A5F1, and A17F1. Whereas the
addition of a “spatial context” of other markers than the one measured for anticipation in the DMDd
computation has little effect for 0.1 s of anticipation time, there is a considerable effect for 0.2 s of
anticipation time, and a huge effect for 0.4 s of anticipation time: For the simulated accelorometers the
corresponding results are given in Figure 4. The average MSE of the right hand marker’s accelerations
with a value of 553,000 was about four orders of magnitude larger when performing the DMDd only
on its time series compared to the one using the spatial context of the 4 additional ones (left hand, left
and right foot, and root) with a value of 14. Considering more than 4 additional markers had little
additional effect.

Figure 3. Single marker anticipation without and with spatial context. The anticipation errors of 0.1 s
(5 frames), 0.2 s (10 frames), and 0.4 s (20 frames) are given for the anticipation of marker of the right
hand joint using no spatial context (M1F1), all end effector markers and the root position as spatial
context (M5F1), and all 17 markers as spatial context (M17F1). The error measure is the average of the
mean squared error on the marker sequences of the right hand joint on the different motion classes of
the Human 3.6M dataset for actor #5.
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Figure 4. Single marker acceleration anticipation without and with spatial context. The anticipation
errors of 0.1 s (5 frames), 0.2 s (10 frames), and 0.4 s (20 frames) are given for the anticipation of
simulated accelerations of the marker of the right hand joint using no spatial context (M1F1), all end
effector markers and the root position as spatial context (M5F1), and all 17 markers as spatial context
(M17F1). The error measure is the average of the mean squared error on the accelerations marker
sequences of the right hand joint on the different motion classes of the Human 3.6M dataset for actor
#5. Notice that the error is given in logarithmic scale.

4. Conclusion and Future Work

In contrast to some special classes of human motions, on which the direct application of DMD to
the observables of human motion data can be suitable for a good reconstruction of the data [13,30],
these direct applications of DMD to the observables of the motions contained in the Human 3.6M
dataset do not yield good reconstructions, nor suitable short-term anticipations.

Inspired by Takens’ theorem, which emphasizes the usefulness of delays in reconstructing partially
observable, high dimensional dynamics, we have extended DMD with delay vectors of different length
and evaluated the impact on short-term anticipation using a large real world human motion data
base and comparing the performance to a state of the art RNN model. The results show that delays
can drastically improve reconstruction and also anticipation performance, often by several orders of
magnitude, and, in many cases, lead to better anticipation performance than the RNN model (for
anticipation times less than 0.4 s). This is especially remarkable, as our methods do not even regress
to any other motions than the one to be anticipated. Moreover, DMD effectively solves a convex
optimization problem and thus is much faster to evaluate than training RNNs. Additionally, solutions
of convex optimization problems are globally optimal, a guarantee which is absent for trained RNNs.

As already mentioned in the introduction, the presented work was primarily concerned with
modelling the influence of the previous motion on motion anticipation. For modelling the intent of
persons, other methods are required, and neural network based methods might be the ones of choice.
Coming up with a hybrid DMD and neural network based method for mid-term (or even long-term)
motion anticipation will be the topic of future research.

Direct applications of our work are feasible. As our methods are generic and require much less
computational resources than neural network based techniques, they are well suited to be used with
mobile robots and their limited computation power. A short term anticipation of human body poses
might be used for safety checks not to harm any body part of non-static humans when operating close
to them.

Additionally in robotic applications we require safety guarantees. Such assurances are very hard
to give and hard to prove for large non-linear, non-convex-machine learning models. The convex
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and in essence linear DMD methods have been neatly integrated into modern control theory [10].
We therefore advocate the use of DMD in short term scenarios where safety guarantees are paramount.

As a final remark, we mention that linear methods like DMD can foster the interpretability of
results by representing the evolution of motion as a linear combination of “factors”, where factors
can be previous states, delays, or nonlinear features computed from the previous states or delays.
This could prove to be especially useful when machine learning driven systems enter more and
more critical application areas, involving aspects of security, safety, privacy, ethics, and politics. To
address these concerns, and for many application areas involving anticipation of human motions these
concerns play a central role, transparency, explainability, and interpretability become more and more
important criteria for the certification of machine learning driven systems. For a comprehensive review
of the current literature addressing these rising concerns about safety and trustworthiness in machine
learning see [31].
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References

1. Fragkiadaki, K.; Levine, S.; Felsen, P.; Malik, J. Recurrent network models for human dynamics.
In Proceedings of the International Conference on Computer Vision, Santiago, Chile, 13–16 December
2015.

