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Abstract: In this study, the potentiometric arrayed glucose biosensors, which were based on zinc
oxide (ZnO) or aluminum-doped zinc oxide (AZO) sensing membranes, were fabricated by using
screen-printing technology and a sputtering system, and graphene oxide (GO) and Nafion-glucose
oxidase (GOx) were used to modify sensing membranes by using the drop-coating method. Next,
the material properties were characterized by using a Raman spectrometer, a field-emission
scanning electron microscope (FE-SEM), and a scanning probe microscope (SPM). The sensing
characteristics of the glucose biosensors were measured by using the voltage-time (V-T)
measurement system. Finally, electrochemical impedance spectroscopy (EIS) was conducted to
analyze their charge transfer abilities. The results indicated that the average sensitivity of the
glucose biosensor based on Nafion-GOx/GO/AZO was apparently higher than that of the glucose
biosensor based on Nafion-GOx/GO/ZnO. In addition, the glucose biosensor based on Nafion-
GOx/GO/AZO exhibited an excellent average sensitivity of 15.44 mV/mM and linearity of 0.997 over
a narrow range of glucose concentration range, a response time of 26 s, a limit of detection (LOD) of
1.89 mM, and good reproducibility. In terms of the reversibility and stability, the hysteresis voltages
(VH) were 3.96 mV and 2.42 mV. Additionally, the glucose biosensor also showed good anti-
inference ability and reproducibility. According to these results, it is demonstrated that AZO is a
promising material, which could be used to develop a reliable, simple, and low-cost potentiometric
glucose biosensor.

Keywords: glucose; zinc oxide (ZnO); aluminum-doped zinc oxide (AZO); graphene oxide (GO);
potentiometric biosensor; arrayed electrodes; glucose

1. Introduction

Glucose plays a vital role in numerous physiological processes, and all cells and organs in the
human body require glucose as a source of energy in order to function properly [1]. If blood sugar
cannot be sufficiently well regulated, an individual will eventually develop type 2 diabetes (T2D). At
present, T2D is an incurable chronic disease, but it is preventable and controllable if symptoms are
recognized early enough [2]. Worldwide, approximately 422 million people have some type of
diabetes, and it is the cause of 3.96 million deaths annually [3]. For this reason, the detection and
control of blood sugar levels are crucially important.

Zinc Oxide (ZnO) is an n-type II-VI semiconductor with large exciton binding energy (60 meV)
and a wide direct band gap (3.37 eV) [4]. The ZnO nanostructure may have potential as an excellent
matrix owing to its ability to enhance signal transduction and to facilitate the immobilization of
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biomolecules while retaining activity. A matrix with these properties could be used in the
development of a biosensor [5]. Enzymes such as glucose oxidase (GOx) have a relatively low
isoelectric point (IEP approximately 4.2) [6]. Conversely, ZnO has a high isoelectric point (IEP
approximately 9.5) and thus can provide a suitable environment for enzyme immobilization [7].
Recently, Ali et al. [8] developed a potentiometric glucose biosensor by immobilizing GOx onto a
ZnO nanowires (NWs)/Ag electrode. They compared the addition of bovine serum albumin (BSA)
regarding the growth of ZnO NWs. The biosensor had an outstanding sensitivity of 35 mV/decade
over a relatively wide logarithmic concentration range (0.5 to 1000 uM) and a fast response within 4
s. Fulati et al. [9] proposed a potentiometric intracellular glucose biosensor based on a BSA-GOx/ZnO
nanoflakes (NFs)/Al microelectrode, which was used to take measurements from human adipocytes
and frog oocytes. The results showed a fast response within 4 s, and a sensitivity of 65.2 mV/decade
over a wide range of glucose concentrations (500 nM to 10 mM), as well as good values for stability,
selectivity, and reproducibility. Wahab et al. [10] studied a glucose biosensor based on ZnO nanorods
(NRs) that were deposited on a silver wire with an annealing temperature of 250 °C. The biosensor
was able to determine glucose concentration in phosphate-buffered saline (PBS) over a range of 1 uM
to 10mM and in human serum, and its linearity was 0.98. The aforementioned biosensors
demonstrate the enormous potential for ZnO in the potentiometric detection of glucose.

ZnO has been widely studied in the biosensing field and thus many of its properties and
applications are well known [8-13]. Aluminum-doped zinc oxide (AZO) is a novel material that is
composed of ZnO that had aluminum (Al) doped into it. The electrical conductivity of ZnO can be
enhanced by doping group IIl metals such aluminum, a p-type dopant, into it in order to increase the
concentration of free holes. Doping can change the characteristics of a material, such as its electron
mobility, optical properties, and electrical conductivity, and can improve its high-temperature
stability [14,15]. AZO is more sensitive compared to non-doped ZnO, especially with regard to
adsorbed species on the surface in a known microenvironment [16]. Besides, relatively little research
has been done in potentiometric biosensors applying AZO in recent years, and most studies have
investigated the use of AZO in amperometric biosensors [13,17]. Due to the good sensitivity and limit
of detection, the amperometric glucose biosensors have come into the picture. However, when a high
polarizing voltage is applied, interfering substances may lead to nonspecific signals. Compared to
the amperometric biosensors, potentiometric biosensors have an outstanding advantage in selectivity
and stability, due to the extra potential that is not required, so they have become more particularly
suitable for long-term monitoring [18]. Therefore, we applied AZO to the sensing membranes of
potentiometric arrayed glucose biosensors, thereby analyzing whether AZO was more suitable for
biosensing than ZnO.

