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Abstract: This paper proposes a robust and real-time capable algorithm for classification of the first
and second heart sounds. The classification algorithm is based on the evaluation of the envelope
curve of the phonocardiogram. For the evaluation, in contrast to other studies, measurements on
12 probands were conducted in different physiological conditions. Moreover, for each measurement
the auscultation point, posture and physical stress were varied. The proposed envelope-based
algorithm is tested with two different methods for envelope curve extraction: the Hilbert transform
and the short-time Fourier transform. The performance of the classification of the first heart sounds
is evaluated by using a reference electrocardiogram. Overall, by using the Hilbert transform,
the algorithm has a better performance regarding the F1-score and computational effort. The
proposed algorithm achieves for the S1 classification an F1-score up to 95.7% and in average 90.5%.
The algorithm is robust against the age, BMI, posture, heart rate and auscultation point (except
measurements on the back) of the subjects.

Keywords: heart sounds; envelope; hilbert transform; short-time fourier transform; classification;
real-time; auscultation; robust

1. Introduction

Cardiovascular diseases are the leading cause of death worldwide [1,2]. According to [3], this
trend will continue and deteriorate in the future. Apart from the personal consequences, the healthcare
costs are a huge burden for society [3].

One approach to tackle this problem is the daily monitoring of vital parameters, e.g., from the
electrocardiogram (ECG) and phonocardiogram (PCG) (Supplementary Materials) by use of wearable
sensors [4], since abnormal properties can indicate cardiac diseases. For the latter type of signals,
automatic heart sound detection and classification algorithms are under research. The most successful
approaches are the envelope-based, probabilistic-based and the feature-based methods [5].

Feature-based methods, as e.g., proposed by [6–10], extract features such as the Shannon entropy,
discrete wavelet transform (DWT), continuous wavelet transform (CWT) or mel-frequency cepstral
coefficients (MFCC) out of the PCG signal. With the use of classifiers (for example support vector
machine (SVM), twin support vector machine (TWSVM) or deep neural networks (DNN)), it can be
determined, if the features correspond to a heart sound [5]. However, feature-based methods have the
disadvantages of high computational effort and strong dependency on datasets for training [5]. As the
PCG strongly varies between the subjects as well as with the posture, heart rate and auscultation point,
this would require separate data sets for each of these conditions.
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Probabilistic-based methods classify heart sounds by different features, e.g., time-frequency energy
or average distance between two peaks. The hidden-Markov model (HMM) is a well-established
probabilistic-based model for the classification of heart sounds [11]. In [12,13] the HMM, which
Schmidt et al. proposed for the heart sound classification, was improved to the hidden-semi-Markov
model (HSMM) and tested with a huge amount of test persons. Renna et al. used convolutional neural
networks (CNN) together with an underlying HMM in order to outperform the state of the art on heart
sound classification [14]. However, the probabilistic-based methods also have a strong dependency on
datasets for training and the computational effort is similar to that of the feature-based methods.

Envelope-based approaches, in contrast, are characterized by low computational costs and
promise applicability under various situations in the daily life of the subjects without a dedicated
training for these conditions. This robustness is of particular importance, as some pathological
behaviour can only be observed during physical effort [15]. Nevertheless, the influence of the posture,
auscultation point, physical stress and breathing on heart sound classification has not been addressed
so far, to the best of the authors’ knowledge.

Typical methods used for the extraction of the envelope curve are the normalized average Shannon
energy [16,17] or Hilbert transform (respectively short-time modified Hilbert transform (STMHT)) [18].
For the classification of the heart sounds, the peaks in the envelope curve are detected. The distances
between two consecutive peaks are segmented in systoles and diastoles. Therefore, the first heart
sound must be located at the beginning of the systole, whereas the second heart sound at the beginning
of the diastole. The heart sound classification of the envelope-based algorithms use the assumption that
the systole is shorter than the diastole [5,19]. However, at increased heart rates, the systole and diastole
period are roughly equal in time, which can lead to errors in the detection of heart sounds [19,20].
Moreover, additional peaks e.g., noise, split heart sounds, third and forth heart sounds are problematic
for envelope-based approaches [5,21].

In this paper, an enhanced envelope-based algorithm for automatic real-time detection and
classification of the first and second heart sound is presented. The proposed algorithm distinguishes
between increased (>80 bps) and normal heart rates, and in this way deals with the aforementioned
problem that for increased heart rates, the length of the systole and diastole are almost equal.
Furthermore, a real-time capable algorithm is needed for daily monitoring of heart sounds. In
the literature, the autocorrelation (ACF) is well-established for heart rate estimation out of PCG
signals [11,13,20,22]. In 2019, Dia et al. proposed a method for extracting the heart rate from noisy
PCG signals by using the non-negative matrix factorization (NMF) [23]. They applied the NMF on the
spectrogram of a PCG in order to estimate the heart rate. In the proposed paper an approach is made
to keep the overall computational effort as low as possible. This is accomplished by using the ACF for
heart rate estimation and an envelope-based classification algorithm.

For evaluating the proposed algorithm, measurements of the ECG and PCG were conducted on
twelve male subjects with different age and body-mass index (BMI). The posture, the auscultation
point and the physical stress were varied in order to evaluate the robustness of the presented algorithm
in daily routine activities of a subject. Finally, the algorithm for heart sound classification was tested
and evaluated with two different methods for envelope curve extraction, namely the Hilbert transform
(HT) and short-time Fourier transform (STFT) and their corresponding results were compared.

