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Abstract: In healthcare, new diagnostic tools that help in the diagnosis, prognosis, and monitoring of
diseases rapidly and accurately are in high demand. For in-situ measurement of disease or infection
biomarkers, point-of-care devices provide a dramatic speed advantage over conventional techniques,
thus aiding clinicians in decision-making. During the last decade, paper-based analytical devices,
combining paper substrates and electrochemical detection components, have emerged as important
point-of-need diagnostic tools. This review highlights significant works on this topic over the last five
years, from 2015 to 2019. The most relevant articles published in 2018 and 2019 are examined in detail,
focusing on device fabrication techniques and materials applied to the production of paper fluidic
and electrochemical cell architectures as well as on the final device assembly. Two main approaches
were identified, that are, on one hand, those ones where the fabrication of the electrochemical cell is
done on the paper substrate, where the fluidic structures are also defined, and, on the other hand,
the fabrication of those ones where the electrochemical cell and liquid-driving paper component
are defined on different substrates and then heterogeneously assembled. The main limitations of
the current technologies are outlined and an outlook on the current technology status and future
prospects is given.

Keywords: paper-based device; electrochemical detection; biomarker analysis; paper microfluidics;
point-of-care; point-of-need

1. Introduction

For the proper healthcare of people, rapid, accurate, and minimally invasive diagnostic tools
are in high demand that enable assessing the onset and/or monitoring of diseases by detecting
specific disease biomarkers. Current routine off-site analyses take several days, provoking a delay
in therapeutic decisions and sometimes assuming risks due to the precautionary prescription of
medicines likely showing a wide range of side effects. For in-situ analyses, the so-called point-of-care
(POC) devices group a wide range of diagnostic tools, exhibiting a dramatic speed advantage over
conventional techniques, allowing the early detection of biomarkers, and thus facilitating proactive
disease treatment and consequently avoiding disease progression to more serious states. Not only
disease, but overall patient status, monitoring could be carried out with POC devices, these being
part of the so-called personalized medicine. Paper-based analytical devices, combining a paper
substrate and electrochemical detection, appear to be very convenient for different healthcare scenarios.
Among the many advantages of these two components, cellulose paper is flexible, biocompatible,
eco-friendly, inexpensive, widely-available, light-weight, and hydrophilic. In addition, its surface can
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easily be chemically- and physically-modified, cut, folded, and/or stacked. One of the most important
characteristics of the paper is its porosity, which allows the solution to flow via capillary action without
the need for external pumping sources. Electrochemical detection approaches show well-known
advantages, such as their inherent small size, low cost, low power consumption, portability, high
selectivity and sensitivity, as well as the availability of a large number measuring techniques, which can
be adapted to different analytical detection schemes.

The publication of research works in this field has experienced an almost exponential progression
and it seems to have leveled off during the last year. A bibliographic search on the Web of Science portal,
using the topic “paper-based electrochemical device” reported 812 papers since 2009, which was the
year of publication of the pioneering work by C. S. Henry et al. [1], showing the potential of coupling
electrochemical detection and paper-based microfluidic approaches for the multiplex detection of
glucose, lactate, and uric acid in biological samples. Of those 812 works, 225 described “point-of-care”
applications distributed in time, as can be seen in the bar chart (Figure 1). Among them, around 70%
were clearly paper-based electrochemical devices for biomedical point-of-care applications.
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Such a number of works have also resulted in many review articles published during the last
five years. Good examples are one that focused on nanoparticle-based lateral flow biosensors that
was published in 2015 [2] and three mainly focused on biomedical diagnostic applications that were
published in 2017 [3,4] and 2018 [5]. In these reviews, different detection techniques were discussed,
mainly optical transduction approaches. A more specific review was published in 2018 that addressed
the field of integrated electrochemical biosensors fabricated on different flexible materials, including
paper-based devices [6]. Although two other works were published in 2018 [7,8], it has been in 2019 that
the number of reviews dedicated to paper-based devices for point-of-care applications has risen [9–17],
with three more works focused on devices with electrochemical detection [18–20].

