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Abstract: Deep Learning (DL), a successful promising approach for discriminative and generative
tasks, has recently proved its high potential in 2D medical imaging analysis; however, physiological
data in the form of 1D signals have yet to be beneficially exploited from this novel approach to
fulfil the desired medical tasks. Therefore, in this paper we survey the latest scientific research on
deep learning in physiological signal data such as electromyogram (EMG), electrocardiogram (ECG),
electroencephalogram (EEG), and electrooculogram (EOG). We found 147 papers published between
January 2018 and October 2019 inclusive from various journals and publishers. The objective of this
paper is to conduct a detailed study to comprehend, categorize, and compare the key parameters
of the deep-learning approaches that have been used in physiological signal analysis for various
medical applications. The key parameters of deep-learning approach that we review are the input
data type, deep-learning task, deep-learning model, training architecture, and dataset sources. Those
are the main key parameters that affect system performance. We taxonomize the research works
using deep-learning method in physiological signal analysis based on: (1) physiological signal data
perspective, such as data modality and medical application; and (2) deep-learning concept perspective
such as training architecture and dataset sources.

Keywords: deep-learning; machine learning; physiological signals; 1D signal data analysis

1. Introduction

Deep Learning has succeeded over traditional machine learning in the field of medical imaging
analysis, due to its unique ability to learn features from raw data [1]. Objects of interest in medical
imaging such as lesions, organs, and tumors are very complex, and much time and effort is required
to extract features using traditional machine learning, which is accomplished manually. Thus, deep
learning in medical imaging replaces hand-crafted feature extraction by learning from raw input data,
feeding into several hidden layers, and finally outputting the result from a huge number of parameters
in an end-to-end learning manner [2]. Therefore, many research works have benefited from this novel
approach to apply physiological data to fulfil medical tasks.

Physiological signal data in the form of 1D signals are time-domain data, in which sample data
points are recorded over a period of time [3]. These signals change continuously and indicate the health
of a human body. Physiological signal data categories fall into characteristics such as electromyogram
(EMG), which is data regarding changes to skeleton muscles, electrocardiogram (ECG), which is data
regarding changes to heart beat or rhythm, electroencephalogram (EEG), which is data regarding
changes to the brain measured from the scalp, and electrooculogram (EOG), which is data regarding
changes to corneo-retinal potential between the front and the back of the human eye.

Sensors 2020, 20, 969; doi:10.3390/s20040969 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-1232-0610
http://dx.doi.org/10.3390/s20040969
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/4/969?type=check_update&version=2


Sensors 2020, 20, 969 2 of 39

Convolutional neural network (CNN) is the most successful type of deep-learning model for 2D
image analysis such as recognition, classification, and prediction. CNN receives 2D data as an input
and extracts high-level features though many hidden convolution layers. Thus, to feed physiological
signals into a CNN model, some research works have converted 1D signals into 2D data [4]. Therefore,
in this paper we survey 147 contributions which have found highly accurate and significant results of
physiological signal analysis using a deep-learning approach. We overview and explain these solutions
and contributions in more detail in Section 3, Section 4, and Section 5.

We collected papers via search engine PubMed with keywords combining “deep learning”
and a type of physiological signal such as “deep learning electromyogram emg”, “deep learning
electrocardiogram ecg”, “deep learning electroencephalogram eeg”, and “deep learning
electrooculogram eog” [5]. We found 147 papers published between January 2018 and October
2019 inclusive from various journals and publishers. As illustrated in Figure 1a, the works on EMG,
ECG, and EEG using a deep-learning approach have rapidly increased in 2018 and 2019, while EOG
and a combination of those signals are limited. Within the works on EEG, there has been an increase by
13, from 33 works in 2018 to 46 works in 2019. As shown in Figure 1b, among the four data modalities of
physiological signals, EEG has been conducted in 79 works on a variety of applications. For ECG, there
have 47 works conducted. Fifteen works apply to EMG, 1 work to EOG, and 5 works to a combination
of those signals.
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Figure 1. Statistics for papers using a deep-learning approach in physiological signal data grouped by:
(a) year of publication; and (b) data modality.

There are many papers that prove that the deep-learning approach is more successful than
traditional machine learning for both implementation and performance. However, this paper does
not aim to study the comparison between them. In this paper, we review some recent methods of
deep learning in the last two years that analyze the physiological signals. We only compare the key
parameters within deep-learning methods such as input data type, deep-learning task, deep-learning
model, training architecture, and dataset sources which are involved in predicting the state of hand
motion, heart disease, brain disease, emotion, sleep stages, age, and gender.

2. Related Works

There are two types of scientific survey in deep-learning approaches regarding physiological
signal data for healthcare application between January 2018 and October 2019 inclusive.

The first is oriented to medical fields such as a taxonomy based on medical tasks (i.e., disease
detection, computer-aided diagnosis, etc.), or a taxonomy based on anatomy application areas (i.e., brain,
eyes, chest, lung, liver, kidney, heart, etc.). Faust et al [6] collected 53 research papers regarding
physiological signal analysis using deep-learning methods published from 2008 to 2017 inclusive.
This work initially introduced deep-learning models such as auto-encoder, deep belief network,
restricted Boltzmann machine, generative adversarial network, and recurrent neural network. Then, it
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categorized the papers based on types of physiological signal data modalities. Each category points
out the medical application, the deep-learning algorithm, the dataset, and the results.

The second is oriented to deep-learning techniques such as a taxonomy based on deep-learning
architectures (i.e., AE, CNN, RNN, DBN, GAN, U-Net, etc.), or the workflow of deep-learning
implementation for medical application. Ganapathy et al [3] conducted a taxonomy-based survey on
deep learning of 1D biosignal data. This work collected 71 papers from 2010 to 2017 inclusive. Most of
the collected papers were published on ECG signals. The goal of the survey was initially to review
several techniques for biosignal analysis using deep learning. Then, it classified deep-learning models
based on origin, dimension, type of biosignal as an input data, the goal of application, dataset size,
type of ground-truth data, and learning schedule of the network. Tobore et al [7], pointed out some
biomedical domain considerations in deep-learning intervention for healthcare challenges. It presented
the implementation of deep learning in healthcare by categorizing it into biological system, e-health
record, medical image, and physiological signals. It ended by introducing research directions for
improving health management on a physiological signal application.

3. Physiological Signal Analysis and Modality

Physiological signal analysis is a study estimating the human health condition from a physical
phenomenon. There are three types of measurement to record physiological signals: (1) reports;
(2) reading; and (3) behavior [8]. The “report” is a response evaluation of questionnaire from subjects
who participants in rating their own physiological states. The “reading” is recorded information
that is captured by a device to read the human body state such as muscle strength, heartbeat, brain
functionality, etc. The “behavior” measurement records a variety of actions such as movement of the
eyes. In this paper, we did not review the “report” measurement because the response of “report”
is a more biased, less precise question and has broader diversity of question scale. We focus on the
technique of “reading” and “behavior” measurement in which the response results are in a signal
modality of EMG, ECG, EEG, EOG, or a combination of these signals.

Table 1 describes the physiological signal modality which was used to implement medical
application. The muscle tension pattern of the EMG signal provides hand motion and muscle activity
recognition. The variant of heartbeat or heart rhythm provides heart disease, sleep stage, emotion,
age, and gender classification. The diversity of brain response of EEG signal provides brain disease,
emotion, sleep-stage, motion, gender, words, and age classification. The changes of eye corneo-retinal
potential of EOG signal provides sleep-stage classification.

Table 1. Medical application in physiological signal analysis.