Graphene is a form of carbon consisting of two-dimensional monolayers of carbon atoms
arranged in a honeycomb lattice [19]. Since graphene has excellent electrical conductivity, a high
volume-—surface area ratio, hydrophobicity, and strong mechanical strength [20,21], it is increasingly
being used in the development of sensors [20-23]. Graphene oxide (GO), which belongs to the
graphene family, was also selected for investigation in this study. According to the structural model
proposed by He et al. [24], GO consists of unoxidized benzene rings and has a hexagonal ring
structure. GO could be dissolved and manipulated in aqueous solution owing to the abundant
hydroxyl and epoxide groups on the basal planes and the numerous carbonyl and carboxyl groups
at the sheet edges [24-26]. GO was also able to enhance the charge transfer ability of sensors and
biosensors to improve their sensitivity [26] and limit of detection (LOD) [27]. In this study, GO was
synthesized using the modified Hummers’ method [28], and it was processed into an aqueous
solution in order to modify the sensing membranes of the potentiometric arrayed glucose biosensors.

In this study, we proposed a potentiometric arrayed glucose biosensor based on a terephthalate
(PET) substrate, which has many advantages, such as its portability, flexibility, miniaturization of
sensors, and low cost [29]. In terms of the fabrication process, the printed silver pattern served as the
reference electrodes and conductive wires on a PET substrate via screen-printing technology [30].
Sputtering was used to deposit a metal oxide, i.e.,, AZO or ZnO, to form sensing membranes. GO was
used to modify the sensing membranes, and the GOx was immobilized on the sensing electrodes by
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the entrapment method to complete the production of the glucose biosensor. Then, we investigated
the sensing characteristics of the potentiometric arrayed glucose biosensor based on Nafion-
GOx/GO/AZO, which included the average sensitivity, linearity, LOD, response time, reversibility,
selectivity, and reproducibility. Further analysis using electrochemical impedance spectroscopy (EIS)
was conducted to determine the charge transfer ability of membranes. Finally, the performances of
the proposed glucose biosensor were compared with potentiometric glucose biosensors that have
been developed in recent years.

2. Experimental

2.1. Materials

The silver conductive paste was purchased from Advanced Electronic Material Inc. (Tainan,
Taiwan). The epoxy (product no. JA643) was purchased from Sil-More Industrial, Ltd. (New Taipei
City, Taiwan). Polyethylene terephthalate (PET) was purchased from Perm Top Co., Ltd. (New Taipei
City, Taiwan). D-Glucose was purchased from ]. T. Baker Co. (New Jersey, USA). The graphite
powder was purchased from Alfa Aesar Co. (Massachusetts, USA). Nafion and glucose oxidase
(GOx) were purchased from Sigma-Aldrich Co. (Missouri, USA). The AZO (99.99% purity, Al:ZnO
= 2 wt%:98 wt%) and ZnO (99.99% purity) targets were purchased from Ultimate Material
Technology Co., Ltd. (Hsinchu, Taiwan). The 0.1 M phosphate-buffered saline solution (PBS, pH 7.0)
was prepared by mixing the standard solution of potassium phosphate monobasic (KH2POs) and
potassium phosphate dibasic (K2HPOs), which were purchased from Katayama Chemical Co., Ltd.
(Osaka, Japan). All chemicals used in this study were of analytical grade and used without further
purification.

2.2. Deposition of Sensing Membranes and Preparation of Electrodes

The PET substrate was cut into an area of 10.5 cm? (3 cm x 3.5 cm) which was cleaned using
ethanol and deionized (D.I.) water in an ultrasonic vibrator for 10 min. The silver conductive paste
was printed onto the PET substrate, the electrodes and conductive wires were printed using screen-
printing technology, and then they were placed in a high-temperature oven at 120 °C for 30 min.

The high-purity circular AZO and ZnO targets were used for deposition of the sensing
membranes. ZnO or AZO was sputtered onto the PET substrate by radio frequency (RF) sputtering
at 3 mTorr pressure, 60 W power, and with Ar/O: as the reactive gas flowing at 9/1 sccm for 30 min.
In terms of encapsulation, the epoxy was printed on the sensors as an insulation layer, and the
completed samples were then placed in a high-temperature oven at 120 °C for 90 min. The
aforementioned process produced six defined areas that served as the sensing windows (1.77 mm?
per window), and which were able to protect the conductive wires and block an aqueous solution.

2.3. Synthesis of Graphene Oxide and Modification of the Sensing Membranes

The modified Hummers’ method [28] was employed to synthesize GO using graphite powder.
Graphite and sodium nitrate (NaNOs) were mixed (vol. ratio: 1:1) in a sealed glass container, and
sulfuric acid (H2S04) was added to the mixture. The mixture was stirred in an ice bath at 0—4 °C for 1
h. Then, potassium permanganate (KMnO1) was slowly added into the uniform mixture and stirred
for 24 h. Subsequently, deionized (D.l.) water was added into the mixture, followed by hydrogen
peroxide (H202) to cease the oxidation reaction, and then the mixture was stood for 24 h. Next, the
produced precipitate was washed by using a solution of hydrochloric acid (HCI) and D.I. water (vol.
ratio: 1:10). Finally, the precipitate was rinsed with D.I. water until it reached pH 7.0, after which it
was freeze-dried to remove any excess water. Finally, the brown-colored GO powder was obtained.