This review highlights significant works on the “paper-based electrochemical devices” topic
over the last five years, from 2015 to 2019. The most relevant articles published in 2018 and 2019
were examined in detail. A clear focus on the technologies behind the fabrication of both the
paper microfluidics and electrochemical cell components was done. The applied materials, material
functionalization/modification processes, as well as electrochemical detection principles were briefly
described, too. Two main sections were defined on the basis of the different component integration
strategies, that is devices with the electrochemical transducers and the fluidic structures fabricated onto
a single paper substrate and devices where the electrodes are fabricated onto a separated substrate and
then assembled with the paper fluidic component.
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2. Paper-Based Analytical Devices (PADs) with Integrated Electrochemical Cell

Electrodes are fabricated onto paper substrates, mainly by screen printing techniques.
Electrochemical cells are defined and the surface of the working electrodes is usually modified
to make it selective to the target biomarker. Devices are mostly manufactured by wax-printing processes
to pattern the different areas on the paper, though a range of different technologies could be applied in
this regard [9].

Analyses are usually carried out by drop-casting the required solutions, so the sample and/or
reagents are added directly in the hydrophilic detection area where the electrochemical cell is defined.
Regarding the microfluidic part, many of the reviewed works are based on the “origami” strategy,
which permits the fabrication of 3D devices onto a single flat paper substrate by one patterning
step. Then, the assembly is carried out by simply folding the paper by hand. Since 2011, when
Richard M. Crooks and coworkers presented the principles of origami [21], it has become very popular
due to some key advantages. That is, the single fabrication step accelerates the device production
regardless of the device architecture complexity and the fabrication costs are very low since no specific
tools or special alignment techniques are required.

A disposable, label-free impedance immunosensor for human interferon gamma (IFN-γ) detection
was developed by using Whatman filter paper grade No. 1 as substrate. The wax-patterned device was
separated into two tabs, one to screen print the working electrode (WE) and the other to screen print
the reference (RE) and counter electrodes (CE). This design reduced the reagent and sample volumes
and prevented the contamination of the counter and reference electrodes during the modification of
the working electrode. To increase the sensitivity of the immunosensor, graphene ink was used for the
fabrication of the working electrode (3 mm diameter), which was then modified with polyaniline in
order to covalently immobilize human IFN-γ monoclonal antibodies. Once functionalized, the two
tabs of the device were folded over one another, in a one-step origami sequence, and thus the complete
electrochemical cell was arranged [22] (Figure 2).
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Likewise, a disposable strip for user-friendly glutathione detection in blood was reported.
The device was fabricated onto filter paper (67 g/m2), where the waxed hydrophobic structure confined
the solution in the electrochemical cell area, avoiding its diffusion towards the electric contacts. The WE
(4 mm diameter) and CE were manually screen-printed by using graphite ink modified with 5% (w/w)
Prussian Blue/carbon black powder. Then, cystamine was deposited by drop-casting onto the WE.
The detection is based on the thiol-disulfide exchange reaction between this pre-loaded cystamine
and the glutathione, which was previously released through a process of blood lysis. This reaction
produces cysteamine, a compound easily oxidizable thanks to the electrocatalytic properties of Prussian
Blue incorporated in the WE [23]. Moreover, a so-called lab-on-paper device was fabricated for the
detection of the breast cancer MCF-7 cell line by using Whatman chromatography paper grade No. 2
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as the substrate. This device consisted of three wax-printed patterned separated areas that eventually
folded in an origami-like configuration. Channel and reference areas were produced together with
one detection area that defined an 8.00-mm diameter hydrophilic working zone where a carbon WE
was screen-printed. The reference area included a carbon CE and an Ag/AgCl RE also screen-printed
onto a defined 8.00-mm diameter hydrophilic zone. The WE was modified with three-dimensional
reduced graphene oxide (3D-rGO) onto which Au nanoparticles were subsequently synthetized by a
chemical reduction process. Finally, MCF-7 cell-specific aptamer H1 was deposited on the formed
Au@3D-rGO. The different patterned areas were then folded in a two-step origami sequence so that
the whole screen-printed, three-electrode electrochemical cell was easily connected once the paper unit
was filled with solution [24].

In a different approach, finger-type silver-carbon electrode pairs were embedded in a paper
substrate and applied to the impedimetric detection of α-fetoprotein tumor biomarker in human
serum. The devices were prepared from a lower flexible sheet of plastic (3M, Italy) and an upper
layer of aldehyde-modified cellulose-paper substrate (Whatman chromatography paper). The finger
type electrodes were screen-printed with different conductive materials including silver ink, graphene
paste, and silver-graphene nanocomposite (silver-20 wt% graphene paste) using a stencil mask.
Diphenylalanine nanotubes were deposited on the paper in order to incorporate aldehyde groups and
facilitate the covalent immobilization of antibodies to the target analyte [25].