2. Martinez, J.; Black, M.J.; Romero, J. On human motion prediction using recurrent neural networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI,
USA, 12–16 July 2017; pp. 4674–4683.

3. Gui, L.Y.; Wang, Y.X.; Liang, X.; Moura, J.M. Adversarial geometry-aware human motion prediction. In
Proceedings of the European Conference on Computer Vision, Paris, France, 7–13 April 2018.

4. Jain, A.; Zamir, A.R.; Savarese, S.; Saxena, A. Structural-RNN: Deep learning on spatio-temporal graphs. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV,
USA, 27–30 June 2016; PP. 5308–5317

5. Li, C.; Zhang, Z.; Sun Lee, W.; Hee Lee, G. Convolutional sequence to sequence model for human dynamics.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City,
UT, USA, 18–22 June 2018; pp. 5226–5234.

6. Pavllo, D.; Feichtenhofer, C.; Auli, M.; Grangier, D. Modeling Human Motion with Quaternion-based Neural
Networks. Int. J. Comput. Vis. 2019. [CrossRef]

7. Abu Farha, Y.; Richard, A.; Gall, J. When will you do what?–Anticipating temporal occurrences of activities.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City,
UT, USA, 18–22 June 2018; pp. 5343–5352.

http://dx.doi.org/10.1007/s11263-019-01245-6


Sensors 2020, 20, 976 11 of 12

8. Ruiz, A.H.; Gall, J.; Moreno-Noguer, F. Human Motion Prediction via Spatio-Temporal Inpainting.
In Proceedings of the International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019.

9. Gopalakrishnan, A.; Mali, A.; Kifer, D.; Giles, L.; Ororbia, A.G. A neural temporal model for human motion
prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 12108–12117.

10. Kutz, J.N.; Brunton, S.L.; Brunton, B.W.; Proctor, J.L. Dynamic Mode Decomposition; Society for Industrial and
Applied Mathematics: Philadelphia, PA, USA, 23 November 2016.

11. Schmid, P.; Sesterhenn, J. Dynamic Mode Decomposition of numerical and experimental data. J. Fluid Mech.
2008, 656, 5–28 [CrossRef]

12. Tu, J.; Rowley, C.; Luchtenburg, D.; Brunton, S.; Kutz, J. On dynamic mode decomposition: Theory and
applications. J. Comput. Dyn. 2014, 1, 391–421. [CrossRef]

13. Fujii, K.; Kawahara, Y. Supervised dynamic mode decomposition via multitask learning. Pattern Recognit.
Lett. 2019, 122, 7–13. [CrossRef]

14. Fujii, K.; Kawahara, Y. Dynamic mode decomposition in vector-valued reproducing kernel Hilbert spaces
for extracting dynamical structure among observables. Neural Net. 2019, 117, 94–103. [CrossRef] [PubMed]

15. Jovanovic, M.R.; Schmid, P.J.; Nichols, J.W. Sparsity-promoting dynamic mode decomposition. Phy. Fluids
2014, 26, 024103. [CrossRef]

16. Waibel, A.; Hanazawa, T.; Hinton, G.; Shikano, K.; Lang, K.J. Phoneme recognition using time-delay neural
networks. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 328–339. [CrossRef]

17. Peddinti, V.; Povey, D.; Khudanpur, S. A time delay neural network architecture for efficient modeling
of long temporal contexts. In Proceedings of the 16th Annual Conference of the International Speech
Communication Association, Dresden, Germany, 6–10 September 2015; pp. 3214–3218.

18. Huang, X.; Zhang, W.; Xu, X.; Yin, R.; Chen, D. Deeper Time Delay Neural Networks for Effective Acoustic
Modelling. J. Phys. Conf. Ser. 2019, 1229, 012076. [CrossRef]

19. Hochreiter, S.; Schmidhuber, J. LSTM can solve hard long time lag problems. Adv. Neural Infor. Proc. Syst.
1997, 9, 473–479.