In order to modify the sensing membranes, the GO powder was dissolved in D.I. water and
placed in an ultrasonic vibrator for 10 min in order to prepare the 0.3 wt% GO solution [31].
Subsequently, 2 uL of GO solution was separated by a micropipette and used to modify the sensing
membranes by the drop-coating method. Thereafter, the membranes were left to dry at room
temperature.
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2.4. Immobilization of Nafion-GOx Sensing Membranes

The 10 mg of glucose oxidase powder was added to 1 mL of 0.1 M PBS solution (10 mg/mL in
PBS). The glucose oxidase solution and Nafion were uniformly mixed (vol. ratio: 4:3) by using a
vortex mixer [31]. Finally, the mixture of Nafion and glucose oxidase was dropped onto the sensing
windows to form the glucose sensing membrane, and then the Nafion-GOx sensing membranes were
dried at 4 °C for 12 h. The unbound enzyme was removed by rinsing with D.I. water. After the GOx
was immobilized on the sensing windows, the potentiometric arrayed glucose biosensor based on
Nafion-GOx/GO/ZnO or Nafion-GOx/GO/AZO was fabricated.

The schematic diagram of the potentiometric arrayed glucose biosensor is shown in Figure 1.
The function of each layer in Figure 1a is as follows: (1) the enzymatic membrane acts as a biometric
layer; (2) the metal oxide layer serves as a matrix; (3) epoxy provides an insulation layer preventing
contact with aqueous solution; (4) silver paste is printed on the substrate as reference electrodes and
conductive wires; (5) PET is used as a substrate of the flexible arrayed biosensors; (6) GO is used as a
modification layer, which is used to enhance the specific surface area of the sensing membranes. In
Figure 1b, it can be seen that the biosensor has six sensing windows, two reference electrodes, and
eight pins for connection with the V-T measurement system. Figure 1c only shows the optical image
of the potentiometric arrayed glucose biosensor based on Nafion-GOx/GO/AZO, which the
dimensions annotated in yellow. Since the optical images of ZnO and AZO were almost identical (the
membranes were transparent), only one of them is shown in Figure 1.

(a)
(1) Enzymatic membrane
(2) Metal oxide layer

3) Encapsulation layer (c)
(4) Conductive layer

(5) Substrate

9.00 mm

6.50mm

(6) Modification layer : 325mm

(b) i 1.60 mm

—

Reference electrodes ‘
Sensing windows ~ | 2730mm

< 1.70 mm
1.00 mm'

325mm o,
1.00 mm

1.60 mm

Pins of connection with
V-T measurement system

Figure 1. Schematic diagrams of the potentiometric arrayed glucose biosensor: (a) cross-section view
and (b) top view. (c) Optical image of the potentiometric arrayed glucose biosensor based on Nafion-
GOx/GO/AZO (dimensions annotated in yellow).

2.5. Voltage-Time Measurement System

The sensing characteristic of the biosensor was measured by a voltage—time (V-T) measurement
system [32], which is composed of a power supply, a readout circuit, a data acquisition card (DAQ
card) (Model: NI USB-6201, National Instrument Corp. Texas, USA), and the system software (Model:
LabVIEW 2011, National Instrument Corp. Texas, USA). The glucose biosensor measured via the V-
T measurement system is shown in Figure 2. In this study, due to its high common-mode rejection
ratio (CMRR) and high input impedances, LT1167 was determined to be suitable for bio-electronic
signals. The readout circuit consists of eight instrumentation amplifiers (INA, LT1167). The output
voltage is expressed by Equation (1):
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Vou= (Vi = (V) X (14 2 = Vi - Voo = Voo (v Ro= =) M)
G

where Vout is the output voltage (INA), V- is the non-inverting input voltage (INA), V-is the inverting
input voltage (INA), Rm is the internal equivalent resistance, V¢ is the gain resistance, V. is the
potential of the reference electrode, and the Vwork is the potential of the working electrode. Herein,
because Rc is an open circuit (Rc = =), the voltage gain of INA is 1. According to Equation (1), we can
obtain Vou, which is the potential difference between the working electrode and the reference
electrode, i.e, -Vwork is the response voltage of the biosensor. The working schematics of the
potentiometric measurement are shown in Figure 3.

(@ (b)

Signal transmission path: A—B—D—E

&) (B) ©

(E)

Glucose Readout  Power DAQ
biosensor circuit supply card

Computer with LabVIEW

Figure 2. Experimental system diagram of the voltage—time (V-T) measurement system: (a) schematic
view and (b) experimental setup.

Vref

Vwork - Vout
O LT1167

E— .|~

Connected with
O00 000 ampliﬂer 7'y

(LTl 1 67) Vwork Vref

Solution . -1

Figure 3. Working schematics of the potentiometric measurement, which utilizes the voltage

difference between a working electrode and a reference electrode to perform. LT1167 is the amplifier
used in the readout circuit (inset).

2.6. Characterization of Materials

The optical microscope with a light source (Model: VHX-5000 and VH-Z100R, Tokyo, Japan) that
was used to observe the morphology of a silver electrode was purchased from Keyence Co., Ltd. The
field-emission scanning electron microscope equipped with an energy-dispersive detector (FE-SEM,
Model: JSM-6701F, Tokyo, Japan) that was used to investigate the morphology and conduct the
elemental analysis was purchased from JEOL Ltd. The Raman spectrometer (Model: iHR550, Tokyo,
Japan) with 532 nm laser excitation that was used to characterize carbon materials was purchased
from Horiba, Ltd. The scanning probe microscope (SPM, Model: Dimension Icon, Texas, USA) that
was used to examine the surface roughness of membranes was purchased from Bruker Corp.
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2.7. Analysis of Electrochemical Impedance

The electrochemical impedance analysis was characterized by using a potentiostat/galvanostat
(Biologic, SP-150, Isere, France), and a three-electrode setup was used with a Pt panel as a counter
electrode, an Ag/AgCl reference electrode, and a working electrode. The frequency range was set
from 200 kHz to 50 mHz. The amplitude of the sine signal was 10 mV (Ewe vs. Eoc = 0V). The test
solution was a 0.1 M PBS solution (pH 7.0). Other experimental parameters, such as temperature,
were kept constant.