Signal Modality Medical Application

EMG Hand motion recognition [9–17], Muscle activity recognition [18–23]

ECG

Heartbeat signal classification [24–48], Heart disease classification
[49–63],

Sleep-stage classification [64–68], Emotion classification [69],
age and gender prediction [70]

EEG

Brain functionality classification [71–91], Brain disease classification
[92–121], Emotion classification [122–129], Sleep-stage classification

[130–141],
Motion classification [142–145], Gender classification [146],

Words classification [147], Age classification [148]

EOG Sleep-stage classification [149]

Combination of signals Sleep-stage classification [150–154]

This section presents a categorization of physiological signal data modality regarding the various
deep-learning models. We demonstrate key contributions in medical application and performance
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of systems. We taxonomize contributions such as deep learning on electromyogram (EMG), deep
learning on electrocardiogram (ECG), deep learning on electroencephalogram (EEG), deep learning on
electrooculogram (EOG), and deep learning on a combination of signals, as shown in Table 2.

Table 2. Table structure based on signal modality and dataset source.

Signal Modality Public Dataset Private Dataset Hybrid Dataset

EMG Table 3 Table 4

ECG Table 5 Table 6 Table 7

EEG Table 8 Table 9 Table 10

EOG Table 11

Combination of signals Table 12

Table 3. Medical application in EMG analysis using a public dataset source.

Medical
Application Medical Task DL Model Dataset Source No. of

Subjects Performance

Hand motion
recognition

Gesture
recognition [10] CNN+RNN

NinaProDB1 27 Accuracy = 87.0%

NinaProDB2 40 Accuracy = 82.2%

BioPatRec
sub-database 17 Accuracy = 94.1%

CapgMyo
sub-database 18 Accuracy = 99.7%

csl-hdemg databases 5 Accuracy = 94.5%

Gesture
recognition [11] CNN

NinaPro 128 Accuracy = 85.78%

BioPatRec 53 Accuracy = 94.0%

Gesture signal
classification [12] CNN

MYO 17 Accuracy = 98.31%

NinaPro 10 Accuracy = 68.98%

Hand gesture
classification [13] GFM NinaPro database 10 Accuracy = 63.86 ± 5.12%

Hand movement
classification [16] CNN+RNN Ninapro project

dataset 78 Accuracy = 87.3 ± 4.9%

We do both a quantitative and qualitive comparison of the deep-learning model. For quantitative
comparison, the number of deep-learning models that have been used in medical application is
illustrated. For qualitative comparison, since the performance criterion is not provided uniformly,
we assume an accuracy value as a base criterion for an overall performance comparison.
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Table 4. Medical application in EMG analysis using Private dataset source.

Medical
Application Medical Task DL Model Dataset Source No. of

Subjects Performance

Hand motion
recognition

Chinese sign language
recognition [9] DBN 6-D inertial sensor (3D-ACC and

3D-GYRO) 8
Accuracy = 95.1%

(user-dependent test), Acc =
88.2% (user-independent test)

Hand-grasping classification [14] SAE MYO 15 Accuracy = 95%,
SD = 3.58~1.25%

Hand motion classification [15] CNN MYO 7 mean CE ± SD = 9.79 ± 4.57

Limb movement estimation [17] CNN+RNN EMG system (NCC Medical Co.,
LTD, Shanghai, China) 8 mean R2 = 90.3 ± 4.5%

Muscle activity
recognition

Multi-labeled movement
information extraction [18] CNN ELSCH064NM3 from OT

Bioelettronica, Turin, Italy 14
mean exact match rate = 78.7%

and a mean Hamming
loss = 2.9%

Muscle activity detection [19] RNN Vastus Lateralis and the Lateral
Hamstring of a runner N/A Signal-to-noise ration < 5

Musculoskeletal force prediction
[20] CNN Trigno Wireless EMG system,

Delsys, USA 156 RMSE = 0.25,
Std. = 0.13

Prosthetic limb control,
Movement Intent decoder [21]

CNN Grapevine NIP system (Ripple,
Salt Lake City, UT, USA) 2

NMSE = 0.033 ± 0.017

LSTM NMSE = 0.096 ± 0.013

Real-time, simultaneous
myoelectric control system [22] CNN

Eight pairs of
bipolar surface electrodes

(g.HiAmp, g-tec Inc.)
17 Accuracy = 91.61%,

Standard error = 0.39

Wave form identification [23] CNN Tokushima University Hospital 83 Accuracy = 86% (test set),
Accuracy = 100% (train set)
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Table 5. Medical application in ECG analysis using a public dataset source.

Medical Application Medical Task DL Model Dataset Source No. of Subject/Data Performance

Heartbeat signal
classification

Anomaly class
identification [26]

LSTM+SVM,
LSTM+MLR, LSTM+MLP MIT-BIH Arrhythmia 43 input features LSTM+SVM = 42.86% LSTM+MLR

= 51.43% LSTM+MLP = 50.0%

Atrial fibrillation
detection [27] STFT+CNN, SWT+CNN MIT-BIH Atrial fibrillation 23 annotated ECG

recordings

STFT+CNN:
Sensitivity = 98.34%,
Specificity = 98.24%,
Accuracy = 98.29%.

SWT+CNN:
Sensitivity = 98.79%,

Specificity = 97.87%, Accuracy =
98.63%

CAD ECG signals
detection [28] LSTM+CNN PhysioNet 47 Accuracy = 99.85%

Congestive heart failure
detection [30] LSTM

BIDMC-CHF 15 Accuracy = 99.22%

MIT-BIH NSR 18 Accuracy = 98.85%

Fantasia 40 Accuracy = 98.92%

Dofetilide plasma
concentrations prediction

[31]
CNN PhysioNet 42 Correlation (r = 0.85)

ECG Characteristic
detection [32] CNN+RA

QT database (MIT-BIH
Arrhythmia+ ST-T

Database+ several other
ECG databases)

23 records (test set)

P-on = 0.4 ± 14.4
P-peak = −0.4 ± 10.1
P-off = −2.0 ± 12.7

QRS-on = −0.7 ± 10.9
QRS-off = −4.8 ± 13.1
T-peak = −0.3 ± 10.5
T-off = −0.3 ± 18.5

ECG signal compression
[33] AE MIT-BIH arrhythmia 48 records

Compression ratio = 106.45,
Root mean square difference =

8.00%

Electrocardiogram
diagnosis [34] CNN+BRNN Chinese Cardiovascular

Disease Database 19K Accuracy = 87.69%
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Table 5. Cont.

Medical Application Medical Task DL Model Dataset Source No. of Subject/Data Performance

Heartbeat signal
classification

Heartbeat classification
for continuous monitoring

[35]
LSTM MIT-BIH arrhythmia N/A

VEB:
Accuracy = 99.2%,
Sensitivity = 93.0%,
Specificity = 99.8%

F1 = 95.5%
SVEB:

Accuracy = 98.3%,
Sensitivity = 66.9%,
Specificity = 99.8%

F1 = 78.8%

Heartbeat classification
[36] CNN MIT-BIH Arrhythmia 48 records Accuracy = 96%,

F1-score = 90%

Heartbeat types
classification [37] CNN+RBM MIT-BIH arrhythmia 47 AUC = 0.999

Heartbeats classification
[38] DBLSTM-WS MIT-BIH arrhythmia 48 records Accuracy = 99.39%

Heartbeats classification
[39] CNN MIT-BIH arrhythmia 48 records Accuracy = 98.6%

Multi-lead ECG
classification [42]

DL-CCANet, TL-CCANet MIT-BIH database 48 records DL-CCANet: Accuracy = 95.2%

INCART database 78 records TL-CCANet:
Accuracy = 95.52%

Premature ventricular
contraction classification

[45]
EBR MIT-BIH arrhythmia 119 records

Precision = 100%,
Recall = 100%,

Accuracy = 100%

Ventricular and
supraventricular heart

beats detection [47]
RBM+DBM MIT-BIH database 44 records

Ventricular ectopic beats
(Acc = 93.63%),

Supraventricular ectopic beats
(Acc = 95.57%)
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Table 5. Cont.