This paper is organized as follows. Section 2 explains the fundamentals of the heart cycle and
the applied signal processing methods of the algorithm. In Section 3, the developed algorithm for
heart sound classification is introduced. The algorithm is tested with two different approaches for
envelope curve extraction, namely the HT and the STFT. The proposed parameters for evaluating and
optimization the performance of the algorithm are presented in Section 4. The process of the data
acquisition, the study population and the used hardware setup is introduced in Section 5. The results
for the classification process for the two different approaches are evaluated, compared and discussed
in Section 6. Finally, in Section 7 the findings are concluded.
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2. Fundamentals

2.1. Heart Cycle and Heart Sounds

The heart cycle consists of the systole and diastole, which correspond to the contraction and
relaxation of the heart, respectively. The beginning of the systole is marked by the beginning of the first
heart sound S1, the diastole starts with the second heart sound S2. Compared to the ECG, the beginning
of S1 is synchronous to the peak of the R-wave (Figure 1). Within the diastole, the third S3 and fourth
S4 heart sound occur. However, the third and fourth heart sound are only heard occasionally during
an auscultation [24]. Since S4 has less diagnostic value, it is neglected in Figure 1 [25]. The frequency
spectrum of heart sounds is approximately 20–200 Hz [21,26]. The ratio of the systole and the diastole
is 1:2 in the resting heart rate and decreases with higher heart rates. The optimal auscultation point is
called Erb’s point. At this point the heart sounds have the highest amplitudes and, therefore, the best
results for auscultation can be achieved. [27]

1st 2nd 3rd

P

Q

R

S
T

SystoleSystole Diastole

Phonocardiogram

Electrocardiogram

Figure 1. Wiggers diagram: the blue curve shows the ECG and the grey curve the related heart sounds
(PCG). A heart cycle is defined as a sequence of a systole and a diastole [27].

2.2. Methods for Envelope Curve Extraction

The PCG is a periodical signal, however it has a non-linear and non-stationary characteristic.
In consequence, the frequency changes over time. For the detection of the heart sounds, the PCG is
transformed to a simpler signal to investigate the intrinsic characteristic.

2.2.1. Hilbert Transform (HT)

The envelope curve of the PCG can be extracted with the HT. This method is appropriate for
narrowband signals like heart sounds and can be computed with low computational costs [28]. The HT
of a real-valued and time-continuous signal x(t) is defined as [29,30]

H (x(t)) =
1
π

∫ ∞

−∞

x(τ)
t− τ

dτ. (1)

The related envelope curve EH(x(t)) of x(t) is computed with

EH(x(t)) =
√

x(t)2 + H (x(t))2. (2)

2.2.2. Short-Time Fourier Transform (STFT)

The Fourier transform (FT) extracts the spectral components of a signal. However, if the signal is
non-stationary, it is not possible to reconstruct the signal in the time domain, since the coherence of
time and frequency is lost. Thus, the STFT is introduced, which solves this problem by computing
the FT only within a limited time window of length b. This includes the assumption that the signal is
stationary during this time window [31]. The window is shifted along the time axis, with an overlap
between the windows, which is denoted as k and given in percent. To restrict the full signal x(t) to the
window interval, x(t) is multiplied by a window function w(τ). The STFT is computed as proposed
in [32]
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S(t, ω) =
∫ ∞

−∞
x(τ)w(τ − t)e−jωτdτ. (3)

Rabiner et al. figured out that a Hamming window fits best for non-stationary audio signals
(like PCGs) [33]. The choice of the window length and the overlap are essential, since the time- and
frequency resolution depend on it. A short window is related to a high time and low frequency
resolution, whereas a long window results in a low time and a high frequency resolution. Therefore, k
and b are optimized for the heart sound classification.

For detecting the heart sounds, the envelope curve is extracted by computing the power-spectral-
density P, which is also called the spectrogram. It is derived out of the Fourier coefficients [31]:

P(S(t, ω)) = |S(t, ω)|2 (4)

For extracting the envelope curve, the maximum of P is determined for each time-step.

3. Algorithm for Heart Sound Classification

The classification algorithm was implemented in MATLAB R2019a. The scheme of the algorithm
for the detection and classification of heart sounds is illustrated in Figure 2. The algorithm sequence
started with the data preprocessing, which includes filtering the raw-data and synchronizing the
PCG and ECG signal. An initial segment of the PCG signals (60 s) of 8s length, which was used for
synchronization (see. Section 3.1.2), was discarded. The remaining PCG signals were divided into
five intervals of equal duration and further analysed separately. In the next step, the envelope curve
was extracted from the filtered PCG signal for both, the HT and STFT. For both envelope curves,
the algorithm was applied separately. The peaks of the envelope curve were detected and the heart
rate was estimated by using the autocorrelation function (ACF). In this way, the proposed algorithm
distinguished between increased (>80 bps) and normal heart rates and classified the heart sounds,
using two different approaches. The single steps of the algorithm are explained in the following.

3.1. Data Preprocessing

3.1.1. Filtering of the Raw-Data

For eliminating the noise, which is caused by respiration, human speech, lung sounds or
movement of the stethoscope, the PCG was filtered. The applied filter was a Butterworth bandpass,
consisting of a low-pass and a high-pass filter, with a passband from f lower to f upper and filter orders
NLP and NHP, respectively. Those parameters were used for the optimization of the algorithm (see
Section 6.1). In Figure 3 a comparison between the raw data and the filtered PCG is illustrated.

3.1.2. Synchronization of the PCG and ECG Signal

As the R-peaks in the ECG are simultaneous with the first heart sounds S1 (see Figure 1), the
R-peaks were used to evaluate the correct detection and classification of S1. For that purpose, the PCG
and ECG were synchronised by use of artefacts induced by knocking three times on the electrodes of
the ECG. Therefore, the first 8 s of the PCG signals were excluded.