3. Results and Discussion

3.1. Raman Spectroscopy of GO and Morphology of Membrane

The synthesized GO was characterized by Raman spectroscopy. Raman spectroscopy is an
analytical technique for characterizing the differences between sp? and sp? hybridization in carbon
materials [33]. The Raman spectra of GO are characterized by a D band at approximately 1340 cm™
and a G band at approximately 1590 cm™' [34,35]. The D band represents the degree of defects on
graphene sheets, resulting from the presence of sp3-carbon atoms; the G band is used to evaluate the
graphitization degree, originating from in-plane vibrations of sp?>-carbon atoms [34,35]. The intensity
ratio of the D and G bands (In/Ic) is an index of the degree of defects on graphene [34-36]. As shown
in Figure 4, the spectrum shows two obvious peaks of D (1347.89 cm™) and G (1595.31 cm™), and the
value of In/Ic was 0.92. The results indicated the successful synthesis of GO.

3000

2500

2000

1500

1000

Intensity (a.u.)

5001 1/1,=0.92

T T T T T T T T T
1000 1200 1400 1600 1800 2000

Raman shift (cm")

Figure 4. Raman spectrum of graphene oxide (GO).

The morphology of materials was characterized by using the FE-SEM and the optical microscope,
as shown in Figure 5. From Figure 5a, the surface of a silver electrode, which was used as the
conductive layer, was compact. After that, the ZnO and AZO were deposited onto the silver electrode
by sputtering. As shown in Figure 5c-d, the ZnO and AZO showed a uniform and compact
distribution of nanoparticles. The grain size of both films was nearly the same. In order to compare
the differences between the ZnO membrane and the AZO membrane and to determine whether Al
was successfully doped into the ZnO membrane, energy-dispersive X-ray spectroscopy (EDX) was
used for the qualitative analysis of both membranes. In Figure S1, both EDX spectra all exhibited
obvious Si, Pt, O, and Zn peaks. Si and Pt peaks were originated from Si substrates and the
preparation of samples, respectively. In Figure S1b, a small Al peak could be found next to the Si
peak. This is due to the light doping of the AZO target (Al:ZnO =2 wt%:98 wt%). The results indicated
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that the AZO membrane was successfully deposited by sputtering, and there is a difference compared
to the ZnO membrane. In Figure 5b, the GO membrane exhibited a highly crumpled surface with
jagged wrinkles across the surface. These wrinkles increased the surface roughness of the membrane,
which could provide numerous active sites to facilitate the adsorption of ions onto the membrane.
Furthermore, the morphology of the GO membrane was further characterized by the 2D and 3D
atomic force microscope (AFM) images, as determined by using an SPM. Figure 6 shows an array
composed of jagged carbon flakes. The GO membrane exhibited a quite high roughness average (Ra)
of 75 nm and root mean roughness (Rq) of 99 nm, as determined by the surface roughness analysis. It
was reported that the large surface roughness of the electrode was responsible for the good sensing
characteristics of a sensor [37]. From these results, the GO membrane with high R. and Rq might play
an indispensable role in the potentiometric arrayed glucose biosensors.

YUNTECH

Figure 5. Field-emission scanning electron microscope (FE-SEM) images of different membranes: (a)
silver, (b) GO, (c) zinc oxide (ZnO), and (d) aluminum-doped zinc oxide (AZO).

|5 1 Hoigh Semsor 00m

Figure 6. 2D and 3D atomic force microscope (AFM) images of GO membrane.
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3.2. Average Sensitivity, Linearity, LOD, and Response Time of Potentiometric Arrayed Glucose Biosensors

The sensing mechanism of the potentiometric biosensor follows the Nernst equation (2) [38]:
RT RT
E=E+ < Infage] = E’- 2303+ pH )

where E is the electromotive force (EMF), E° is the standard potential of the reference electrode, R is
the gas constant, T is the temperature in Kelvins, F is the Faraday’s constant, and pH is the pH of the
electrolyte. The sensing mechanism of most potentiometric glucose biosensors is based on an
enzymatic reaction catalyzed by glucose oxidase (GOx) according to Formulas (3) and (4) [8]:

GOx
H,0 + O, + glucose — &-gluconolactone + H,0, 3)
spontaneous
8 — gluconolactone —— gluconate™ + H* 4

As shown in Formulas (1) and (2), d-gluconolactone and hydrogen peroxide were produced after
the enzymatic reaction was catalyzed by GOx. The produced d-gluconolactone spontaneously
converted to gluconate ions and hydrogen ions (H*). Owing to the local variation of H* in the
microsurroundings of a membrane, the different surface potentials are formed further. When the
potentiometric arrayed glucose biosensor was measured over a low glucose concentration, the pH of
the microsurroundings of a membrane was high; the negative value of E was larger according to
Equation (2), and vice versa. Based on Equation (1), the obtained negative value was converted into
a positive value via LT1167. This is the sensing mechanism by which the potentiometric glucose
arrayed biosensor detects glucose.