Medical Application Medical Task DL Model Dataset Source No. of Subject/Data Performance

Heart disease
classification

Arrhythmia classification
[49] AE+LSTM MIT-BIH arrhythmia 47

Accuracy = 99.0%,
Root mean square
difference = 0.70%

Arrhythmia diagnosis [50] CNN+LSTM MIT-BIT arrhythmia 47
Accuracy = 98.10%,
Sensitivity = 97.50%,
Specificity = 98.70%

Arrhythmias detection
[51] CNN MIT-BIH arrhythmia 48

DB1:
Accuracy = 97.87%

DB2:
Accuracy = 99.30%

Atrial fibrillation (AF)
automatically prediction

[52]
CNN MIT-BIH 139 records

Accuracy = 98.7%,
Sensitivity = 98.6%,
Specificity = 98.7%.

Beat-wise arrhythmia
diagnosis [53] AE+U-net MIT-BIH AFDB + PAFDB

+ MIT-BIH NSRDB 74 (evaluate), 65 (test)
Accuracy = 98.7%
Sensitivity = 98.7%
Specificity = 98.6%

Cardiac Arrhythmia
classification [54]

MLP, CNN PhysioBank 208 ECG recordings Accuracy = 88.7%

Kaggle Accuracy = 83.5%

Cardiac arrhythmias
classification [55] 1D-CNN MIT-BIH Arrhythmia 45 Accuracy = 91.33%

Cardiologist-Level
Arrhythmia detection and

classification [56]
CNN

Ziomonitor (iRhythm
Technologies Inc, San

Francisco, CA)
53,877 patients

AUC = 0.97,
Fi-score = 0.837,

Sensitivity = 0.780

Early detection of
myocardial ischemia [58] CNN PhysioNet N/A

AUC = 89.6%
Sensitivity = 84.4%
Specificity = 84.9%,

F1-score = 89.2%

Heart Disease
classification [59] Faster RCNN MIT-BIH 47 Accuracy = 99.21%

Heart Diseases
classification [60] LSTM PhysioNet Accuracy = 98.4%

Sudden cardiac arrests
(SCA) detection [63] CNN

Creighton University
Ventricular

Tachyarrhythmia +
MIT-BIH Malignant

Ventricular Arrhythmia

35 records +
22 records

Accuracy = 99.26%
Sensitivity = 97.07%
Specificity = 99.44%
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Table 5. Cont.

Medical Application Medical Task DL Model Dataset Source No. of Subject/Data Performance

Sleep-stage classification

Apnea detection [64] CNN PhysioNet 35
Accuracy = 94.4%
Sensitivity = 93.0%
Specificity = 94.9%

Signal quality and sleep
position classification [66] CNN MIT-BIH arrhythmia 12

C1 class:
Precision = 0.99,

Recall = 0.99
Sleep position:

Precision = 0.99,
Recall = 0.99

Sleep Apnea detection
[68] CNN PhysioNet Apnea +

University College Dublin 70 records + 25 records

Accuracy = 87.6%
Sensitivity = 83.1%
Specificity = 90.3%

AUC = 0.950
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Table 6. Medical application in ECG analysis using Private dataset source.

Medical Application Medical Task DL Model Dataset Source No. of Subject/Data Performance

Heartbeat signal
classification

6 types of ECG
abnormalities

classification [24]
CNN Telehealth Network of Minas

Gerais, Brazil 1,558,415 patients F1-score > 80%
Specificity > 99%

Cardiologs and veritas
detection [29] CNN ECGs recorded in the ED of

HCMC 1500 records

Cardiologs:
Accuracy = 92.2%
Sensitivity = 88.7%
Specificity = 94.0%

Veritas:
Accuracy = 87.2%
Sensitivity = 92.0%
Specificity = 84.7%

Left ventricular systolic
dysfunction detection [41] CNN Mayo Clinic ECG 16 056 adult patients

Accuracy = 86.5%
Sensitivity = 82.5%
Specificity = 86.8%

Noise detection and
screening model [43] CNN trauma intensive-care unit

165,142,920 ECG II
(10-second lead II

electrocardiogram)

Positive prediction = 0.74,
Negative prediction = 0.96,

Sensitivity = 0.88,
Specificity = 0.89,
F1-score = 0.80,

AUC = 0.93

Scalogram of ECG
classification [46] ResNet

Physikalisch-Technische
Bundesanstalt (PTB)-ECG 290 Accuracy = 0.73

Chosun University (CU)-ECG 100 Accuracy = 0.94

Heart disease
classification

Diabetic subject detection
[57] 1D-CNN Kasturba Medical Hospital

(KMH), Manipal, India 30 Accuracy = 97.62%,
Sensitivity = 100%

Heart failure detection on
patients in ischemia and

post-infarction [61]

CNN
Heart failure

database (HFDB) 128 ECG pairs AUC = 84%

Ischemia database (IDB) 482 ECG
pairs AUC = 83%

Mental stress recognition
[62] CNN+LSTM Zephyr BioHarness 3.0 18

Accuracy = 83.9%,
F1-score = 0.81,

AUC = 0.92

Sleep-stage classification Sleep apnea detection [67] DNN, 1D-CNN, 2D-CNN,
RNN, LSTM, GRU SA dataset 86 Accuracy = 99.0%,

Recall = 99.0% (1D-CNN and GRU)

Emotion classification
Stressful state

classification [69] RNN+CNN
Kwangwoon University

in Korea 13 Accuracy = 87.39%

KU Leuven University in
Belgium 9 Accuracy = 73.96%

Age and gender
prediction

Age and gender
prediction [70] CNN Mayo Clinic digital data vault 275,056 Accuracy = 90.4%,

ACU = 0.97 (independent test data)
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Table 7. Medical application in ECG analysis using Hybrid dataset source.

Medical Application Medical Task DL Model Dataset Source No. of
Subject/Data Performance

Heartbeat signal
classification

Ventricular fibrillation
detection [48] 1D-CNN+ LSTM

PhysioNet MIT-BIH Malignant Ventricular
Arrhythmia + Creighton University

Ventricular Tachyarrhythmia +
American Heart Association ECG Database

N/A
BAC = 99.3%,

Sensitivity = 99.7%,
Specificity = 98.9%

OHCA patients N/A
BAC = 98.0%,

Sensitivity = 99.2%,
Specificity = 96.7%
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Table 8. Medical application in EEG analysis using Public dataset source.

Medical Application Medical Task DL Model Dataset Source No. of Subject/Data Performance

Brain functionality
classification

EEG session normal or abnormal
detection [74] 1D-CNN+RNN TUH Abnormal EEG Corpus 1488 abnormal + 1529 normal

EEG sessions Accuracy = 76.9%

Event-related potential (ERP) detection
and analysis [76] CNN BCI competition II and III 2 AUC = 0.825 ± 0.064

Brain activity detection [81] CNN

BCIC IV 2a. BCI competition IV
data set 2a 9 Accuracy = 69%

BCIC IV 2b. BCI competition IV 2b 9 Accuracy = 83%

Upper limb movement 15 Accuracy = 31%

Motor Imagery classification [83] RNN+3D-CNN BCI competition IV-2a 4-class
Motor Imagery (MI) dataset 9 Accuracy = 74.46%

Motor Imagery EEG classification [85] CNN BCI Competition IV 9 Accuracy = 87.94%

Motor Imagery EEG Decoding [86] CP-MixedNet

BCI competition IV 2a 9

Accuracy = 74.6%
Precision = 73.9%

Recall = 74.7%
F1-score = 0.743

HGD dataset 14

Accuracy = 93.7%
Precision = 73.7%

Recall = 93.7%
F1-score = 0.937

Multiclass Motor Imagery classification
[87] CNN BCI Competition Dataset 2a 9 Mean kappa = 0.61

St. Dev = 0.101

Online decoding of Motor Imagery
movement [88] LSTM, CNN, RCNN BCI Competition IV 20

LSTM:
Accuracy = 66.97 ± 6.45%

CNN:
Accuracy = 66.2 ± 7.21%

RCNN:
Accuracy = 77.72 ± 6.5%

Prediction of bispectral index during
target-controlled infusion of propofol

and remifentanil [89]
LSTM vitaldb 180 data points

concordance correlation
coefficient (95% CI) = 0.561

(0.560 to 0.562)

EEG-based BCIs classification [91] CNN

P300 Evoked Potentials (P300) 8

EEGNet:
SNRs = 20.43

DeepCNN:
SNRs = 20.50
ShallowCNN:
SNRs = 20.53

Feedback Error-Related Negativity
(ERN) 26

EEGNet:
SNRs = 20.26

DeepCNN:
SNRs = 20.39
ShallowCNN:
SNRs = 20.31

MI 9

EEGNet:
SNRs = 25.50

DeepCNN:
SNRs = 25.57
ShallowCNN:
SNRs = 25.60
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Table 8. Cont.