3.2. Envelope Curves

The basis of the algorithm was the envelope curve of the PCG, which was extracted by two
different methods, namely the HT and the STFT (Figure 4). The first subplot shows a filtered PCG
signal and the corresponding envelope curve, derived by the HT, is shown in the second subplot. In the
third subplot, the spectral power in dB/Hz is plotted over time and frequency. The heart sounds have
a high power density, so for detecting S1 and S2 the maximum value of the power spectral density is
computed for every time step. These values are shown in the fourth subplot of Figure 4. The resulting
curve was similar to the envelope curve derived by the HT.
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Figure 2. Flowchart of the proposed algorithm for the detection and classification of heart sounds.
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Figure 3. Comparison between the original phonocardiogram (PCG) in black and the bandpass filtered
PCG in red.
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Figure 4. Top: filtered PCG of a reference measurement; second: related envelope curve derived by the
HT; third: spectrogram of the short-time Fourier transform (STFT); bottom: envelope curve derived by
the STFT. Note: the first S2 is split.

3.3. Peak Detection

The detection of the peaks in the envelope curve was realized by computing the gradient.
The conditions for a local maximum are a changing sign of the gradient from positive to negative.
All peaks with an amplitude, which was larger than the defined threshold were considered for the
heart sound classification:

xenv(t) > mean[xenv(t)] · n (5)

where xenv(t) is the envelope curve and n is an arbitrary parameter, which is optimized (see Section 6.1).
Furthermore, it was essential to restrict two maxima within the length of a heart sound. Therefore,

a time window of 150 ms, which approximately corresponded to the maximal length of a heart
sound [5,34], was applied. The global maximum within the window was assigned as the detected
maximum and, therefore, as a potential heart sound. In consequence, the algorithm was able to deal
with split heart sounds.

3.4. Extracting the Heart Rate

As shown in Figure 5 the heart cycle, as well as the length of the systole, can be computed by
using the ACF, which is a robust and well-established tool for the heart rate estimation. Thus, the local
maxima of the ACF have to be extracted. The PCG is a quasi periodic signal and has finite length,
therefore, the local maxima of the ACF are periodic with decaying amplitudes, since the signal is
shifted and in consequence the overlapping of the signals gets smaller.
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Envelope of PCG
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ACF Stepwise:

First Major
Maximum

First Minor
Maximum

Second Minor
Maximum

Second Major
Maximum

Heart Cycle

Systole

Figure 5. Procedure to determine the heart cycle and the systole length from the autocorrelation (ACF).
On the left side the envelope of the PCG is shown. In the respective rows, it is shifted in time. For
reasons of clarity and comprehensibility, dashed lines are not drawn for all heart sounds. On the right
side, the corresponding ACF is shown.

The first major maximum occurs when the original signal and the shifted signal fully overlap.
At the first minor maximum, the second heart sounds of the origin signal and the first heart sounds of
the shifted signal are overlapping, whereas the second minor maximum appears, when the first heart
sounds of the original signal and the second heart sounds of the shifted signal interfere. The second
major maximum appears, when the shifted signal again fully overlaps with the original signal. Thus,
the average heart cycle corresponds to the distance between the first two major maxima. The distance
between the first major maximum and the first minor maximum is extracted and corresponds to the
average length of the systole (SYS). The second major maximum is extracted by a global maximum
search within an interval of 1.5 s after the first major maximum. This corresponds to a heart rate of
40 bps, which is chosen as lower boundary of the heart rate for the proposed algorithm. In [35,36] an
alternative approach for estimating the systolic length is presented. It is stated that the length of a
systole decreases linear with the heart rate (HR). Therefore, the extracted HR of the ACF can be used
to estimate the length of a systole in ms according to the empirical formulas

SYS =

{
−1.14 HR + 371.55 ms if HR > 80 bps

−6.58 HR + 766.44 ms otherwise.
(6)

The two methods for the estimation of the systolic length were both tested for the heart sound
classification. The results of the comparison are presented in Section 6.2. The average HR was the
reciprocal value of the average heart cycle. The average diastole length (DIA) in ms is computed with

DIA =
60× 1000

HR
− SYS. (7)
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The length of a systole is defined as the distance between the beginning of S1 and the beginning
of S2 (see Section 2). However, for the algorithm, the length of a systole is determined by the distance
between the major peaks of S1 and S2. Heart sounds can be split especially during inhalation [37–39]
(like first S1 in Figure 10, or first S2 in Figure 4). In the peak detection process, the global maximum
within the maximal width of a heart sound [34] was detected, which could be located anywhere in that
interval. Therefore, the distance between the first and the second heart sound could differ from the
actual length of the corresponding systole. Therefore, a tolerance of 175 ms was applied on the length
of a systole, which also took into account that the heart cycle can vary from one cycle to another. Thus,
the tolerance of a systolic length was composed of the approx. maximal duration of a heart sound
(150 ms) [34] and the standard deviation of 25 ms for a systolic length [35]. Hence, the minimal and
maximal systolic length are given by

SYSmin = SYS− 175 ms (8)

SYSmax = SYS + 175 ms. (9)

The maximal and minimal length of a diastole are computed with

DIAmax =
60× 1000

HR
− SYSmin (10)

DIAmin =
60× 1000

HR
− SYSmax. (11)

3.5. Peak Classification

For the peak classification, two different approaches were developed for two different heart rate
domains. At normal heart rates, the amplitude of S1 is not necessarily higher than that of S2 [40].
The amplitude of S1 increases approximately linear with the heart rate [41]. Thus, at increased heart
rates, the amplitude of S1 is higher than that of S2 [42]. Therefore, at increased heart rates, the first
and second heart sound can be distinguished based on their different amplitudes. Hence, at increased
heart rates, noise and artefacts are negligible compared to the amplitudes of S1 and S2.