The response characteristics of the biosensors based on Nafion-GOx/GO/ZnO or Nafion-
GOx/GO/AZO were measured in 0.1 M PBS (pH 7.0) solutions with different glucose concentrations,
ranging from 0 to 14 mM, by using the V-T measurement system. The average response voltages
(mean) and the error bars (standard deviation, SD) were obtained from the response voltages of the
six windows (1.77 mm?), and then the average sensitivity and linearity were calculated by Origin 7.0.
Next, the average sensitivities and linearities of both types of sensors were recorded and analyzed.
As shown in Figure 7, the glucose biosensors over a glucose concentration range (2-10 mM) exhibited
a linear variation in the response voltages. When the glucose concentration was out of this range, the
variation in response voltages was reduced, i.e., the response curve was flatter. Therefore, the linear
range of the glucose biosensors was 2-10 mM. In addition, the difference between intervals over the
tested glucose concentration range (2-10 mM) were extremely significant, according to the results
shown in Table S1. As shown in Figure 7 and Table 1, the glucose biosensor based on Nafion-
GOx/GO/AZO performed well, with excellent average sensitivity (15.44 mV/mM), which was
markedly higher than that of the glucose biosensor based on Nafion-GOx/GO/ZnO (11.92 mV/mM).
The enhancement of the average sensitivity can be attributed to the electrical conductivity of the
matrix. By doping a small amount (2 wt%) of Al into ZnO, Al* ions replaced Zn?* ions in the ZnO
lattice, resulting in the lower electrical resistivity of ZnO, thereby improving the sensing
characteristics. Apart from this, the level of the response voltages was shifted upward when AZO
was used as the matrix of the glucose biosensor.
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Figure 7. Response curves of the glucose biosensors over glucose concentrations ranging from 0 to 14
mM, for Nafion-GOx/GO/ZnO and Nafion-GOx/GO/AZO. AZO: aluminum-doped zinc oxide, GOx:

glucose oxidase.

Table 1. Sensing parameters of the potentiometric arrayed glucose biosensors over a glucose

concentration ranging from 0 to 14 mM.

Glucose Response Average
Membrane Concentration Voltage Sensitivity Linearity
(mM) (Mean = SD, mV) (mV/mM)
0 118.73 +1.76
2 111.64 +3.77
4 94.10 + 4.36
Nafion- 6 67.54 +3.68
GOx/GO/ZnO 8 4320 £4.16 11.92 0998
10 17.88 + 6.36
12 713+5.17
14 1.83 +£5.45
0 157.02 +2.01
2 145.13 +5.57
4 123.12 + 4.80
Nafion- 6 90.32 +5.47
GOx/GO/AZO 8 53.49 + 6.38 1544 0997
10 25.50+7.71
12 15.56 + 6.58
14 10.72 + 5.49

After determining the average sensitivity of the potentiometric arrayed glucose biosensor based
on Nafion-GOx/GO/AZO, the response time and limit of detection (LOD) were then characterized
via the V-T measurement system. In order to determine the baseline of the biosensor, the response
voltage of the biosensor was measured in pure 0.1 M PBS solutions (pH 7.0) without glucose
(measurement times, N =7); the baseline of the potentiometric glucose biosensor is 157.02 + 2.01 mV,
as shown in Table 1. According to the obtained baseline, the LOD of the potentiometric glucose
biosensor was calculated, which was the lowest concentration for the detection of analytes at a
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specified signal-to-noise ratio (S/N = 3) [39,40]. The LOD was 1.89 mM, which the value was in
accordance with the measured results. Finally, the 5 mM glucose was added into a pure PBS solution
(pH 7.0) to examine the response time of the potentiometric arrayed glucose biosensor. The response
time was the period of time required to achieve 95% of the steady state (containing analytes) from
the origin state (without analytes) over the whole concentration range [41]. According to the
experimental results, the response time of the potentiometric arrayed glucose biosensor based on
Nafion-GOx/GO/AZO was 26 s.

3.3. Electrochemical Impedance Spectroscopy

Electrochemical impedance spectroscopy (EIS) detects variations in electrochemical impedance
within an electrochemical system by applying alternating current (AC) signals with different
frequencies through an electrode, and an equivalent circuit model is used to describe the
electrochemical impedance of the interface [42-44]. The membrane-solution interface can be
described by the Stern-Grahame model [44], as shown in Figure 8a. The equivalent circuit model is
shown in Figure 8b, the solution resistance (Rs) represents the solution resistance within the working
electrode and the reference electrode; the charge transfer resistance (R«) represents the transfer
process of charges within the electrodes and the electroactive species when the electrochemical
reaction occurs; the double-layer capacitance (Ca) represents the electrical double layer (EDL) on the
electrode surface; the Warburg impedance (Zw) represents the diffusion layer formed by ions in the
solution. In this study, the focus of our investigation was R«, i.e., the charge transfer ability of the
membranes.

(@) . _ B @
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H H
® o
H H H H
o . o Hydrated cation H . H Hydrated anion
H o H o @& o
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| |
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IHP OHP 1
| | = 1
o I
= W |
LIS i
|
o = 1
H H R 1
o
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& @ =,
3 of =
S - B 1 8
2 & 2. 0 1
o o ® I >
o e H H 1 =]
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o@c°_
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Figure 8. (a) Schematic diagram of the membrane-solution interface. (b) Equivalent circuit model for
electrochemical impedance spectroscopy (EIS).



Sensors 2020, 20, 964 11 of 20

As shown in Figure 9 and Table 2, the charge transfer resistance (Ret) of AZO was lower than the
Ret of ZnO. The results are in accordance with the previous study [16]. Next, the membranes were
further modified by GO. The results show that the semicircle diameters of the GO-modified
membranes (GO/ZnO and GO/AZO) were smaller than those of the non-modified membranes (ZnO
and AZO), which suggests that the presence of GO can facilitate the charge transfer between the
solution and membrane. This is due to the superior electrocatalytic activity of GO [45], which
decreases the Rt of the membrane. Finally, the GOx was immobilized on the membranes and
immersed in a PBS solution (pH 7.0) containing 5 mM glucose to observe the variation of Ret. The Re
of the membranes was greatly increased. Even if the catalytic reactions occurred, the values of Re
were still higher than those obtained from bare membranes according to the results. The increase in
Ret can be attributed to the non-conductivities of the enzyme and Nafion. This finding indicated that
the GOx was steadily immobilized on the membrane, causing the obstruction of the charge transfer
[46,47].
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Figure 9. Nyquist plots of different membranes obtained by fitting of EIS.