Medical Application Medical Task DL Model Dataset Source No. of Subject/Data Performance

Brain disease
classification

Aberrant epileptic seizure identification
[92] CNN+LSTM University of Bonn 28 AUC = 0.9703

Accuracy = 90%

Brain disorders diagnosis [95] HMM+SDAE TUH EEG Corpus 13,500 patients Sensitivity > 90%
Specificity < 5%

Depression screening [97] CNN Bonn University 15 normal + 15 depressed
patients

Left hemisphere:
Accuracy = 93.5%
Right hemisphere:
Accuracy = 96.0%

EEG-based epileptic seizure detection
[102] CNN CHB-MIT dataset 23

Accuracy = 98.3%
Sensitivity = 96.7%
Specificity = 99.1%

Epilepsy detection by using scalogram
[104] CNN Bonn University

A: healthy 100 segment
B: healthy 100 segment
C: patient 100 segment
D: patient 100 segment
E: patient 100 segment

A-E:
Accuracy = 99.5%

A-D:
Accuracy = 100%

D-E:
Accuracy = 98.5%

A-D-E:
Accuracy = 99.0%

A-B-C-D-E:
Accuracy = 93.6%

Epileptic EEG recording classification
[106] CNN

Bern-Barcelona EEG 5 Accuracy = 98.9 ± 0.08%

Epileptic Seizure Recognition
datasets 500 Accuracy = 99.8 ± 0.13%

Epileptic Seizure prediction [107] CNN Seizure Prediction Challenge 5 AUC = 0.79

Epileptic Seizure prediction [108] CNN+LSTM CHB-MIT EEG dataset 22 Accuracy = 99.6%

Epileptic seizures detection using EEG
[110] LSTM Bonn University

A: healthy 100 segment
B: healthy 100 segment
C: patient 100 segment
D: patient 100 segment
E: patient 100 segment

Accuracy = 100%
Sensitivity = 100%
Specificity = 100%

Epileptic seizures prediction [111] LSTM Open CHB-MIT Scalp 23 Sensitivity = 100%
Specificity = 99.28%

Seizure detection in multimodal
EEG-fNIRs [114] LSTM BCI competition IV 2b dataset 40 Sensitivity = 89.7%

Specificity = 95.5%

Seizure Detection [118] CNN+AE CHB-MIT dataset 23 Accuracy = 94.37%
F1-score = 85.34%

Seizure detection [119] LSTM University of Bonn

A: healthy 100 segment
B: healthy 100 segment
C: patient 100 segment
D: patient 100 segment
E: patient 100 segment

Accuracy = 95.54%
AUC = 0.9582
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Table 8. Cont.

Medical Application Medical Task DL Model Dataset Source No. of Subject/Data Performance

Emotion classification

Emotion recognition [122] 2D-CNN DEAP dataset 32 Accuracy = 73.4%

Emotion Recognition [124] RNN
SJTU emotion EEG dataset 15 Accuracy = 89.5%

CK+ facial expression 327 images Accuracy = 95.4%

Fear level classification based on
emotional dimensions [125] DNN DEAP database 32 Accuracy = 59.84%

F1-score = 58.78%

Human emotion recognition [126] RBM SEED-IV dataset 15 Accuracy = 85.11%

Recognition of emotion [127] DBN-GC+RBM DEAP dataset 32

Arousal:
Accuracy = 75.92%

Valence:
Accuracy = 76.83%

Relaxation classification [128] CNN OpenBCI 7

1s temporal window:
Accuracy = 55.46%

2s temporal window:
Accuracy = 98.96%

Valence and arousal classification [129] LSTM DEAP dataset 32

Arousal:
Accuracy = 74.65%

Valence:
Accuracy = 78%

Sleep-stage classification

Detect multiple sleep micro-events in
EEG [130] CNN

Montreal Archives of Sleep Studies
dataset 19 Precision = 0.3

Recall = 0.95

Stanford Sleep Cohort dataset 26 Precision = 0.58
Recall = 0.43

Wisconsin Sleep Cohort dataset 30 Precision = 0.79
Recall = 0.1

MESA dataset 1000 N/A

Real-time detection of sleep spindles
[133] CNN+RNN

Montreal archive of sleep studies 19

Sensitivity = 90.07 ± 2.16%
Specificity = 96.19 ± 0.71%

FDR = 30.36 ± 5.88%
F1-score = 0.75 ± 0.05

AUROC = 98.97 ± 0.13%

DREAMS database 8

Sensitivity = 77.85 ± 4.28%
Specificity = 94.2 ± 1.26%

FDR = 61.96 ± 7.39%
F1-score = 0.48 ± 0.07

AUROC = 95.97 ± 0.96%

Sleep-stage classification [135] CNN
PhysioNet

(Sleep-
EDF dataset)

20

Setting 1:
Accuracy = 79.8%

Setting 2:
Accuracy = 82.6%

Sleep-stage classification [136] RNN+SVM PhysioNet
(Sleep-EDF dataset) 20

Setting 1:
Accuracy = 79.1%

Setting 2:
Accuracy = 82.5%

Sleep-stage classification [137] CU-CNN
UCD dataset 25 Accuracy = 87%

Kappa = 0.8
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Table 8. Cont.

Medical Application Medical Task DL Model Dataset Source No. of Subject/Data Performance

Sleep-stage classification

MIT-BIH datasets 16 records Accuracy = 99.9%
Kappa = 0.904

Sleep-stage scoring/detection [138] CNN+RNN PhysioNet (Sleep-EDF datasets) 258
Accuracy = 84.26%
F1-score = 79.66%

Kappa = 0.79

Sleep stages classification from
single-channel EEG [139] CNN PhysioNet 8

Accuracy = 98.10%, 96.86%,
93.11%, 92.95%, 93.55%,

Kappa = 0.98%, 0.94%, 0.90%,
0.86%,0.89%,

Motion classification Movement intention recognition of
disable person [143] LSTM MI-based eegmmidb dataset 12 Accuracy = 68.20%

Gender classification Gender prediction from brain rhythms
[146] CNN Brain Resource International

Database 1308 Accuracy > 80%
(p < 10−5)

Words classification
Words recognition of speech-impaired
people from brain-generated signals

[147]
DN-AE-NTM

P300 EEG dataset 9 Accuracy = 97.5%

EEG recording of individuals with
alcoholism and control

individuals
64 Accuracy = 95%

EEGMMIDB 109 Accuracy = 98%

MNIST 60K samples Accuracy = 99.4%

ORL 10 images Accuracy = 99.1%
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Table 9. Medical application in EEG analysis using Private dataset source.