3.5.1. Simple Heart Sound Classification for Increased Heart Rates (>80 bps)

The peaks are classified into S1 and S2 by the condition

∆xi < SYSmax ∧ yi > yi+1, (12)

where ∆xi is the i-th distance between two detected peaks and yi is the amplitude of the i-th peak.
Therefore, the peak i is classified as S1 and i + 1 as S2, respectively (Figure 6a). If one S2 is not detected,
the following condition will classify the peak as S1 (Figure 6b):

∆xi > SYSmax (13)

3.5.2. Complex Heart Sound Classification for Normal Heart Rates (<80 bps)

For normal heart rates, the simple algorithm has to be extended by additional steps. It is necessary
that peaks (e. g. caused by S3, S4 or artefacts), which would lead to wrong heart cycles, have to be
neglected. Those extra peaks lead to invalid diastoles and have to be removed before the classification
of the peaks. Therefore, the following condition is used:

SYSmin < ∆xi-1 < SYSmax ∧ ∆xi < DIAmin ∧ SYSmin < ∆xi+2 < SYSmax (14)
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If this condition is fulfilled, the right peak of ∆xi is neglected (Figure 7a). For the special case that
no S2 is detected in ∆xi+2 and the condition

DIAmin < ∆xi-2 < DIAmax ∧ SYSmin < ∆xi−1 < SYSmax ∧ ∆xi < DIAmin (15)

is true, the peak is removed as shown in Figure 7b.

Valid Systole

Valid Systole Valid SystoleValid Diastole

∆xi∆xi−1

∆xi
a)

b)

Figure 6. Heart sound classification for increased heart rates: The S1 have always higher amplitudes
than the S2. (a) No S2 is missing; (b) One S2 is missing (dashed lines).

Valid Systole Valid Systole

Valid Systole Valid Heart CycleValid Diastole

a)

b)

∆xi−1 ∆xi ∆xi+1 ∆xi+2

∆xi+2∆xi+1

Valid Diastole

∆xi∆xi−1

Figure 7. Heart sound classification for normal heart rates: (a) One extra sound (red) exists within the
diastole and no S2 is missing; (b) One extra sound (red) exists within the diastole and one S2 is missing
(dashed lines).

The peaks, which are removed by applying the aforementioned condition, lead to an invalid
diastole length. However, if one extra-peak occurs shortly before S1, it can not be removed, since the
corresponding length of the diastole is valid. Therefore, in the next step the remaining peaks between
two valid systoles are removed with
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SYSmin < ∆xi-1 < SYSmax ∧ DIAmin < ∆xi < DIAmax ∧ SYSmin < ∆xi+2 < SYSmax (16)

(see Figure 8a). In the case that one S2 is missing and the following condition

SYSmin < ∆xi-1 < SYSmax ∧ DIAmin < ∆xi < DIAmax ∧ SYSmin < ∆xi+3 < SYSmax (17)

is true, the right peak of the ∆xi is removed (Figure 8b). In the case that two consecutive S2 are missing
and the following condition

∆xi > SYSmax ∧ ∆xi+1 > SYSmax (18)

is true, the corresponding peaks are classified as S1. Due to the higher deviation of the diastolic length
(heart rate variability), the algorithm performance is more stable by considering the systolic length for
the aforementioned condition.

The remaining distances ∆x are correct systoles, diastoles and heart cycles, therefore, with the
information of the derived heart rate, systolic and diastolic length, the corresponding peaks can be
classified into S1 and S2.

Valid Systole

Valid Systole Valid Heart CycleValid Diastole

a)

b)

∆xi−1 ∆xi ∆xi+1 ∆xi+2

∆xi+2∆xi+1∆xi∆xi−1

Valid SystoleValid Diastole

Figure 8. Heart sound classification for normal heart rates: (a) One extra sound (red), which is near to
an S1, exists within the diastole and no S2 is missing; (b) One extra sound (red), which is near to an S1,
exists within the diastole and one S2 is missing (dashed lines).

4. Statistical Evaluation and Optimization

For the first heart sounds, the peaks of the R-wave out of the ECG are used as a reference, whereas
the classification of the second heart sounds is not evaluated with the ECG. Therefore, the performance
of the classification algorithm is statistically evaluated in terms of the sensitivity, specificity, accuracy,
precision and the F1-score only for S1. These parameters are defined as
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Sensitivity = Recall =
tp

tp + f n
(19)

Specificity =
tn

f p + tn
(20)

Accuracy =
tp + tn

tp + tn + f p + f n
(21)

Precision =
tp

tp + f p
(22)

F1-score =
2× Recall× Precision

Precision + Recall
. (23)

For evaluating the proposed algorithm, a tolerance window TW, which was applied around the
peak of the R-wave, was introduced. The window was necessary, since the synchronization of the
PCG and ECG was only an approximation and the maximum of a heart sound did not always occur
at the beginning of the corresponding heart sound. Taking the maximal duration of a heart sound in
consideration, a tolerance window of 150 ms was appropriate [34,43]. If a peak, which was classified
as S1, lay within the window, the heart sound was correct. f p is the number of wrongly classified S1

peaks, which were outside of TW and f n are correct heart sounds, which were not detected by the
algorithm. tp is the number of correctly classified S1 peaks and tn is the number of correctly as false
classified S1 peaks.