A 3D sequential fluid delivery platform on a microfluidic paper-based device (sePAD) was
fabricated. It is capable of storing and transporting reagents sequentially to the detection channel
without the need for external power, thus eliminating the multiple-step reagent manipulation inherent
to complex bioassays. The device is comprised of two components, that is an origami folding
paper (oPAD) and a movable reagent-stored pad (rPAD) with two different configurations: the
flow-through architecture, developed for continuous flow electrochemical measurements, such as
chronoamperometry, and the stop-flow architecture, developed for non-convective electrochemical
measurements, such as voltammetry. In both cases, a wax-printing technique was used to pattern
Whatman grade 1 chromatography paper. Next, hollow channels were cut using a razor blade.
Three electrodes were then screen-printed using carbon/graphene paste and Ag/AgCl ink at the back
of the detection zone of the oPAD. The rPAD was placed in the folding paper of the oPAD, and the
assembled device was sandwiched between two acrylic plates and tightened with binder clips (Figure 3).
This 3D capillary-driven device was used for the determination of ascorbic acid and serotonin and as
an impedimetric label-free immunosensor for α-fetoprotein [26] (Figure 3).
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Wax printing is a fast and simple fabrication technique for patterning the hydrophobic areas on
paper. However, its resolution is limited by the temperature post-treatment required for fully blocking
the paper substrate due to lateral diffusion of the melted wax. Moreover, the commercial availability of
wax printers has been discontinued, which may hamper the potential widespread use of this approach
in the future. Thus, patterning of hydrophobic areas on paper was carried out by other alternative
approaches. Alkyl-ketene dimer (AKD)-inkjet printing was also used to define hydrophobic barriers.
This technique rapidly fabricates devices on a large scale with better resolution than wax printing, but
with the requirement of more expensive inkjet printer instrumentation. When greater precision and
control are required, a previous optimization process has to be performed for the precise adjustment of
ink droplet volume, ejection speed, and spacing. In this context, a PAD for serotonin determination
was reported [27]. Two 8-mm diameter circled hydrophilic areas were defined on Whatman filter
paper grade No. 1 substrates using AKD. A three-electrode electrochemical cell (WE, CE and RE) was
screen-printed onto one these areas, using a custom-made carbon ink comprising graphite powder,
carbon nanotubes (CNTs), and mineral oil. The WE was modified with Fe3O4@Au@SiO2 nanoparticles
coated with molecularly imprinted polymer (MIP), selective to serotonin. Once functionalized,
the device was folded, in a one-step origami sequence, in such a way that both the hydrophilic circled
areas matched. The one not including the electrochemical cell minimized the direct contact between
the fabricated electrodes and the sample, accommodating larger sample volumes and ensuring good
sample impregnation onto the fabricated electrodes.

Apart from the origami strategy followed in the previously described works, there are other
reported approaches where the electrochemical cell and the microfluidic components are fabricated in
separated paper substrates. This implies the implementation of alignment strategies to ensure a good
and correct fitting between the different paper components. One good example is the fabrication of
a label-free aptasensor device on 10.5 × 35.0-mm2 pieces of Whatman chromatography paper grade
No. 1 for the simultaneous multiplexed detection of two cancer biomarkers, namely carcinoembryonic
antigen (CEA) and neuronspecific enolase (NSE), in clinical samples. The wax-printing technique
was used for patterning the different paper layers. The upper layer included the sample inlet
and a cropped cellulose filter hole. In the next layer, two circle detection zones were designed,
where the respective CE and RE were screen-printed using conductive carbon ink and Ag/AgCl
ink, respectively. The third layer of paper contained a microchannel to flow the sample to the
two different detection zones, one for the detection of CEA and the other for NSE. In the bottom
piece of the paper, the two carbon WEs were screen-printed. In order to promote the electron
transfer and to immobilize the respective aptamers, these WEs were modified, one with amino
functional graphene (NG)-thionin (THI)-gold nanoparticles (AuNPs) nanocomposite and the other
with Prussian Blue (PB)-poly(3,4-ethylenedioxythiophene) (PEDOT)-AuNPs nanocomposite. Finally,
the four paper components were assembled using double-sided tape [28]. The same device was also
used for point-of-care testing of 17β-estradiol in clinical serum samples, but using multi-walled carbon
nanotubes-THI-AuNPs nanocomposite onto the WE and immobilizing a specific antibody [29].