Medical Application Medical Task DL Model Dataset Source No. of
Subject/Data Performance

Brain functionality
classification

Cerebral Dominance detection [71] CNN+SVM Firat University Hospital
(Nicolet EEG v32 device) 67 AUC = 0.83 ± 0.05

Complexity of peri-perceptual
processes of familiarity detection

[72]

SNN “Hamrah
Clinic” of Tabriz, Iran 20

Accuracy = 83%
Sensitivity = 84%
Specificity = 86%
F1-score = 84%

Devanagari script input-based P300
speller detection [73] SAE, DCNN

National Institute of Technology
Raipur (ctiCAP Xpress V-amp EEG

recorder)
10 Accuracy = 88.22%

Walking Imagery Evaluation [75] MMDPN Biosemi ActiveTwo
system 9

Text-MMDPN:
AUC = 0.7984
VE-MMDPN:
AUC = 0.9424

EEG event-related classification on
children with ADHD from healthy

controls [77]
CNN+RNN Technical University of Dresden 144 Accuracy = 83%

Focal epileptiform discharges
detection [78] CNN+RNN

Department of Clin.
Neurophysiology and Neurology,

Medisch Spectrum Twente,
Enschede, The Netherlands

50
AUC = 0.94

Sensitivity = 47.4%
Specificity = 98.0%

Human Mental workload
Recognition [79] EL-SDAE Simulated Human Machine

systems 8 Accuracy = 92.02%

Identify patterns of brain activity of
children at idle time and playing

videogame time [80]
CNN University of Houston 233 Accuracy = 67%

Cross-task mental workload
assessment [82] RNN+3D-CNN Tsinghua University 20 Accuracy = 88.9%,

Spectral and temporal feature
learning for mental workload

assessment [90]
CNN+TCN Tsinghua University 17 Accuracy = 91.9%,
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Table 9. Cont.

Medical Application Medical Task DL Model Dataset Source No. of
Subject/Data Performance

Brain disease
classification

Automatic diagnosis of unipolar
depression [93]

1D-CNN,
1D-CNN+LSTM

hospital
Universiti Sains Malaysia (HUSM) 63

1D-CNN:
Accuracy = 98.32%
Precision = 99.78%

Recall = 98.34%
F-score = 97.65%
1D-CNN+LSTM:

Accuracy = 95.97%
Precision = 99.23%

Recall = 93.67%
F-score = 95.14%

Brain disease detection [94] CNN, RNN, DNN EEG data of the University of
California Irvine 122

CNN:
F1-score = 0.94

RNN:
F1-score = 0.73

DNN:
F1-score = 0.70

Confusion state induction and
detection [96] CNN Emotiv Epoc+ 16 Accuracy = 71.36%

Early Alzheimer’s disease
diagnosis [98] DCssCDBM Beijing Easy monitor Technology 14 Accuracy = 95.04%

Early prediction of epileptic seizure
[99] CNN+LSTM

Department of Neurology at the
First Affiliated Hospital of

Xinjiang Medical University
15

Accuracy = 93.40%
Sensitivity = 91.88%
Specificity = 86.13%

Early stage Alzheimer disease
detection [100] CNN

Chosun University Hospital
(CUH, Gwangju, S. Korea)

and Gwangju Optimal Dementia
Center located in Gwangju
Senior Technology Center

(Gwangju, S. Korea)

10 Accuracy = 59.4%
Std. = 22.7

Epileptic discharge detection [105] CNN EEG/fMRI study 30 Sensitivity = 84.2%

Epileptic seizure prediction [109] CNN Intracranial electrodes (magenta
circles) 10 Sensitivity = 69%

Identifying Schizophrenia from
EEG connectivity Patterns [112] CNN Lomonosov Moscow State

University 84 Accuracy = 91.69%
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Table 9. Cont.

Medical Application Medical Task DL Model Dataset Source No. of
Subject/Data Performance

Brain disease
classification

Seizure classification [113] CNN
Diagnosis of medication refractory
TLE based on International League

Against Epilepsy (ILAE) criteria
50

Positive Predictio n = 88 ± 7%,
Negative Prediction = 79 ± 8%,

Accuracy < 50%

Seizure detection [117] 3D-CNN Hospital of
Xinjiang Medical University 13

Accuracy = 90.00%
Sensitivity = 88.90%
Specificity = 93.78%

Seizure detection [120] CNN
Department of Physiology, College

of Medicine, The Catholic
University of Korea

249 Sensitivity = 100%
Positive Prediction = 98%

Tracking both the level of
consciousness and delirium [121] CNN+LSTM Partners Institutional Review

Board (IRB)
174

Accuracy = 70%
Sensitivity = 69%
Specificity = 3%

AUC = 0.80

Emotion classification Human Intention Recognition [4] CNN+LSTM BCI2000 instrumentation
108 subjects,

3,145,160 EEG
records

Accuracy = 98.3%

Sleep-stage classification

Driving Fatigue detection from
EEG [131] PCANet+SVM Guangdong Provincial Work Injury

Rehabilitation Center 6 Accuracy = 95%

Identifying abnormal EEGs, age
and sleep-stage classification [132] CNN Department of Neurology in

Massachusetts General Hospital 8522 EEGs

EEGs:
AUC = 0.917
EEGs+Age:

AUC = 0.924
EEGs+Age+Sleep:

AUC = 0.925

Sleep stages classification [141] CNN+LSTM

Chronobiology and Sleep Research,
Institute of Pharmacology and

Toxicology, University of Zurich,
Zurich, Switzerland

75 records Kappa = 0.8

Motion classification

Problem-solving behavioral pattern
characterization [144] CNN

Fakultät Management und Vertrieb,
Hochschule Heilbronn Campus

Schwäbisch Hall,
74523 Schwäbisch Hall, Germany

26 Accuracy = 99%

Rapid eye movement behavior
disorder [145] CNN

Center
for Advanced Research in Sleep

Medicine of the
Hôpital du Sacrè-

Coeur de Montréal

212 Accuracy = 80 ± 1%
AUC = 87 ± 1%
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Table 10. Medical application in EEG analysis using Hybrid dataset source.

Medical Application Medical Task DL Model Dataset Source No. of Subject/Data Performance

Brain disease
classification

EEG classification of Motor Imagery [101] CNN + VAE

BCI Competition IV
dataset 2b 9 Kappa = 0.564

Ag-AgCl electrodes 5

3-electrode EEG:
Kappa = 0.568

5-electrode EEG:
Kappa = 0.603

Sleep-stage classification Real-time sleep-stage classification [134] CNN+LSTM

SIESTA database 19 Kappa = 0.760 ± 0.022

Data Science,
Philips Research,

Eindhoven, Netherlands
29 Kappa = 0.727 ± 0.005

Age classification
Age of children classification on performing

a verb-generation task, a monosyllable
speech-elicitation task [148]

CNN
BCI Competition IV 9

Accuracy = 95%
University of Toronto,

Toronto, Canada 92

Table 11. Medical application in EOG analysis using Public dataset source.

Medical Application Medical Task DL Model Dataset Source No. of Subject/Data Performance

Sleep stages classification Sleep-stage labeling [149] GRU PhysioNet 6 sleep stages and 6 sleep
disorders Accuracy = 69.25%
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Table 12. Medical application in Combine of signals analysis using Public dataset source.