All performance parameters were computed for all measurements for both, the HT and the STFT.
The classification of the heart sounds was optimized to achieve the highest F1-score. In case of a high
heart rate, the threshold n for peak detection was optimized separately. The results of the optimization
process can be found in Section 6.1.

5. Data Acquisition

5.1. Measurement Devices and PC Setup

For recording the PCG, the electronic stethoscope 3MTM Littmann R© model 3200 was used. The
recorded data was sampled with 4 kHz. Chen et al. proposed that sampling rates above 5 kHz are
not sufficient for heart sound recording, since for higher sampling rates, irrelevant sound components
can be included [7]. The integrated microphone of the stethoscope amplifies frequencies between
20–200 Hz, since heart sounds are within this frequency range (see Section 2.1).

The classification of the first heart sounds was validated by an ECG. For this purpose a COR12
ECG device from Corscience was used, which has 12 channels and a sampling rate of 500 Hz. The
classification algorithm was performed in MATLAB R2019a with a PC with an Intel R© Xeon R© E-2136
Processor at 3.3 GHz and 32 GB RAM. The computational time of the algorithm for the heart sound
detection and classification was assessed for both, the HT and STFT.

5.2. Study Population and Protocol

For the study the PCG and ECG from 12 healthy male subjects, with no known heart diseases,
were recorded. Their ages varied in a wide range between 24 and 68. An overview of the probands
is given in Table 1. For every person, 10 different measurements were conducted. The duration of
each measurement was 60 s. If nothing else was indicated, the measurement was conducted at Erb’s
point while the test person was sitting. The different types of measurements are listed in Table 2.
As the first measurement was conducted under optimal conditions it serves as reference. For the other
measurements the posture, physical stress and auscultation position were varied.
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Table 1. Overview of the subjects.

Proband No. Age in a Weight in kg Body Height in m BMI in kg/m2

1 (reference) 26 78 1.80 24.1
2 68 92 1.78 29.0
3 28 82 1.85 24.0
4 27 79 1.88 22.4
5 24 75 1.72 25.4
6 26 68 1.78 21.5
7 29 82 1.82 24.8
8 37 75 1.80 23.1
9 55 87 1.74 28.7

10 38 72 1.91 19.7
11 34 80 1.71 27.4
12 28 80 1.83 24.2

Average 35 24.9

Table 2. Study protocol.

Meas. No. Action Breathing Posture Auscultation Point

1 rest normal sitting Erb’s point
2 rest deep sitting Erb’s point
3 rest normal lying on back Erb’s point
4 rest normal lying on stomach Erb’s point
5 rest normal lying on right side Erb’s point
6 rest normal lying on left side Erb’s point
7 rest normal sitting sternum
8 rest normal sitting centre of the back
9 rest normal sitting left side of the back

10 after 5 min of sport deep sitting Erb’s point

6. Results and Discussion

6.1. Results of Optimization

The performance of the presented algorithm was optimized regarding the F1-score. The values
of the optimized parameters are listed in Table 3. The threshold parameters nnormal and nhigh were
greater for the HT, since through the averaging effect of the STFT, its resulting envelope curve was
smoother. The cut-off frequencies of the HT and STFT for the low-pass filter were 40 Hz and 20 Hz,
respectively, and the cut-off frequencies of the HT and STFT for the high-pass filter were 190 Hz and
120 Hz, respectively. The filter for both, the HT and STFT, were from the order of 10 for the low-pass
filter and 4 for the high-pass, respectively.

The filter suppressed noise, which was caused by human voice, respiration or lung sounds.
The fundamental frequency of human voice is approximately 120 Hz for male and 190 Hz for female,
respectively [44]. Therefore, the applied filter eliminated the majority of human voices. However, no
study about the influence of speaking during the measurements was made. The frequency range of
lung sounds and respiration is approximately 60–1200 Hz [45,46]. Thus, lung sounds and breathing
were partly suppressed by the filtering. However, artefacts from the lung could not be fully eliminated,
since heart sounds occurred within that frequency range. The cut-off frequencies were the result of the
optimization process, regarding the average F1-score.
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Table 3. Optimization results for of the heart sound classification.

Parameter STFT HT

Threshold parameter normal heart rate nnormal 1 1.9
Threshold parameter increased heart rate nhigh 0.6 1.3
Lower cut-off frequency in Hz flower 20 40
Upper cut-off frequency in Hz fupper 120 190
Filter order high-pass NHP 4 4
Filter order low-pass NLP 10 10
Window-size STFT in Samples b 128 -
Overlap ratio STFT in % k 96.875 -

6.2. Comparison of the Two Approaches for Systolic Length Estimation

As introduced in Section 3, two different methods were considered for the systolic length
extraction: based on the ACF and based on the empirical formula 6. For each of these methods
and for both, the HT- and STFT-based approach, F1-scores were calculated. The results for these
combinations are shown in Figure 9. The proposed algorithm achieves a better performance by using
the empirical formula for the systolic length estimation. Therefore, in the following the algorithm is
evaluated by using the empirical approach.
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Figure 9. Comparison of the ACF-based and the empirical-based method for the systolic length
estimation: the average F1-score is plotted over the ten conducted measurements.

6.3. Results of Heart Sound Classification

The respective average values of the performance parameters are listed in Table 4. Furthermore,
the average performance parameters were calculated without the measurements 4, 8 and 9, since the
reference ECG was noisy for the measurement 4 and the measurements at the back (8 and 9) had a
noisy PCG. The evaluation results for the F1-score for the single probands and measurements are
shown in Table 5 and Table 6. Measurement 1 was the reference for the other measurements. It showd
the best results, since it was conducted under optimal circumstances at Erb’s point.
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Table 4. Average values of the evaluation parameters (in %) for the single measurements.