Another paper used the layered configuration for the detection of CEA in human serum samples.
A molecularly imprinted polymer (MIP)—electrosynthesized polymer in the presence of the target
analyte—was electrosynthesized on a structured area of the device and used as the specific receptor for
this target analytes. Likewise, a non-imprinted polymer (NIP–electrosynthesized polymer without
the target analyte) was produced in the same fashion as the MIP in a separated but identical area of
the device. These two separate but identical structured areas comprised three substrates of Whatman
chromatography paper grade No. 1, patterned by wax printing, which accommodated: a carbon
WE (50 × 25 mm2), Ag/AgCl CE/RE (24 mm in diameter), and a channel architecture (40 × 50 mm2).
The electrodes were produced by manually brushing the corresponding inks on the paper substrate.
A movable valve was defined in an extra paper component for enabling continuous and convenient
delivery of the different liquids required for the MIP/NIP syntheses and further electrochemical
analysis [30] (Figure 4).
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Considering the technology presented here to be application-driven, some recently developed
paper-based platforms could be customized depending on the target biomarker. For example,
a conductive platform was generated onto ivory paper sheet (15× 5 mm2) by dipping them in a graphene
oxide (GO) dispersion and subsequently reducing the GO with hydrazine. Then, cysteine-capped
gold nanoparticles (Cys-AuNPs) were electrophoretically deposited onto the reduced GO (RGO)
paper previously generated. The cysteine residues were used to covalently immobilize, through the
carbodiimide reaction, monoclonal antibodies. Interleukin-8 (IL-8), a cancer biomarker, was used
as model target in this study [31]. Also, a PAD platform was fabricated with a hollow 3D analyte
reservoir that enabled the use of a more uniform screen-printed electrode top surface as the electroactive
sensing area. As a proof of concept, the device was implemented for pH, glucose, and dopamine
detection, which required potentiometric, amperometric, and voltammetric readout detection schemes,
respectively [32]. A new platform for the electrochemical detection of single- and double-stranded
DNA was developed using paper-based screen-printed electrodes. The optimized device was used to
analyze different target DNA strands in undiluted serum [33]. A novel form of paper-based biosensor
was reported with hierarchical assembled nanomaterials and metalorganic framework-enhanced
bioprobes for the simultaneous electrochemical detection of microRNAs. In this case, the platform
was used to determine microRNA-141 and microRNA-21 in human serum samples [34]. Another 3D
paper-based platform, created via combining thin adhesive films and paper folding, was recently
published for simultaneously running assays in different layers. Its feasibility was demonstrated using
glucose as the target analyte [35]. Finally, an H2O2-controlled fluid switch-mediated paper-based
biochip for multiplexed and quantitative analysis was recently developed and applied to the detection
of MCF-7 and K562 cells models [36]. The most important analytical characteristics of these devices are
summarized in Table 1.
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Table 1. Analytical features of the described PADs with integrated electrochemical cell.

Biomarker 1 Technique 2 Response Range Sensitivity 3 Limit of Detection Ref.

IFN-γ EIS 5–1000 pg/mL 33.2 kΩ/dec 3.4 pg/mL [22]
Glutathione Amp. 0.25–10 mM 0.102 ± 0.005 µA/mM 0.06 mM [23]
MCF-7 line DPV 50–107 cells/mL −6.8 µA/dec 20 cells/mL [24]
Serotonin LSV 0.01–1000 µM 0.008 ± 0.005 µA/µM 0.002 µM [27]

α-fetoprotein EIS 1–104 ng/mL - 10 ng/mL [25]
Ascorbic acid Amp. 0.15–0.8 mM 7.8 µC/mM 0.093 mM [26]

Serotonin DPV 1–20 mM 0.16 µA/mM 0.15 mM [26]
α-fetoprotein EIS 10–100 ng/mL 10 kΩ/dec 0.63 ng/mL [26]

CEA DPV 0.01–500 ng/mL −2.8 µA/dec 0.002 ng/mL [28]
NSE DPV 0.05–500 ng/mL −1.4 µA/dec 0.01 ng/mL [28]

17β-estradiol DPV 0.01–100 ng/mL −1.8 µA/dec 0.01 ng/mL [29]
CEA DPV 1.0–500.0 ng/mL 19.3 µA/dec 0.32 ng/mL [30]
IL-8 Chronoamp. 1–9 pg/mL −1.64 µA mL/pg 0.59 pg/mL [31]
pH Potent. 2–12 pH −45 mV/pH - [32]

Glucose Chronoamp. 5–17.5 mM 0.34 µA/mM - [32]
Dopamine CV 0.01–5 mM - - [32]