Medical Application Medical Task DL Model Dataset Source No. of Subject/Data Performance

Sleep stages classification

Sleep stages classification
[150] CNN PhysioNet 20 Accuracy = 81%

F1-score = 72%

Sleep-stage classification
[151] CNN MASS dataset - session 3 62 records Sensitivity = 85%

Specificity = 100%

Sleep-stage classification
[152] CNN

PhysioNet Sleep-EDF
Database (SLPEDF-DB) 19 Kappa = 0.67 ± 0.05

Montreal Archive of Sleep
Studies (MASS-DB) 200 Kappa = 0.74 ± 0.01

CAP Sleep Database
(CAPSLP-DB) 112 Kappa = 0.61 ± 0.01

RBD Database (RBD-DB) 21 Kappa = 0.48 ± 0.07

Sleep-stage classification
[153] 1D-CNN

Sleep-EDF 9

6 sleep classes:
Accuracy = 98.06%,

94.64%, 92.36%, 91.22%,
91.00%

Sleep-EDFX 61

6 sleep classes:
Accuracy = 97.62%,

94.34%, 92.33%, 90.98%,
89.54%

Classification of brain and
artifactual independent

component (IC) [154]
CNN Electrical Geodesic Inc,

EEG System Net 300 2048 samples

EEG:
Accuracy = 92.4%

MEG:
Accuracy = 95.4%

EEG+MEG:
Accuracy = 95.6%
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3.1. Deep Learning with Electromyogram (EMG)

Electromyogram (EMG) signal is data regarding changes of skeleton muscles, which is recorded
by putting non-invasive EMG electrodes on the skin such as the commercial MYO Armband (MYB).
Since different muscle information is defined by different activity, it can discriminate a pattern of
motion such as an open or closed hand. To classify those motion patterns based on the EMG signal
information, 15 research works were conducted using deep-learning methods, as shown in Tables 3
and 4. Within these research works, there are two types of key contribution. One is focused on hand
motion recognition and another one is focused on general muscle activity recognition.

Figure 2 shows the number of deep-learning models used to analyze the EMG signal: (a) illustrates
hand motion recognition and (b) illustrates muscle activity recognition. In hand motion recognition,
CNN and CNN+RNN models are the most commonly used. In muscle activity recognition, the CNN
model is the most commonly used.
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provides overall accuracy >68%. However, the CNN+RNN model provides higher accuracy than the 
CNN model, with accuracy >82%. 

Table 4 describes medical application using deep-learning methods in EMG signal analysis from 
a private (in-house) dataset source. The works use their own in-house (private) dataset to recognize 
hand motion. The DBN model performs with overall accuracy >88%. Therefore, The DBN model 
performs better than CNN and CNN+RNN models. For muscle activity recognition, the CNN model 
performs NMSE of 0.033±0.017, while RNN/long short-term memory (LSTM) model performs NMSE 
of 0.096±0.013. Therefore, the CNN model performs better than the RNN/LSTM model. 
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Figure 2. Number of DL models used in EMG signals for: (a) hand motion recognition; (b) muscle
activity recognition.

Table 3 describes medical application using deep-learning methods in EMG signal analysis from a
public dataset source. The publicly available datasets are deployed in the CNN model, which provides
overall accuracy >68%. However, the CNN+RNN model provides higher accuracy than the CNN
model, with accuracy >82%.

Table 4 describes medical application using deep-learning methods in EMG signal analysis from a
private (in-house) dataset source. The works use their own in-house (private) dataset to recognize
hand motion. The DBN model performs with overall accuracy >88%. Therefore, The DBN model
performs better than CNN and CNN+RNN models. For muscle activity recognition, the CNN model
performs NMSE of 0.033 ± 0.017, while RNN/long short-term memory (LSTM) model performs NMSE
of 0.096 ± 0.013. Therefore, the CNN model performs better than the RNN/LSTM model.

3.2. Deep Learning with Electrocardiogram (ECG)

Electrocardiogram (ECG) is data regarding changes of heartbeat or rhythm. There are 47 research
works using deep-learning methods to analyze the ECG signals, as shown in Table 5, Table 6, and Table 7.
Their key contributions are categorized as heartbeat signal classification, heart disease classification,
sleep-stage classification, emotion detection, and age and gender prediction.

Figure 3 shows the number of deep-learning models used to analyze ECG signal: (a) illustrates
heartbeat signal classification in which the CNN model is the most commonly used; (b) illustrates heart
disease classification in which CNN is the most commonly used; (c) illustrates sleep-stage detection in
which CNN is the most commonly used; (d) illustrates emotion detection in which RNN/LSTM and
CNN+RNN are used; and (e) illustrates age and gender classification in which only CNN is used.
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Table 5 describes medical application using deep-learning methods in ECG signal analysis from
a public dataset source. In heartbeat signal classification, the CNN model performs with overall
accuracy >95%. RNN/LSTM model performs with overall accuracy >98%. CNN+RNN/LSTM model
performs with overall accuracy >87%. Therefore, RNN/LSTM model performs better than CNN and
CNN+RNN/LSTM models. In heart disease classification, CNN model performs with overall accuracy
>83%. RNN/LSTM model performs with overall accuracy >90%. CNN+RNN/LSTM model performs
with overall accuracy >98%. Therefore, CNN+RNN/LSTM model performs the best. In sleep-stage
classification, only CNN model is used and it performs with overall accuracy >87%.

Table 6 describes medical application using deep-learning methods in ECG signal analysis from
a private dataset source. In heartbeat signal classification, only CNN model is used and the CNN
model performs with overall accuracy >78%. In heart disease classification, CNN model performs
with overall accuracy >97%, while CNN+LSTM model performs with accuracy >83%. Therefore, CNN
model performs better than CNN+LSTM model. In sleep-stage classification, CNN and GRU model
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perform with accuracy of 99%. In emotion classification, CNN+RNN model performs with accuracy
>73%. In age and gender prediction, CNN model performs with accuracy >90%.

Table 7 describes medical application using deep-learning methods in ECG signal analysis
from a hybrid dataset source. In heartbeat signal classification, CNN+LSTM model performs with
accuracy >99%.

3.3. Deep Learning with Electroencephalogram (EEG)

Electroencephalogram (EEG) is data regarding changes of the brain measured from the scalp.
There are 79 research works using deep-learning methods to analyze the EEG signals, as shown
in Table 8, Table 9, and Table 10. Their key contributions are categorized as brain functionality
classification, brain disease classification, emotion classification, sleep-stage classification, motion
classification, gender classification, word classification, and age classification.

Figure 4 shows the number of deep-learning models used to analyze EEG signal: (a) illustrates
brain functionality classification in which the CNN model is the most commonly used; (b) illustrates
brain disease classification in which the CNN is the most commonly used; (c) illustrates emotion
classification in which the CNN is the most commonly used; (d) illustrates sleep-stage classification in
which CNN is the most commonly used; (e) illustrates motion classification in which CNN is the most
commonly used; (f) illustrates gender classification in which only CNN is used; (g) illustrates word
recognition in which only AE is used; and (h) illustrates age classification in which only CNN is used.
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Table 8 describes medical application using deep-learning methods in EEG signal analysis from a
public dataset source. In brain functionality signal classification, CNN model performs with overall
accuracy >66%. RNN/LSTM model performs with overall accuracy >77%. CNN+RNN/LSTM model
performs with overall accuracy >74%. Therefore, RNN/LSTM model performs better than CNN
and CNN+RNN/LSTM models. In brain disease classification, CNN model performs with overall
accuracy >93%. RNN/LSTM model performs with overall accuracy >95%. CNN+RNN/LSTM model
performs with overall accuracy >90%. Therefore, RNN/LSTM model performs better than CNN and
CNN+RNN/LSTM models. In emotion classification, CNN model performs with overall accuracy
>55%. RNN/LSTM model performs with overall accuracy >74%. RBM model performs with overall
accuracy >75%. Therefore, RBM model performs best. In sleep-stage classification, CNN model
performs with overall accuracy >79%. RNN/LSTM model performs with overall accuracy >79%.
CNN+RNN/LSTM model performs with overall accuracy >84%. Therefore, CNN+RNN/LSTM model
performs better than CNN and RNN/LSTM models. In motion classification, only RNN/LSTM is
used, with accuracy >68%. In gender classification, only CNN is used, with accuracy >80%. In word
classification, only CNN+AE is used, with overall accuracy >95%.