ø Sensitivity ø Specificity ø Accuracy ø Precision ø F1-Score
Measurement No. HT STFT HT STFT HT STFT HT STFT HT STFT

1 (reference) 95.1 92.5 99.2 99.0 98.5 97.9 96.5 95.3 95.7 93.8
2 88.8 85.5 98.8 98.4 97.1 96.2 93.7 91.5 91.0 88.3
3 87.0 80.0 98.7 97.3 96.7 94.5 92.5 84.9 89.5 82.3
4 62.5 59.8 95.5 94.8 85.0 83.9 78.4 74.9 67.3 64.2
5 88.9 83.0 98.4 97.8 96.9 95.4 92.0 88.7 90.3 84.9
6 90.9 87.3 99.0 98.3 97.6 96.6 94.6 91.0 92.7 89.0
7 76.5 65.2 96.7 94.4 93.3 89.4 82.4 68.9 79.2 66.2
8 17.6 18.6 81.8 81.6 71.6 71.5 16.3 16.9 16.5 16.5
9 18.6 15.9 81.2 85.0 71.1 73.9 17.9 19.0 17.2 15.2
10 95.9 86.7 98.4 98.5 97.9 95.9 94.6 94.1 95.2 89.0

ø 72.2 67.5 94.8 94.5 90.6 89.5 75.9 72.5 73.5 68.9

ø without 4, 8 and 9 89.0 82.9 98.5 97.7 96.9 95.1 92.3 87.8 90.5 84.8

Table 5. F1-score (in %) of the classified PCG by using the HT.

Proband No. 1 2 3 4 5 6 7 8 9 10 11 12

Meas. No. 1 94.6 100.0 96.8 92.9 94.4 96.2 100.0 98.3 96.9 82.8 95.8 100.0
2 92.3 99.2 97.4 90.6 96.6 92.3 74.1 92.7 98.1 90.9 73.0 95.2
3 91.1 89.5 100.0 74.2 86.3 87.5 95.4 91.7 77.7 94.6 94.0 92.4
4 50.0 78.0 95.4 69.1 70.1 20.8 80.0 24.8 96.1 93.5 41.2 88.5
5 87.3 94.0 91.3 94.8 84.9 96.4 99.1 86.5 91.4 97.5 81.6 79.3
6 95.2 88.3 96.0 95.1 80.0 95.6 95.9 84.2 96.6 99.2 94.3 91.8
7 85.1 70.0 97.0 82.8 97.3 81.7 76.6 89.7 49.6 86.4 79.6 54.9
8 15.2 14.0 10.4 15.2 12.7 13.5 30.5 15.9 28.6 19.6 15.3 7.69
9 9.76 15.5 11.6 14.4 16.8 10.5 3.42 25.2 19.0 41.4 20.5 18.8

10 100.0 94.3 98.0 91.4 96.4 99.4 96.2 97.9 86.9 97.6 86.2 97.8

ø 72.1 74.3 79.4 72.1 73.5 69.4 75.1 70.7 74.1 80.4 68.2 72.6

ø without 4, 8 and 9 92.2 90.8 96.6 88.9 90.8 92.7 91.0 91.6 85.3 92.7 86.4 87.4

Table 6. F1-score (in %) of the classified PCG by using the STFT.

Proband No. 1 2 3 4 5 6 7 8 9 10 11 12

Meas. No. 1 87.5 100.0 95.2 89.1 87.4 92.1 100.0 97.4 93.8 85.7 97.5 100.0
2 95.1 96.1 93.9 92.5 90.4 93.3 60.4 92.7 96.3 82.8 75.9 90.2
3 91.1 94.8 100.0 57.1 71.0 82.2 87.0 43.8 84.2 90.1 94.0 92.4
4 49.3 82.3 95.4 74.3 68.1 15.4 83.6 20.4 89.0 96.8 28.0 67.3
5 60.7 72.2 76.2 91.7 88.7 92.0 99.1 86.5 85.5 96.7 85.1 85.0
6 94.2 82.2 81.2 95.1 57.9 96.6 96.7 87.0 95.5 99.2 87.6 95.2
7 85.1 63.8 96.0 68.0 94.5 56.5 87.6 65.5 19.6 73.1 47.5 37.3
8 15.5 5.97 15.8 17.6 15.9 11.4 20.0 21.9 32.9 23.7 9.62 7.59
9 11.3 17.7 3.33 20.4 17.5 6.06 8.0 3.39 32.2 24.5 23.4 14.0

10 98.9 94.9 99.0 80.0 60.7 100.0 95.1 97.9 86.8 95.9 63.6 95.7

ø 68.9 71.0 75.6 68.6 65.2 64.6 73.8 61.7 71.6 76.3 61.2 68.5

ø without 4, 8 and 9 87.5 86.3 91.6 81.8 78.7 87.5 89.4 81.5 80.2 89.1 78.7 85.1
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6.4. Influence of Different Measurement Conditions

6.4.1. Varying the Auscultation Point

The measurements 1, 7, 8 and 9 were conducted during a sitting position and in the resting
state. Only the auscultation point was varied. As the results in Tables 4–6 suggest, the F1-score was
best for Erb’s point (Measurement 1) as expected, whereas measurement 7 was performed at the
sternum. The average F1-score was lower compared to the reference measurement 1 and varied largely
between the single subjects. The reason for that performance is the lower amplitude of the heart
sounds (see Section 2.1). Therefore, the signal-to-noise ratio suffered and noise could be misinterpreted
as heart sounds.