DNA targets SWV - - 3 to 7 nM [33]
miR-141 SWV 1 fM–1 nM - 0.1 fM [34]
miR-21 SWV 1 fM–1 nM - 0.1 fM [34]
Glucose Chronoamp. 1–40 mM −0.091 µA/mM 0.32 mM [35]

MCF-7 cells DPV 150–107 cells/mL 0.12/dec 4 117 cells/mL [36]
K562 cells DPV 220–7 × 106 cells/mL 0.13/dec 4 140 cells/mL [36]

1 IFN-γ: human interferon gamma; CEA: carcinoembryonic antigen; NSE: neuronspecific enolase; IL-8:
interleukin-8; miR-141: microRNA-141; miR-21: microRNA-21. 2 EIS: electrochemical impedance spectroscopy;
Amp.: amperometry; DPV: differential pulse voltammetry; LSV: linear sweep voltammetry; Chronoamp.:
chronoamperometry; Potent.: potentiometry; CV: cyclic voltammetry; SWV: square wave voltammetry. 3 dec means
log of the biomarker concentration. 4 Non-dimensional sensitivity values related to the ratio between two different
analytical signals.

Other relevant works with the electrochemical cell integrated in different PADs published between
2015 and 2019 are summarized in Table 2.

The analytical approaches presented in this section are quite appealing from a fabrication
point-of-view because they combine different technologies and means for integrating all the components
of the device on paper substrates that, in most cases, could be inherently aligned because they rely on
origami-based folding steps to produce the final device architecture. Moreover, they can be produced
at a very low cost without the requirement of expensive instrumentation. However, the process of
screen-printing the electrodes on the paper substrate is not that straightforward considering the porosity
of the material and its limited mechanical robustness. Moreover, most of the reported approaches rely
on several manual steps for device fabrication and performance when movable parts are included.
This should be avoided when aiming to produce prototypes with potential application in real scenarios.
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Table 2. Other relevant PADs with integrated electrochemical cell published between 2015 and 2019.

Device Biomarker Type of Sample Technique 1 Response Range Sensitivity 2 Limit of
Detection Ref.

Peptide nucleic acid biosensor Human papillomavirus PCR-amplified DNA
from SiHa cell line SWV 10–200 nM 0.004 µA/nM 2.3 nM [37]

3D “pop-up” with commercial glucometer Beta-hydroxybutyrate Whole blood Chronoamp. 0.1–6.0 mM - 0.3 mM [38]
Label-free immunosensor Biotin-avidin interaction Standard solution Chronoamp. Up to 500 ng/mL 0.33 µA mL/ng 25 ng/mL [39]

Wireless potentiometric platform Glucose Blood Potent. 0.3–3 mM -96±5 mV/dec 0.1 mM [40]
Non-enzymatic sensor Creatinine Human blood serum Chronoamp. 0.01–2.0 mM 28 µA/cm2 mM 0.22 µM [41]

Label-free immunosensor Cancer antigen 125 Quality control serum DPV 0.1–200 U/mL −0.37 µA mL/U 0.01 U/mL [42]
Label-free aptasensor Prostate specific antigen Clinical serum DPV 0.05–200 ng/mL −2.0 µA/dec 10 pg/mL [43]
Voltammetric sensor 3-nitrotyrosine Standard solution SWV 0.5 µM–1 mM - 49.2 nM [44]

Reagent-free 3D printing device Butyrylcholinesterase activity Serum Chronoamp. 1–12 IU/mL 0.23 ± 0.01 µA mL/UI 0.1 IU/mL [45]
Disposable non-enzymatic sensor Glucose Human serum Chronoamp. 0.01–1.3 mM 0.016 µA/µM 0.64 µM [46]

Enzymatic biosensor with pre-loaded (bio)reagents Glucose Whole human blood Chronoamp. Up to 25 mM - - [47]
Label-free aptasensor 17β-estradiol Clinical serum DPV 0.01–500 ng/mL −2.36 µA/dec 5 pg/mL [48]

Label-free immunosensor Cortisol Human saliva EIS 3 pg/mL–10 µg/mL 50 Ω mL/pg 3 pg/mL [49]
Enzymatic biosensor with pre-loaded (bio)reagents Glucose Whole human blood Chronoamp. 1–12 mM 0.9474 µA/mM 0.05 mM [50]