Table 9 describes medical application using deep-learning methods in EEG signal analysis from a
private dataset source. In brain functionality signal classification, CNN model performs with overall
accuracy >63%. CNN+RNN/LSTM model performs with overall accuracy >83%. Stacked auto-encoder
(SAE)+CNN model performs with overall accuracy >88%. Therefore, SAE+CNN model performs better
than CNN and CNN+RNN/LSTM models. In brain disease classification, CNN model performs with
overall accuracy >59%. RNN/LSTM model performs with overall accuracy >73%. CNN+RNN/LSTM
model performs with overall accuracy >70%. Therefore, RNN/LSTM model performs better than
CNN and CNN+RNN/LSTM models. In emotion classification, only CNN+LSTM model is used,
with accuracy >98%. In sleep-stage classification, CNN model performs with overall accuracy >95%.
CNN+RNN/LSTM model performs with kappa > 0.8. In motion classification, only CNN model is
used, with accuracy >80%.
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Table 10 describes medical application using deep-learning methods in EEG signal analysis from
a hybrid dataset source. In brain disease classification, only the CNN+AE model is used, with kappa
> 0.564. In sleep-stage classification, only CNN+LSTM model is used, with kappa > 0.72. In age
classification, only the CNN model is used, with accuracy >95%.

3.4. Deep Learning with Electrooculogram (EOG)

Electrooculogram (EOG) is data regarding changes of the corneo-retinal potential between the
front and the back of the human eye. There are 1 research work using deep-learning methods to analyze
the EOG signals, as shown in Table 11. The contribution of deploying deep learning in EOG signal
analysis is only for sleep-stage classification. Figure 5 shows the number of deep-learning models
which are used to analyze EOG signal for sleep-stage classification. The work used GRU model.
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Table 11 describes medical application using deep-learning methods in EOG signal analysis from
a public dataset source. In sleep-stage classification, the GRU model performs with accuracy of 69.25%.

3.5. Deep Learning with a Combination of Signals

There are 5 research works using deep-learning methods to analyze a combination of signals,
as shown in Table 12. Sokolovsky et al [150] combined EEG and EOG signal. Chambon et al [151] and
Andreotti et al [152] combined polysomnography (PSG) signals such as EEG, EMG, and EOG. The
work of Yildirim et al [153] exploited the combination signals of EEG and EOG. Croce et al’s [154]
contribution was from EEG and magnetoencephalographic (MEG) signals. CNN is used for both
sleep-stage classification and the classification of brain and artifactual independent components.
Figure 6 shows the number of deep-learning models used to analyze a combination of signals for
sleep-stage classification.
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Table 12 describes medical application using deep-learning methods in a combination of signals
analysis from a public dataset source. In sleep-stage classification, only the CNN model is used, with an
overall accuracy >81%.

4. Training Architecture

To strive for high accuracy, deep-learning techniques require not only a good algorithm, but also a
good dataset [155]. Therefore, the input data is used in two ways: (1) the input data are first extracted
as features, then the feature data are fed into the network. Based on our review, some contributions
use traditional machine-learning methods as feature extractors described in detail in Section 4.1, while
other contributions use deep-learning methods as feature extractors described in detail in Section 4.2;
and (2) the raw input data are fed into the network directly for end-to-end learning described in detail
in Section 4.3.

4.1. Traditional Machine Learning as Feature Extractor and Deep Learning as Classifier

To distinguish the label of signals, raw signal data is divided into N levels. This step is called
feature extraction. Feature extraction is conducted to strengthen the accuracy of prediction in the
classification step. Figure 7 illustrates the training architecture using traditional machine learning as
feature extractor and deep learning as classifier. For example, the raw EMG signal is divided into N
levels using mean absolute value (MAV). The featured data is fed into a CNN to classify hand motion.
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Figure 7. Training architecture of machine learning as feature extractor and deep learning as classifier.

Yu et al [9] designed a feature-level fusion to recognize Chinese sign language. The features are
extracted using hand-crafted features and learned features from DBN. These two feature levels are
concatenated before being fed into the deep belief network and fully connected network for learning.

For the hand-grasping classification described by Li et al [14], principal component analysis (PCA)
method is used for dimension reduction and DNN with a stack of 2-layered auto-encoders, and a
SoftMax classifier is applied for classifying levels of force.

Saadatnejad et al [35] proposed ECG heartbeat classification for continuous monitoring. The
work extracted raw ECG samples into heartbeat RR interval features and wavelet features. Next,
the extracted features were fed into two RNN-based models for classification.

To classify premature ventricular contraction, Jeon et al [45] extracted the features in the
QRS pattern from the ECG signal and classified by modified weight and bias based on the
error-backpropagation algorithm.

Liu et al [60] presented heart disease classification based on ECG signals by deploying symbolic
aggregate approximation (SAX) as a feature extraction and LSTM for classification.

Majidov et al [85] proposed motor imagery EEG classification by deploying Riemannian
geometry-based feature extraction and a comparison between convolutional layers and SoftMax
layers and convolutional layers, and fully connected layers which outputs 100 units.

Abbas et al [87] designed a model for multiclass motor imagery classification, in which fast Fourier
transform energy map (FFTEM) is used for feature extraction and CNN is used for classification.

In diagnosing brain disorders, Golmohammadi et al [95] used linear frequency cepstral coefficients
(LFCC) for feature extraction and hybrid hidden Markov models and stacked denoising auto-encoder
(SDA) model for classifying.
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4.2. Deep Learning as Feature Extractor and Traditional Machine Learning as Classifier

Figure 8 illustrates the training architecture of using deep learning as a feature extractor and
traditional machine learning as classifier. For example, the raw EEG signal is divided into N levels
using SAE. The featured data is fed into support vector machine (SVM) to classify the state of emotion.
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Figure 8. Training architecture of deep learning as feature extractor and machine learning as classifier.

Chauhan et al [26] proposed an ECG anomaly class identification algorithm, in which the LSTM
and error profile modeling are used as a feature extractor. Then, the multiple choices of traditional
machine-learning classifier models were conducted, such as multilayer perception, support vector
machine, and logistic regression.

To diagnose arrhythmia, Yang et al [42] used DL-CCANet and TL-CCANet as feature extractor to
discriminate features from dual-lead and three-lead ECGs. Then, the extracted features were fed into
the linear support vector machine for classification.

Nguyen et al [63] proposed an algorithm for detecting sudden cardiac arrest in automated external
defibrillators, in which CNN is used as feature extractor (CNNE) and a boosting (BS) classifier.

Ma et al [131] designed a model to detect driving fatigue. The network model integrated the
PCA and deep-learning method called PCANet for feature extraction. Then, SVM/KNN is used
for classification.

4.3. End-to-End Learning

Rather than extracting the feature from raw data, the raw data is fed into the network for
classification. This architecture reduces the feature-extraction step. Figure 9 illustrates the training
architecture of using only deep-learning methods to get input raw data, do a classification, and output
the result. For example, the ECG data is fed into the LSTM network to classify the states of sudden
cardiac arrests.
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All works in Tables 3–12 which are not mentioned in Sections 4.1 and 4.2 use a raw dataset for
end-to-end learning.

5. Dataset Sources

We deduce that there are three types of dataset sources used. (1) The public dataset as shown
in Table 3, Table 5, Table 8, Table 11, and Table 12 is available online and freely accessible. It has
large numbers of samples. Figure 10 illustrates the number of papers using a public dataset based
on physiological data modality. For EMG signal analysis, NinaPro DB is the most commonly used.
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For ECG signal analysis, MIT-BIH is the most commonly used, then PhysioNet is the second most
commonly used. For EEG signal analysis, BCI competition II is the most commonly used, then
CHB-MIT and DEAP are the second most commonly used. For EOG signal analysis, only PhysioNet
is used. For the combination of signal analysis, MASS and PhysioNet is the most commonly used.
(2) Private datasets are shown in Table 4, Table 6, and Table 9: it is collected by an author in their own
laboratory, hospital, or institution. This dataset requires a specific device for recording or capturing
and requires participants or subjects to evolve in the experimental process. Thus, it has a small number
of samples. (3) Hybrid datasets are shown in Tables 7 and 10: the public and private datasets are
combined for use in the experiment.
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6. Discussion

We studied contributions based on types of physiological signal data modality and training
architecture. The medical application, deep-learning model, and performance of those contributions
have been reviewed and illustrated.