Table 2. Charge transfer resistances obtained by the fitting of EIS. PBS: phosphate-buffered saline.

Membrane Solution Ret ()
ZnO PBS 1.17 x 104
AZO PBS 5.72 x 103
GO/ZnO PBS 2.99 x 103
GO/AZO PBS 1.83 x 103
Nafion-GOx/GO/ZnO PBS (5 mM glucose) 3.53 x 103
Nafion-GOx/GO/AZO PBS (5 mM glucose) 2.31 x 103

3.4. Hysteresis of Potentiometric Arrayed Glucose Biosensor Based on Nafion-GOx/GO/AZO

Hysteresis is a type of non-ideal memory effect response in a potentiometric biosensor, causing
a delay in potential responses [48]. The phenomenon is due to the residual potential within the solid—
liquid interface arising from hydrated ions during repeated measurements, thereby resulting in the
errors of response output errors. Hysteresis curves can be used to evaluate the evaluation for the
stability and reversibility of a potentiometric biosensor, where Vu is the hysteresis voltage, which is
defined as the voltage shift between initial response voltage and final response voltage [49].

The hysteresis curves of the potentiometric arrayed glucose biosensor based on Nafion-
GOx/GO/AZO were obtained across multiple cycles of different glucose concentrations (5 mM — 3
mM— 5 mM— 7 mM— 5 mM and 5 mM — 7 mM— 5 mM— 3 mM— 5 mM), as shown in Figure 10.
The Vi were 3.96 mV and 2.42 mV in the forward cycle and reverse cycle, respectively. Although the



Sensors 2020, 20, 964 12 of 20
local pH in the microsurrounding of electrodes was changed by the catalytic reaction of GOx, the
residual potential arising from hydrated ions still caused some deviation in the response potential.
The response potential did not change in accordance with expectations. This was due to the sudden
change in glucose concentration, which caused a delay in the response. This phenomenon is
inevitable in potentiometric biosensors. According to the Vu values that were obtained, the

potentiometric arrayed glucose biosensor based on Nafion-GOx/GO/AZO showed good reversibility
and stability.
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Figure 10. Hysteresis curves of the potentiometric arrayed glucose biosensor based on Nafion-
GOx/GO/AZO across multiple cycles of (a) 5 mM— 3 mM— 5 mM— 7 mM— 5 mM and (b) in the
cycle of 5 mM— 7 mM— 5 mM— 3 mM— 5 mM, respectively.

3.5. Anti-Interference Ability of Potentiometric Arrayed Glucose Biosensor Based on Nafion-GOx/GO/AZO

Selectivity is a key evaluation criterion in biosensors. In this study, we selected the potential
interfering substances in human blood to test the selectivity of the potentiometric glucose biosensor
based on Nafion-GOx/GO/AZO, such as ascorbic acid (AA), urea, and uric acid (UA), dopamine
(DA), and fructose. Substances that commonly cause interference in amperometric biosensors, such
as AA and UA, can also be used to test the selectivity of potentiometric biosensors because they are
highly likely to have an effect on the potential response of potentiometric biosensors [32,50,51]. Firstly,
the glucose biosensor was immersed in a 0.1 M PBS solution with 5 mM glucose concentration until
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the response voltage was steady. The interference analytes, such as 0.06 mM AA, 5 mM urea, and 0.3
mM UA were added into the PBS solution per 60 s, sequentially. Finally, glucose was added to the
same PBS solution (achieve 12 mM). The response voltage changed as expected and remained stable.

As shown in Figure 11, the results demonstrated that the interference analytes only generated a
tiny amount of noise, i.e., there was a negligible effect on the response voltage of the biosensor. Due
to the high selectivity of GOx, urea did not affect the potentiometric glucose biosensor. According to
a study conducted by Adeloju et al., AA had a significant influence on the glucose potentiometric
biosensor [52]. However, the presence of AA and UA in our study only had a slight effect on the
response signal of the biosensor. The potentiometric glucose biosensor based on Nafion-
GOx/GO/AZO exhibited an excellent specificity for glucose.
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Figure 11. Interference effects of the potentiometric arrayed glucose biosensor based on Nafion-
GOx/GO/AZO upon the addition of ascorbic acid (AA) (0.06 mM), dopamine DA (0.06 mM), urea (5
mM), uric acid (UA) (0.3 mM), fructose (0.05 mM) and glucose (12 mM).

3.6. Reproducibility of Potentiometric Arrayed Glucose Biosensor Based on Nafion-GOx/GO/AZO

In order to evaluate the reproducibility of the potentiometric arrayed glucose biosensor based
on Nafion-GOx/GO/AZO, we fabricated the 15 biosensors in three batches and then selected the five
sensors (number of sensors, N = 5), which had the optimal and similar performance among them to
test (the fabrication of five biosensors in one batch). Next, the five biosensors were respectively
measured in PBS solutions (pH 7.0) with glucose concentrations ranging from 2 to 10 mM, followed
by calculating their average sensitivity and linearity, as shown in Figure 12 and Table 3. In Figure 12
and Table 3, it can be seen that the response voltages of biosensors were not significantly different,
and the average sensitivities and linearities also showed little variation. Finally, the relative standard
deviation (RSD) of the average sensitivities was determined. RSD is defined as the ratio of the
standard deviation to the mean, is expressed by Equation (5):

RSD = o/u ©)

where o represents the standard deviation and p represents the mean. Herein, we used five values
of the average sensitivities to find out the mean and standard deviation, as shown in Table 3. The
mean of the average sensitivities was 15.34 mV/mM; the standard deviation of the average
sensitivities was 0.23 mV/mM. From Equation (5), the RSD of the average sensitivities was 1.51%.
These results indicated good reproducibility of the potentiometric biosensors and demonstrated that
this facile fabrication was reliable.
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Figure 12. Average sensitivities and linearities of the five potentiometric arrayed glucose biosensors

based on Nafion-GOx/GO/AZO over glucose concentrations ranging from 2 to 10 mM (number of

sensors, N =15).