The results for measurements 8 and 9, which were performed on the back of the subjects, provided
poor results for heart sound classification. The reason for that is the weak acoustic signal, which is
attenuated by the lunges and the backbone. In consequence, it is not advisable to place a wearable
system for heart sound monitoring on the back, as suggested in [47]. Therefore, the average of the
evaluation parameters was calculated without the measurements 8 and 9 as well.

6.4.2. Varying the Posture

The measurements 1, 3, 4, 5 and 6 were conducted with different postures of the probands.
Measurement 3, 5 and 6, where the probands were lying on the back, lying on the right side and lying
on the left side, showed similar values regarding the performance parameters. However, compared to
measurement 1, the results were slightly worse.

The results for measurement 4 were poor, since during the measurement the subjects were lying
on the stomach. This led in some cases to noise in the ECG, which was caused by movement of the
electrodes. In consequence, the reference signal was distorted and the evaluation of the classification
performance suffered. However, the PCG was not affected.

6.4.3. Varying the Physical Stress

Measurement 2 was conducted with deep breathing and measurement 10 after 5 minutes of sport,
respectively. This reflects physical stress situations. The results of measurement 10 show that the
classification of heart sounds worked well for increased heart rates. The average ratio of the amplitudes
of S1 and S2 for increased heart rates was 1.8 for the STFT and 3.4 for the HT. Therefore, S1 could be
distinguished easily from noise as well as from S2. Moreover, the results of measurement 2 showed
that deep breathing hardly affected the classification algorithm.

6.4.4. Influence of BMI

The probands were arranged according to their BMI and, therefore, divided into two groups of
equal size. Group “low BMI” consists of proband 1, 3, 4, 6, 8 and 10 and group “high BMI” of 2, 5, 7, 9,
11 and 12. The average F1-score without the measurements 4, 8 and 9 was computed for both the HT
and STFT and compared for both groups (see Table 7). The results for the group “high BMI” showed
that the average F1-score was approximately 4% worse than the group “low BMI”, regarding for both,
the HT and STFT, since the heart sounds were more attenuated for higher BMIs. In consequence, the
algorithm was quite robust towards a variation of the BMI, for envelope extraction for both the HT
and STFT.

Table 7. Comparison of the average F1-score (in %) of the two groups with low and high BMI.

Group: low BMI high BMI

HT 92.5 88.6
STFT 87.5 83.1
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6.5. Comparison of HT and STFT

Overall, the average F1-score by using the HT for extracting the envelope curve was approx. 5%
better than those with the STFT. Due to the fact that the STFT was computed within a time window, the
time resolution was limited, since an appropriate frequency resolution was needed. In consequence,
the number of samples was reduced and, therefore, the accuracy of the derived length of the systoles
was smaller, resulting in incorrectly removed S1. This effect was even increased in case of split S1.

Furthermore, the classification for S2 showed that the HT performed better. This is because the
STFT was computed within a time interval, which led to an averaging of the amplitudes. Therefore, in
some cases the maximal power spectral density was reduced, which was used as the envelope curve
for the classification. An exemplary issue is shown in Figure 10. The fourth and fifth S2 were not
detected by using the STFT for envelope curve extraction.

HT

STFT

R-wave

S1

S2

R-wave R-wave R-wave R-wave

S1 S1 S1 S1

S1 S1 S1 S1 S1

S2 S2 S2 S2

S2 S2 S2

S2S2

Figure 10. Example of classified heart sounds, where the detection of S2 failed in some cases for the
STFT (red). The reference ECG is shown in green.

Regarding the goal of a wearable sensor solution for daily health monitoring, the computational
cost and time were essential. A comparison between the computational effort of the HT and STFT
is given in Table 8. This means that a 60 s PCG signal was classified within approximately 140 ms
for the HT and 480 ms for the STFT, respectively. In consequence, both methods can be regarded as
real-time capable, but nevertheless, the algorithm based on the HT performed about 3 times faster
than the STFT.

Table 8. Comparison of the computational effort for Hilbert transform (HT) and STFT.

Computational for All Average for
Time Measurements 60 s Measurement

HT 16.8 s 140 ms
STFT 57.6 s 480 ms

Wearable systems have limited computational capacity as well as power supply. Thus, it is
essential to use a computational low complex algorithm for the real-time monitoring of daily life
activities. Hence, the HT can be ranked as more appropriate for this purpose compared to the
STFT approach.

6.6. Comparison with other Approaches

In the following, the performance parameters for the S1 classification of the proposed algorithm
are compared to other algorithms for the heart sound classification (see Table 9). As aforementioned
in Section 1, there are three well-established groups of algorithms for heart sound classification:
the feature-based, probabilistic-based and envelope-based methods. Therefore, the performance
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of algorithms, which represent the state of the art, was compared to the presented algorithm ones.
However, it has to be noted that the performance parameters could not be directly compared to each
other, since the proposed data set differed from the others. Therefore, the reference measurement of the
proposed data set was used, since it was conducted under optimal conditions like it is normally applied
in the literature. Furthermore, no standards for measurements and evaluation of the algorithms exist,
which led to non-uniform performance parameters. Since the performance of the presented algorithm
is best by using the HT, it was used for the comparison.

Table 9. Comparing the performance of the proposed algorithm with the state of the art heart sound
classification algorithms. The performance parameters S, P, Acc and F1 correspond to the sensitivity,
precision, accuracy and F1-score, respectively. The performance parameters are only related to S1, if not
stated otherwise in the notes.