20. Bai, S.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for
sequence modeling. arXiv 2018, arXiv:1803.01271.

21. Bai, S.; Kolter, J.Z.; Koltun, V. Trellis Networks for Sequence Modeling. International Conference on Learning
Representations (ICLR). 2019. Available online: https://openreview.net/forum?id=HyeVtoRqtQ (accessed
on 1 February 2020).

22. Brunton, S.L.; Proctor, J.L.; Kutz, J.N. Discovering governing equations from data by sparse identification of
nonlinear dynamical systems. Proc. Natl. Acad. Sci. USA 2016, 113, 3932–3937. [CrossRef] [PubMed]

23. Krake, T.; Weiskopf, D.; Eberhardt, B. Dynamic Mode Decomposition: Theory and Data Reconstruction.
arXiv 2019, arXiv:math.NA/1909.10466.

24. Takens, F. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence; Rand, D.A.,
Young, L.S., Eds.; Warwick 1980, Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany,
1981; Volume 898, pp. 366–381.

25. Sauer, T.; Yorke, J.A.; Casdagli, M. Embedology. J. Stat. Phys. 1991, 65, 579–616. [CrossRef]
26. Ionescu, C.; Papava, D.; Olaru, V.; Sminchisescu, C. Human3.6M: Large Scale Datasets and Predictive

Methods for 3D Human Sensing in Natural Environments. IEEE Trans. Pattern Anal. Mach. Intell. 2014,
36, 1325–1339. [CrossRef] [PubMed]

27. Wolter, M.; Yao, A. Gated Complex Recurrent Neural Networks. In Proceedings of the Conference on Neural
Information Processing Systems, Montréal, QC, Canada, 3–8 December 2018.

28. Mao, W.; Liu, M.; Salzmann, M.; Li, H. Learning Trajectory Dependencies for Human Motion Prediction.
In Proceedings of the International Conference on Computer Vision, Seoul, Korea, 28–29 October 2019.

29. Tautges, J.; Zinke, A.; Krüger, B.; Baumann, J.; Weber, A.; Helten, T.; Müller, M.; Seidel, H.P.; Eberhardt, B.
Motion Reconstruction Using Sparse Accelerometer Data. ACM Trans. Graph. 2011, 30, 18. [CrossRef]

http://dx.doi.org/10.1017/S0022112010001217
http://dx.doi.org/10.3934/jcd.2014.1.391
http://dx.doi.org/10.1016/j.patrec.2019.02.010
http://dx.doi.org/10.1016/j.neunet.2019.04.020
http://www.ncbi.nlm.nih.gov/pubmed/31132607
http://dx.doi.org/10.1063/1.4863670
http://dx.doi.org/10.1109/29.21701
http://dx.doi.org/10.1088/1742-6596/1229/1/012076
https://openreview.net/forum?id=HyeVtoRqtQ
http://dx.doi.org/10.1073/pnas.1517384113
http://www.ncbi.nlm.nih.gov/pubmed/27035946
http://dx.doi.org/10.1007/BF01053745
http://dx.doi.org/10.1109/TPAMI.2013.248
http://www.ncbi.nlm.nih.gov/pubmed/26353306
http://dx.doi.org/10.1145/1966394.1966397


Sensors 2020, 20, 976 12 of 12

30. Takeishi, N.; Kawahara, Y.; Tabei, Y.; Yairi, T. Bayesian Dynamic Mode Decomposition. In Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August
2017; pp. 2814–2821.

31. Everitt, T.; Lea, G.; Hutter, M. AGI Safety Literature Review. In Proceedings of the 27th International Joint
Conference on Artificial Intelligence (IJCAI’18), Stockholm, Sweden, 13–19 July 2018; pp. 5441–5449.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Theoretical Background
	Exact Dynamic Mode Decomposition
	Delay Vectors and Takens' Theorem
	Dynamic Mode Decomposition with Delays (DMDd)

	Results
	Comparison with Neural Network Based Methods
	Reconstruction and Anticipation of Motions Using DMD and DMD with Delays
	Using Different Input Lengths of Motions to Be Anticipated
	Reconstruction and Anticipation of Inertial Measurements of Root and End-Effectors

	Conclusion and Future Work
	References