Table 3. Reproducibility of the five independent potentiometric arrayed glucose biosensors based on

Nafion-GOx/GO/AZO over glucose concentrations ranging from 2 to 10 mM (number of sensors, N =

5).
Number of Glucose. Response Ave'rflg'e - -
Sensors Concentration Voltage Sensitivity Linearity
(mM) (Mean = SD, mV) (mV/mM)
2 146.64 + 3.77
4 121.10 £4.36
1 6 91.54 +3.68 15.42 0.996
8 50.20 +4.16
10 27.88 £6.36
2 145.13 +4.57
4 123.12 +4.80
2 6 90.31 +5.47 15.14 0.997
8 53.49 + 6.38
10 28.50+5.71
2 142.87 + 5.46
4 125.10 £4.92
3 6 89.35£5.16 15.67 0.994
8 51.34 +6.01
10 23.07 £ 6.38
2 145.25 +£4.25
4 124.69 +5.28
4 6 92.10£6.16 15.38 0.996
8 53.46 +5.74
10 27.03+5.95
2 144.51 + 6.34
4 119.39 £4.31
5 6 89.37 +5.84 15.10 0.997
8 50.86 +3.17
10 27.79 £5.06
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3.7. Lifetime of Potentiometric Arrayed Glucose Biosensor Based on Nafion-GOx/GO/AZO

In the evaluation of a biosensor, it is crucial to establish the lifetime of the sensor, particularly as
potentiometric arrayed glucose biosensors use biological materials, such as enzymes. In this study,
we investigated the average sensitivity of the potentiometric glucose biosensor at different times to
evaluate the lifetime. Firstly, the average sensitivity of the biosensor was recorded on the first day,
which served as the datum value. Next, we measured the average sensitivities of the potentiometric
arrayed glucose biosensor based on Nafion-GOx/GO/AZO every day. The data were divided by the
datum value (the average sensitivity of the biosensor recorded on the 1st day), respectively, and the
relative average sensitivities were subsequently obtained. Besides, the biosensor was stored at 4 °C
when not in use. The lifetime of the proposed biosensor was obtained by carrying out this test, and
the measuring period was a month.

The average sensitivity variation of the biosensor through a month is shown in Figure 13. From
the 1st to the 11th day, there was a little decrease in average sensitivity; the decay rate was -0.05
mV/mM/day. From the 11th to the 19th day, it could be seen that the average sensitivity decayed
obviously; the decay rate was -0.69 mV/mM/day. It was due to the large reduction of the enzyme
activity and the gradual destruction of the membrane during repeated measurements. From the 19th
to the 26th day, the average sensitivity still continued to decrease until the 26th day; the decay rate
was —0.24 mV/mM/day. In this period, the biosensor merely relied on the residual enzymes of the
membranes to remain the average sensitivity. After the 26th day, there was no variation in average
sensitivity. The relative average sensitivity was about 49.84%; this value seems to be the cut-off value
of the average sensitivity. The lifetime of the biosensor was determined according to the following
definition; lifetime was defined as the storage or operational time required to obtain a decrease in
sensitivity to 90% within the linear concentration range [52]. As shown in Figure 13, the relative
average sensitivities on the 12th and the 13th day, respectively, were 91.23% and 89.86%. Therefore,
the lifetime of the potentiometric arrayed glucose biosensor based on Nafion-GOx/GO/AZO was 12
days. The short lifetime was due to the restriction, which GOx caused. In addition, the lifetime of 12
days compared to similar reports [53,54] is relatively long. We also conducted the reproducibility for
the sensor, as shown in Figure S2. The results showed that the average lifetime of the sensors is 12
days for the different samples, which proves that the sensors have good stability and reproducibility
in this study. Biological materials inevitably shorten the lifespan of biosensors, and this is a critical
challenge in the field of biosensing research. In fact, a lifetime of 12 days may be considered
acceptable if this biosensor is used as a disposable device.
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Figure 13. Average sensitivity variation of the potentiometric arrayed glucose biosensor based on
Nafion-GOx/GO/AZO through a month.
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3.8. Comparisons of Glucose Biosensors