6.1. Discussion of the Deep-Learning Task

In medical application, we deduced that most of the contributions were conducted using a
classification task, feature-extraction task, and data compression task. The classification task, which is
also known as recognition task, detection task, or prediction task, focuses on whether the instance
exists or does not exist. For example, arrhythmia detection [51] analyzes whether the heartbeat signal is
normal or arrhythmic. The classification task also focuses on grouping or leveling the types of instances.
For example, emotion classification [126] analyzes emotion into groups of sad, happy, neutral, and
fear. The feature-extraction task [43] focuses on input data enhancement, in which the unsupervised
learning technique is used to label the dataset to avoid a heavy burden from manual labeling. The data
compression task [33] focuses on decreasing the data size while still retaining the high quality of data
for storage and transmission.
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6.2. Discussion of the Deep-Learning Model

Even though there are various deep-learning models, we deduced that only CNN, RNN/LSTM, and
CNN+RNN/LSTM models are the most commonly used. As theorized in the literature, the RNN/LSTM
model predicts continuously sequential data well. However, many contributions convert physiological
signals into 2D data and feed those 2D data into a CNN network, in which the performance is good.

6.3. Discussion of the Training Architecture

Due to different characteristics of data modality, investigation into the diversity of training
architectures has been conducted. The first type of architecture exploits the traditional machine-learning
model as a feature extractor and deep-learning model as a classifier. This architecture’s goal is to boost
accuracy of classification by converting raw data into feature data. The feature data consists of higher
potentially discriminated characteristics than the raw data. The DL classifier trains this feature data in
a supervised learning manner.

In contrast, the second type of architecture employs the deep-learning model as a feature extractor
and traditional machine-learning model as a classifier. This architecture’s goal is to reduce the
heavy burden of the hand-crafted labeling of the dataset. The DL extractor trains the raw data in an
unsupervised learning manner.

The third architecture type uses only a deep-learning model to train raw data and receive the final
output. This architecture’s goal is to not rely on the input dataset, but to strengthen the algorithm
of the deep-learning model, in which they believe that the more robust the DL algorithm, the higher
the accuracy will be received. This architecture trains raw data in a supervised learning manner.
Additionally, this architecture eases the implementation stage.

In our survey, we could not point out which type of architecture was best. This is because there are
no contributions that apply these three types of architecture using the same input dataset for training,
testing, and receiving the same desired task.

6.4. Discussion of the Dataset Source

We overviewed the sources of the dataset which were conducted for the deep-learning application
of physiological signal analysis. The available public datasets which are widely used are MIT-BIH,
PhysioNet, BCI competition II, CHB-MIT, DEAP, Bonn University, and NinaPro. The private dataset
was collected by authors in their own laboratory, hospital, or institution. The private dataset was
collected if the data was not available as a public source. Due to lack of datasets, contributions
such as Nodera et al [23] employed a technique of data augmentation, in which a fake dataset is
generated by duplicating original data and doing a transformation such as translation and rotation.
Contributions [12,16,23,46,58] employed a transfer learning technique. Rather than undertaking a
training from a scratch with a huge required dataset, they adapted the pre-weight from a state-of-the-art
model such as AlexNet, VGG, ResNet, Inception, or DenseNet.

7. Conclusions

In this paper, we conducted an overview of deep-learning approaches and their applications
in medical 1D signal analysis over the past two years. We found 147 papers using deep-learning
methods in EMG signal analysis, ECG signals analysis, EEG signals analysis, EOG signals analysis,
and combinations of signal analysis.

By reviewing those works, we contribute to the identification of the key parameters used to
estimate the state of hand motion, heart disease, brain disease, emotion, sleep stages, age, and gender.
Additionally, we reveal that the CNN model predicts the physiological signals at the state-of-the-art
level. We have also learned that there is no precise standardized experimental setting. These
non-uniform parameters and settings makes it difficult to compare exact performance. However,
we compared the overall performance. This comparison should enlighten other researchers to make a



Sensors 2020, 20, 969 30 of 39

decision on which input data type, deep-learning task, deep-learning model, and dataset is suitable for
achieving their desired medical application and reaching state-of-the-art level. As a lesson learned
from this review, our discussion can also help fellow researchers to make a decision on a deep-learning
task, deep-learning model, training architecture, and dataset. Those are the main parameters that
effects the system performance.

In conclusion, a deep-learning approach has proved promising for bringing those current
contributions to the state-of-the-art level in physiological signal analysis for medical applications.
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Abbreviations

ADHD Attention Deficit Hyperactivity Disorder
AE Auto-encoder
ANN Artificial neural network
AUC Area under the curve
AUPRC Area under the precision–recall curve
AUROC Area under the receiver operating characteristic curve
BB Bern-Barcelona EEG database
BCI Brain-computer interface
BRNN Bi-directional recurrent neural network
CAM-ICU Confusion assessment method for the ICU
CapsNet Capsule network
CNNE Convolutional neural network as a feature extractor
CP-MixedNet Channel-projection mixed-scale convolutional neural network
CssC DBM Contractive Slab and Spike Convolutional Deep Boltzmann Machine
DBLSTM-WS Bi-directional LSTM network-based wavelet sequences
DBM Deep Boltzmann Machine
DBN Deep belief network
DBN-GC Deep belief networks with glia chains
DCNN Deep convolution neural network
DCssC DBM Discriminative version of CssCDBM
DL-CCANet Dual-lead ECGs - canonical correlation analysis and cascaded convolutional network
DN-AE-NTM Deep network - auto-encoder - neural Turing machine
DNN Deep neural network
EBR Error Backpropagation
ED Emergency department
EEG-fNIRs EEG-Functional near-infrared spectroscopy
EL-SDAE Ensemble SDAE classifier with local information preservation
ERP Event-related potential
ESR Epileptic Seizure Recognition dataset
ETLE Extra-temporal lobe epilepsy
FPR False prediction rates
GAN Generative adversarial network
GFM Generative flow model
GRU Gated-recurrent unit
HGD High gamma dataset
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HMM Hidden Markov models
IC Independent component
KFs Polynomial Kalman filters
LSTM Long short-term memory
MEG Magnetoencephalographic
MLP Multilayer perceptron
MLR Multilayer logistic regression
MMDPN Multi-view multi-level deep polynomial network
MPCNN Multi-perspective convolutional neural network
MTLE Mesial temporal lobe epilepsy
NIP Neural interface processor
NMSE Normalised mean square error
OCNN Orthogonal convolutional neural network
PCANet Integrating the principal component analysis (PCA) and a deep-learning model
R3DCNN 3D convolutional neural networks
RA Region aggregation
RASS Richmond agitation-sedation scale
RBM Restricted Boltzmann machine
RCNN Recurrent convolutional neural network
RNN Recurrent neural network
RR Respiratory rate
SAE Stacked auto-encoder
SDAE Stacked denoising auto-encoder
SEED SJTU emotion EEG dataset
SNN Spiking neural network
STFT Short-term Fourier transform
SVEB Supraventricular ectopic beat
SVM Support vector machine
SWT Stationary wavelet transforms
TCN Temporal convolutional network
TL-CCANet Three-lead ECGs - canonical correlation analysis and cascaded convolutional network
TLE Temporal lobe epilepsy
VAE Variational auto-encoder
VEB Ventricular ectopic beat
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