Enzymatic biosensor with CeO2 catalyst miR-21 Diluted human serum DPV 1.0–1000 fM −6.22 µA/dec 0.434 fM [51]
Enzymatic biosensor with pre-loaded (bio)reagents Glucose Spiked human serum Chronoamp. 1–20 mM - 1 mM [52]

1 SWV: square wave voltammetry; Chronoamp.: chronoamperometry; Potent.: potentiometry; DPV: differential pulse voltammetry; EIS: electrochemical impedance spectroscopy. 2 dec
means log of the biomarker concentration.
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3. Paper-Based Analytical Devices (PADs) with Non-Integrated Electrochemical Cell

Electrodes fabricated on substrates other than paper, using different techniques are outlined in
this section. Here, paper is just applied to develop the fluidic component of the final device.

One very interesting recent work by O. Fatibello-Filho and co-workers is focused on the
development of a disposable electrochemical PAD comprising 16 independent microfluidic channels
coupled to the same number of individually addressable electrochemical cells and is applied to the
multiplex glucose determination in human urine samples. The microfluidic paper component includes
the 16-channels radially distributed around the sample addition area and thus separated 22.5◦ from
each other. This distribution provides a radial elution of the sample, with homogeneous flow of the
solutes into the 16 equidistant sensing points. Here, a physical patterning process of Whatman filter
paper grade No. 1 was carried out using a craft cutter printer (see Figure 5). In fact, the major advantage
of this work was the lack of wax printing to produce the 16-channel paper component, which reduces
the cost of operation. Electrodes were fabricated by a stencil printed approach using a vinyl adhesive
mask containing the pattern. The mask was attached to a polyester substrate and conductive carbon
ink was applied by screen-printing. For the fabrication of the REs, an additional step, consisting of
deposition of Ag/AgCl ink layer onto the previous carbon ink, was performed. The WEs and the
REs were made in the same polyester sheet to keep the distance between them constant. Each of the
16 WEs had independent electrical contacts, while each set of four WEs had one RE, resulting in four
REs included in the overall device (Figure 5A). In order to perform the glucose detection, the WEs
were then modified with a film of chitosan, containing carbon black and glucose oxidase, together
with ferrocene-carboxylic acid as the redox mediator. As can be seen in Figure 5B, a circular CE was
fabricated in a separated sheet and arranged so that it was in contact with all 16 electrochemical cells
and kept at a set distance with the WEs and REs. Finally, the assembly and sealing of the integrated
PAD was performed using double-sided adhesive (Figure 5C,D) [53].

Sensors 2019, 20, 967 10 of 15 

 

 

Figure 5. (A) Design of the WEs/REs and (B) CE layers. (C) Steps for device layer assembly. (D) 
Photography of assembled multiplexed PAD. Reprinted from [53] with permission from Elsevier. 

Another simpler and effective strategy is the use of commercial screen-printed electrodes 
combined with a functionalized paper, as in [56]. The working electrode was just modified with 
CNTs, in order to increase the active area and amplify the electrochemical signal. The paper 
component, consisting of 5 mm diameter circular pieces, was produced on Whatman cellulose 
chromatography paper by a CO2 laser cutting machine. Then, the circular paper was treated with 
NaIO4 for forming aldehyde groups to immobilize the ferrocene-labeled DNA (Fc-DNA) strand 
through a Schiff alkali reaction. For the assembly, the obtained Fc-DNA-modified paper was 
combined with a commercial screen-printed electrode by sticking them onto a soft plastic slide and 
folding by using a double-sided adhesive tape, so that the paper was just on the electrochemical cell 
and performing the analysis by drop-casting. The assays relied on the target-induced synthesis of 
Mg2+-dependent DNAzyme for catalyzing the cleavage of Fc-DNA from paper, which had been 
proved by using microRNA recognition probe for miR-21, a biomarker for cardiovascular disease 
and cancer, a phosphorylated hairpin probe for alkaline phosphatase enzyme, and a DNA aptamer 
for CEA, respectively (Figure 6). 

Other relevant works that fit within this section and that were published between 2015 and 2019 
describe a disposable PAD immunosensor based on screen-printed electrodes and a paper 
microfluidic component fabricated by photolithography for the detection of α-fetoprotein biomarker 
in human serum samples [57], a PAD based on stencil-printed electrodes onto plastic transparency 
sheets and an origami paper microfluidic approach for the detection of the kidney disease biomarker 
Trefoil Factor 3 (TFF3) in human urine samples [58], and a label-free approach for the detection of 
virus particles, such as West Nile Virus, based on a microfluidic PAD with integrated microwire gold 
electrodes [59]. 