The comparisons of currently available potentiometric glucose biosensors are presented in Table
4 [8-10,55-58]. It can be seen in Table 4 that ZnO nanostructures applied to biosensors are prepared
in two stages using both sol-gel and aqueous chemical growth deposition techniques [8-10]. Their
difference regards the types of used electrodes and whether BSA modifies the membrane. According
to the investigation by Ali et al. [8], the sensor containing BSA showed the larger linear ranges
compared to the other sensor that did not contain BSA. Fulati et al. [10] reported that the sensitivity
was augmented largely because the surface-to-volume ratio of ZnO NFs was higher than that of ZnO
NRs. Therefore, the intracellular glucose biosensor based on a BSA-GOx/ZnO NFs/Al microelectrode
showed the best sensitivity (65.2 mV/decade) and the widest linear range (500 nM to 10 mM) [10].
The potentiometric arrayed glucose biosensor based on Nafion-GOx/GO/AZO was compared to
other potentiometric biosensors. However, compared to the literature [10], the experiments described
here were long, and there was no further experimental analysis for the long-time measurement of the
literature [10]. In this article, the stability analysis was performed in Section 3.4, and it also showed a
good hysteresis voltage. Moreover, this study also showed the 12-day lifetime in Section 3.7. All
biosensors are based on a single electrode such as glassy carbon electrodes (GCE) or ion-selective
electrodes (ISE). Since the sensing area did not need to be determined, these single electrodes could
be modified easily by the dip-coating method and aqueous chemical growth deposition techniques
to grow the nanostructures. However, the proposed biosensor possessed the arrayed electrodes, and
so we applied carbon nanomaterials such as GO to the modification of the electrodes by the drop-
coating method, instead of the aqueous growth deposition. Although the proposed biosensor did not
have a wide linear range for the detection of glucose, the sensitivity and linearity were excellent
compared with other potentiometric glucose biosensors (reaching 15.44 mV/mM over a narrow
glucose concentration range). In this study, the potentiometric arrayed glucose biosensor based on
Nafion-GOx/GO/AZO showed good analytical performances, including an excellent average
sensitivity of 15.44 mV/mM and linearity of 0.996 over a glucose concentration range (2 mM to 10
mM), a response time of 26 s, and an LOD of 1.89 mM. Moreover, we had more experiments about
the stability of the biosensor, such as the temperature effect, hysteresis, and lifetime. Due to the
stability for the biosensors being very important, if the biosensors were not stably sufficient, it may
cause a measurement error. This is a serious problem for biosensors. According to the results, the
performances of the biosensors were satisfactory in the condition of facile processes.

Table 4. Potentiometric glucose biosensors based on different electrodes [8-10,55-58].

Lineari Response

Electrode Linear Range  Sensitivity . LOD  Ref.
ty time
Nafion- 2mMto 10 15.44 0.997 2% 1.89 This
GOx/GO/AZO/Ag mM mV/mM ' ° mM  study
BSA-Nafion-GOx/ZnO 35 [9]
5-1 A 1-4 A
NWs/Ag 0-5-1000 M mV/decade N i N/ 2010
500 nM to 10 65.2 [10]
BSA-GOx/ZnO NFs/Al M mV/decade 0.990 4s N/A 2010
1 uM to 2.51 [11]
GOx/ZnO NRs/Ag 10 mM mV/decade 0.980 N/A N/A 2018
0.5 uM t 34 194 [56]
FesOu-GOx-Ppy/MGCE M mV/decade 0.998 6s 0.3 M 2014
0.58 0.5 [57]
PAPBAOT/GCE 5-50 mM mV/mM 0.992 200 s M 2013
8.62 [58]
AgNPs-GOx/Ag-ISE 0.1-3 mM mV/decade N/A N/A 10 pM 2009
43.7 [59]
MIP-based on MAA 0.02-7 mM mV/mM 0.980 N/A N/A 2017
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Note: GOx: glucose oxidase; GO: graphene oxide; AZO: aluminum-doped zinc oxide; ZnO: zinc oxide;
NWs: nanowires; BSA: bovine serum albumin; NFs: nanoflakes; Ppy: polypyrrole; MGCE: magnetic
glassy carbon electrode; GCE: glassy carbon electrode; PAPBAOT: poly (3-aminophenyl boronic acid-
co-3-octylthiophene); MIP: molecularly imprinted polymer; MAA: methacrylic acid; NRs: nanorods.

In this study, the potentiometric arrayed glucose biosensor based on Nafion-GOx/GO/AZO can
be fabricated by using a facile method and has other advantages, including miniaturization, low cost,
and feasibility of mass production. However, the analytical parameters of the proposed biosensor
have room for improvement. Apart from this, the limitations induced by GOx (e.g., lifetime) should
be overcome, although the glucose biosensor using GOx has excellent reproducibility and anti-
interference ability. In order to develop a practical device for measuring blood glucose, further
research studies will be conducted to improve the performances of the glucose biosensor. Therefore,
we plan to investigate the application of nanostructures (e.g., quantum dot) or BSA to modify the
enzymatic membrane [8,9], so as to enhance the linear range and response time of the biosensor. The
denaturation rate of GOx must be decreased to extend the lifetime of the glucose biosensor. Finally,
the measurement system and the glucose biosensor will be applied to measuring glucose in biofluid
(e.g., serum) to realize a rapid, accurate, and simple detection of blood glucose.

4. Conclusions

We proposed a facile method for the development of the potentiometric arrayed glucose
biosensor based on a PET substrate. The analytical performances were evaluated via the V-T
measurement system. The average sensitivity of the potentiometric arrayed glucose biosensor based
on Nafion-GOx/GO/AZO was higher than that of Nafion-GOx/GO/ZnO. The reason was attributed
to the improvement of the electrical conductivity after doping Al in the ZnO lattice. Furthermore, the
EIS analysis revealed that the charge transfer resistance of AZO was lower than that of ZnO.
Compared to the glucose biosensors developed in recent years, the glucose biosensor based on
Nafion-GOx/GO/AZO exhibited good analytical performances, such as an excellent average
sensitivity of 15.44 mV/mM over a glucose concentration range (2-10 mM), a response time of 26 s,
and good reproducibility. Our findings demonstrated that AZO may be a promising sensing platform,
with superior performance compared with ZnO. The proposed sensor involves a relatively facile
process, and the results presented herein could be useful in the development of an effective,
appropriate, and easily fabricated potentiometric glucose biosensor. In the future, we hope to propose
a comprehensive flexible arrayed potentiometric biosensor and realize the miniaturization of the
device. Modification of the different types of the enzyme oxidase on a plurality of the working
electrodes is required so that cross-comparison and integration of the data on the platform can realize
the convenient detection equipment.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: EDX spectra
of different membranes: (a) ZnO and (b) AZO, Figure S2: The reducibility test for the lifetime of the glucose
biosensors, Table S1: p-value for response voltages intervals under different glucose concentrations.
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