Reference Year Database Study Performance in % Notes(Methods) Population S P Acc F1

Envelope-based:

2020

real-time capable
Proposed 120 meas. 12 healthy 95.1 96.5 98.5 95.7 reference

Algo. (HT) à 60 s subjects (89.0) (92.3) (96.9) (90.5) (average of meas. with
diff. physio. conditions)

[18] 2014 600 s total 45 healthy – – 98.5 – short records(STMHT) subjects

[16] 2014 80 records 6 healthy 96 95 – – meas. in acoustic
(S-Transform) à 6–12 s subjects chamber, short records

Probabilistic-based:

[12] 2016 10,172 s 112 – – – 97.0 healthy and path.
(HSMM) total subjects subjects, large database

[39]
2018 – 15 healthy – – 76.9 –

real-time capable,
(DWT+CWT smartphone platform,

+HMM) subjects parameters for S1 and S2

[14] 2019 1–35 s 135 95.7 95.7 93.7 – healthy and path. subj.,
(CNN+HMM) records subjects parameters for S1 and S2

Feature-based:

[7]
2017

87 6
– – 91.1 –

small study population,
(DNN heart subjects short records,

+MFCC) sounds (test) parameters for S1 and S2

[9]
2018 1000 records – 98.2 – 97.9 99.7

healthy and path. subj.,
(SVM+MFCC unspecif. study pop.,

+DWT) parameters for S1 and S2

[6]
2019

409
– 98.6 99.4 98.6 99.0

healthy and path. subj.,
(MDS records unspecif. study pop.,

+TWSVM) (PhysioNet) parameters for S1 and S2

The database size in the literature is in most cases very small compared to the proposed one
(60× 120 s). Only Springer et al. used a larger database than the proposed one [12]. Furthermore, in
many approaches very short recordings are included in their database, for example ~1 s by Renna et
al. [14], or in total 87 heart sounds by Chen et al. [7]. Moreover, many researchers use a database like
PhysioNet and do not declare their study population or recording length [6,9,39]. Other researchers
have conducted their measurements under optimal conditions (apart from [39]) and no variation of
the posture, auscultation point, physical stress and breathing was considered within their studies.
Furthermore, the proposed study population includes only healthy subjects, in [16,18,39] this was also
the case.
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The feature-based methods have the best performance parameters [6,9]. However, since feature-
based methods have a strong dependency on their training datasets and a high computational effort,
they are not the favourable methods for a low complex wearable sensor platform to monitor daily
activities in real-time. This holds also true for probabilistic-based methods presented in [12,14].
However, in [39] a real-time capable probabilistic-based method was realized with a low-cost
smartphone platform. The performance, however, is poorer as the state of the art suggests, including
the proposed one.

Even the average performance for different physiological conditions (e.g., physical stress, posture,
BMI, auscultation point, breathing) of the presented algorithm is quite good compared with the
state of the art. In consequence, the developed algorithm is robust and appropriate for a wearable
sensor platform.

The presented algorithm is not able to deal with more than one extra peak, nor is able to classify
pathological sounds (e.g., murmur). Thus, the performance suffers, if more than one detected peak
exists within a diastole. For the probabilistic-based methods even one extra peak can be problematic,
since it can lead to wrong states in their sequence.

7. Conclusions

This paper presents an enveloped-based and real-time capable algorithm for the detection and
classification of the heart sounds S1 and S2 in phonocardiograms (PCG). The peaks of the envelope
curve were classified and the found S1 were compared to the reference ECG. The algorithm was tested
using the Hilbert transform (HT) and short-time Fourier transform (STFT) as methods to extract the
envelope curve out of the PCG. The results for the heart sound classification suggested that using
the HT is more favourable, due to the better performance parameters and lower computational effort.
The developed algorithm is robust against the variation of the posture, heart rate, BMI, age and
auscultation point, except for the back, since the PCG signals are attenuated by the lungs and backbone.
As expected, the auscultation at Erb’s point provides the best result followed by the sternum. The
posture and physical effort hardly effect the performance of the proposed algorithm for heart sound
classification. Furthermore, the algorithm is adapted in order to deal with additional peaks caused by
noise and an equal length of the systole and the diastole by an increased heart rate, respectively. Thus,
the proposed measurements reflect and predict daily situations of the probands.

In the future, the envelope curves of the HT and STFT will be combined in order to increase the
accuracy of the classification, since both envelope curves contain different information. Moreover,
the heart rate could be estimated with the non-negative matrix factorization (NMF) out of the
spectrogram, as suggested by [23]. Therefore, the algorithm with the STFT approach could be
improved. Furthermore, the presented algorithm will be combined with activity classification, as
proposed in [4]. For this purpose, the computational effort of the proposed algorithm must be reduced
by an optimization of the implemented code as well as a reduction of the sampling rate of the PCG.
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Abbreviations

The following abbreviations are used in this manuscript:

ACF Autocorrelation function
BMI Body-mass index
CNN Convolutional neural network
CWT Continuous wavelet transform
DNN Deep neural network
DWT Discrete wavelet transform
ECG Electrocardiogram
FT Fourier transform
HMM Hidden-Markov model
HSMM Hidden-semi Markov model
HT Hilbert transform
MDS Multidimensional scaling
MFCC Mel-frequency cepstral coefficients
NMF Non-negative matrix factorization
PCG Phonocardiogram
Si i-th heart sound
STFT Short-time Fourier transform
STMHT Short-time modified Hilbert transform
SVM Support vector machine
TWSVM Twin support vector machine
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