Figure 5. (A) Design of the WEs/REs and (B) CE layers. (C) Steps for device layer assembly.
(D) Photography of assembled multiplexed PAD. Reprinted from [53] with permission from Elsevier.



Sensors 2020, 20, 967 10 of 15

The same group developed a simpler disposable PAD, consisting of two electrochemical sensors,
for the simultaneous determination of uric acid and creatinine in human urine samples. In this
case, the filter paper layout just consists of a sample injection spot and a common detection area,
also cut using a home cutter printer. The electrode fabrication technology is the same as above.
Selective receptors for both target analytes were included with one WE modified with graphene
quantum dots for direct oxidation of uric acid and the other one modified with graphene quantum
dots, creatininase enzyme, and hexaammineruthenium (III) chloride as the redox mediator for the
electrocatalysis of creatinine [54].

Other good example is a disposable PAD developed for the label-free detection of C-reactive protein
in certified human serum. The PAD consists of three parts, including the paper part, the screen-printed
electrodes, and double-sided tape. The electrodes were constructed onto a PVC substrate, where the
RE and conductive pads were screen-printed with Ag/AgCl ink. Then, the carbon ink was printed for
producing both the WE and CE. The WE (4 mm in diameter) was modified by electrodeposition of gold
nanoparticles, where a self-assembled monolayer of thiol-terminated poly(2-methacryloyloxyethyl
phosphorylcholine) (PMPC-SH) was formed. The paper part was fabricated by wax printing using
Whatman filter paper grade No. 1 as substrate. This includes three different parts: the middle zone
was defined for the attachment of the screen-printed electrodes, whereas one flap area was used for
the storage of Ca2+ and incubation of the sample, and the other flap was used for the storage of the
K3Fe(CN)6 redox probe and analysis of the sample. Finally, a 20 × 20 mm2 double-sided tape was cut
and a circled area punctured to be placed above the electrochemical cell. The detection was based on
the specific binding between the phospholipid structure of PMPC-SH onto the surface of the WE with
C-reactive protein, which produced a decrease in the voltammetric response of the redox probe [55].

Another simpler and effective strategy is the use of commercial screen-printed electrodes combined
with a functionalized paper, as in [56]. The working electrode was just modified with CNTs, in order to
increase the active area and amplify the electrochemical signal. The paper component, consisting of
5 mm diameter circular pieces, was produced on Whatman cellulose chromatography paper by a CO2

laser cutting machine. Then, the circular paper was treated with NaIO4 for forming aldehyde groups
to immobilize the ferrocene-labeled DNA (Fc-DNA) strand through a Schiff alkali reaction. For the
assembly, the obtained Fc-DNA-modified paper was combined with a commercial screen-printed
electrode by sticking them onto a soft plastic slide and folding by using a double-sided adhesive tape,
so that the paper was just on the electrochemical cell and performing the analysis by drop-casting.
The assays relied on the target-induced synthesis of Mg2+-dependent DNAzyme for catalyzing the
cleavage of Fc-DNA from paper, which had been proved by using microRNA recognition probe for
miR-21, a biomarker for cardiovascular disease and cancer, a phosphorylated hairpin probe for alkaline
phosphatase enzyme, and a DNA aptamer for CEA, respectively (Figure 6).

Other relevant works that fit within this section and that were published between 2015 and 2019
describe a disposable PAD immunosensor based on screen-printed electrodes and a paper microfluidic
component fabricated by photolithography for the detection of α-fetoprotein biomarker in human
serum samples [57], a PAD based on stencil-printed electrodes onto plastic transparency sheets and an
origami paper microfluidic approach for the detection of the kidney disease biomarker Trefoil Factor 3
(TFF3) in human urine samples [58], and a label-free approach for the detection of virus particles, such
as West Nile Virus, based on a microfluidic PAD with integrated microwire gold electrodes [59].
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Figure 6. Scheme of the use of commercial screen-printed electrodes combined with a functionalized
paper. MiRNA: microRNA; KF: Klenow fragment; Nt.BbvCI: nicking endonuclease. Reprinted from [56]
with permission from American Chemical Society (ACS).

The most important analytical characteristics of these devices are summarized in Table 3.

Table 3. Analytical features of the PADs with non-integrated electrochemical cell.

Biomarker Technique 2 Response Range Sensitivity 3 Limit of
Detection Ref.

Glucose Chronoamp. 0.1–40 mM - 0.03 mM [53]
Uric acid SWV 0.010–3.0 µM 0.08 ± 0.0024 µA/µM 8.4 nM [54]

Creatinine SWV 0.010–3.0 µM 0.30 ± 0.0057 µA/µM 3.7 nM [54]
C-reactive protein DPV 5–5000 ng/mL 5.51 µA/dec 1.55 ng/mL [55]

miR-21 DPV 1 fM–1 µM 5.33 nA/dec - [56]
Alpha-fetoprotein SWV 0.01–100 ng/mL −12.698 µA/dec 0.005 ng/mL [57]

TFF3 1 ASV 0.0125–3 µg/mL - 0.0125 µg/mL [58]
West Nile virus EIS Up to 106 particles/mL - 2000 particles/mL [59]

1 TFF3: trefoil factor 3. 2 Chronoamp.: chronoamperometry; SWV: square wave voltammetry; DPV: differential
pulse voltammetry; ASV: anodic stripping voltammetry; EIS: electrochemical impedance spectroscopy. 3 dec means
log of the biomarker concentration.

Devices included in this section stand out for their ease of fabrication and huge flexibility
considering that the electrochemical transducers are produced in a separate process to that of the paper
fluidic component. Moreover, the fluidic features are only dependent on the selected paper, taking into
account that just a patterning process for producing the desired fluidic structures is required. However,
alignment and pressure conditions between the two components should be strictly controlled to not
limit the performance of the device and its fabrication and analytical reproducibility.

4. Conclusions and Outlook

While there have been a myriad of electrochemical PADs with potential application in biomedicine,
there is still some important pending issues that should be tackled before they can be really competitive
and enter the POC market.
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Since Whitesides and co-workers’ pioneering work on paper microfluidics in 2007 [60], there
has been a huge progress in the development of patterned paper architectures using a bunch of
alternative fabrication technologies and the integration of different detection strategies in order to get a
quantitative analytical response. However, in spite of the significant inherent features of the paper
material, such as availability, very low cost, simple and secure manipulation and disposability, as well
as capillary flow properties, amenability for reagent integration, and easy patterning, it suffers from
important limitations in terms of reproducibility, long-term stability, and multiplexing capabilities.
Henry and co-workers, in one of their last reviews on this topic [15], pointed out that, considering the
huge effort that the research community is putting to overcome these hurdles, effective engineering
solutions will be reported in the near future.

Electrochemical detection approaches have already shown superior performance when coupled to
paper fluidic components. They are versatile detection approaches that can be easily adapted in terms
of electrode materials and electrochemical cell configuration as well as electrochemical techniques
and required instrumentation. Nevertheless, there is still room for improvement regarding electrode
robustness and reproducibility, mainly when electrochemical cells are implemented on paper substrates.
Screen printing is mainly being used for this process and, although it is a very cost-effective parallel
fabrication technique, the fabricated electrodes often suffer from limited sensitivity and reproducibility.
Likewise, electrode architectures cannot be downsized below certain dimensions. In this context,
the integration of robust electrochemical cells fabricated on different substrates by other techniques,
such as material evaporation - photolithographic approaches, could be an important alternative to
improve the overall device performance. Device size could be further reduced, if necessary, and more
highly reproducible results could also be achieved. Although it is a more expensive alternative,
these techniques could be applied for producing electrochemical transducers that could be reused for
consecutive measurements, so that the cost per analysis could be kept low. Electrochemical detection
approaches require low-powered instrumentation that can be compact and custom made for a particular
application. There are different technologies already on the market that fulfill these requirements and
that should be seriously considered. However, most of the reported devices neglect this and have been
characterized by bulky commercial bench-top equipment. This is important for device deployment
and the final price and should be clearly addressed during device development.

The application of electrochemical paper-based biosensor approaches for point-of-care applications
will not be a reality if the analyses involve several manual steps or require complex architectures
that would hamper the eventual device mass production. Devices should require very little user
manipulation and result in very low cost-per-analysis if these are to be widespread in screening
programs, for home self-testing, or bedside testing. In this context, a sample-to-answer analytical tool
will be ideal and so integrated sample pretreatment approaches should be fully implemented. This is
difficult when working with biological samples and a large effort is still required in this direction.

The scientific community is well aware of the market pull for biomedical solutions that help detect
biomarkers that carry out disease diagnosis and prognosis more efficiently. We believe the combination
of paper fluidics and electrochemical transduction will result in devices of highly added value to be at
the forefront for market exploitation.
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