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Abstract: The global positioning system (GPS) is an essential technology that provides positioning
capabilities and is used in various applications such as navigation, surveying, mapping,
robot simultaneous localization and mapping (SLAM), location-based service (LBS), etc. However,
the GPS is known to be vulnerable to intentional attacks such as spoofing because of its simple signal
structure. In this study, a direct method is proposed for GPS spoofing detection, using Attitude and
Heading Reference System (AHRS) accelerometer and analyzing the detection performance with
corresponding probability density functions (PDFs). The difference in the acceleration between the
GPS receiver and the accelerometer is used to detect spoofing. The magnitude of the acceleration error
may be used as a decision variable. Additionally, using the magnitude of the north (or east) component
of the acceleration error as another decision variable is proposed, which shows better performance
in some conditions. The performance of the two decision variables is compared by calculating
the probability of spoofing detection and the detectable minimum spoofing acceleration (DMSA),
given a pre-defined false alarm probability and a pre-defined detection probability. It turns out that
both decision variables need to be used together to obtain the best spoofing detection performance.

Keywords: GPS; spoofing detection; AHRS; accelerometer; Shim probability density function

1. Introduction

The global navigation satellite system (GNSS) is an essential technology for positioning and timing,
and its application covers various areas such as navigation, surveying, mapping, robot simultaneous
localization and mapping (SLAM), location-based service (LBS), etc. The global positioning system
(GPS) is the original GNSS and its full operational capability (FOC) was declared in 1995 in the United
States of America. The legacy L1 C/A code signal of GPS is very weak at the Earth’s surface and has
a simple structure to implement [1,2]. Thus, the GPS signal is vulnerable to intentional interferences
such as jamming and spoofing. While jamming attacks make the GPS receivers malfunction, spoofing
attacks make the target receiver unaware of it being attacked by the spoofer. Spoofing threats have
garnered attention since the initial finding of the 2001 Volpe Report [3]. GPS spoofers may cause
significant damage to the target receiver by transmitting counterfeit navigation data which can result
in erroneous navigation. Thus, spoofing attacks are a significant problem to users and many studies on
spoofing attacks and anti-spoofing methods have been carried out since 2001.

Experiments have been conducted to understand the vulnerability of the GPS to spoofing [4,5],
which proved that the GPS is not secure from spoofing. Some experiments tried to implement
the spoofer itself [5–7]. A variety of approaches have been studied about spoofing detection of
the GNSS [7–18] such as using received signal strength [9], signal quality monitoring at code and
carrier levels [7], phase-only analysis of variance (PANOVA) method with generalized likelihood
ratio test (GLRT) by employing dual antenna system [10], and using maximum likelihood estimator
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(MLE) [11]. Prior studies [7,12] summarize various spoofing detection techniques, among which
low complexity spoofing detection techniques include C/N0 monitoring, absolute power monitoring,
power variation versus receiver movement, code and phase rate consistency check, and GPS clock
consistency check, while high complexity spoofing detection techniques include Direction Of Arrival
(DOA) comparison [14] and consistency check with other solutions [15–18].

Among the effective high complexity spoofing detection techniques mentioned in the prior
study [12], the DOA comparison approach uses the DOA measurements to assess the direction of the
spoofing source and mitigates the interference by placing the spatial null in the antenna reception
pattern [14]. The consistency check approach uses the inertial measurement unit (IMU) [15–18].
The relative platform trajectory estimated by the GNSS receiver is compared to the relative
trajectory developed from the IMU measurement, specifically gyro output, to detect spoofing [15].
In References [16,17], a tightly coupled GPS / inertial navigation system (INS) is used to detect spoofing
by incorporating fault detection concepts and Kalman filter, respectively, based on receiver autonomous
integrity monitoring (RAIM). In [18], an accelerometer is used to detect spoofing by comparison of
acceleration between the GPS receiver and the IMU. However, no prior research has been done on
using the IMU and the acceleration error which is expressed with exact probability density function.

In this study, a direct GPS spoofing detection method is proposed which uses attitude and heading
reference system (AHRS) and accelerometers via direct comparison of the acceleration estimated from
the GPS receiver and the acceleration measured from IMU, which provides the acceleration error.
The acceleration from the GPS receiver is estimated from the Kalman filter by including the acceleration
as a state variable of the GPS dynamic system in this study, while the acceleration from the GPS
receiver in Reference [18] is obtained from the difference of velocities which are estimated from the GPS
Kalman filter. Two decision variables for spoofing detection are defined: the acceleration error from
the acceleration of the GPS receiver and the acceleration from the AHRS/Accelerometer, expressed
in the navigation frame. One decision variable is defined as the magnitude of the acceleration error,
where only horizontal component is used, and the probability density function (PDF) of the decision
variable is derived. It is called Shim PDF. The other decision variable is the magnitude of the north (or
east) component of the acceleration error. The PDF of this decision variable is the folded Gaussian PDF.
It was found that in the special condition that both moving acceleration and spoofing acceleration head
around north (or east) together, the second decision variable of the magnitude of the north (or east)
component provides better detection performance than the first decision variable of the magnitude of
the horizontal component. Thus the magnitude of the horizontal acceleration error, the magnitude
of the north component of the acceleration error, and the magnitude of the east component of the
acceleration error are proposed to be used together to check whether one of these is greater than or
equal to the corresponding threshold to detect the GPS spoofing.

Two performance measures are considered for spoofing detection. One is the probability of
spoofing detection. The exact PDF for both decision variables is known and thus, for a given probability
of false alarm, the detection threshold and the detection probability can be calculated. The other is
the detectable minimum spoofing acceleration (DMSA), which is the magnitude of the minimum
spoofing acceleration to obtain a pre-defined detection probability, given a pre-defined false alarm
probability. The performances of the two decision variables for the two performance measures are
compared and analyzed.

The structure of the first-half of the proposed direct GPS spoofing detection method is given in
Section 2, which provides the acceleration error with GPS Kalman filter and AHRS. Section 3 defines
the acceleration error, and two decision variables with their probability density functions, and shows
the second-half of the proposed direct GPS spoofing detection method. The performance analysis of
the proposed direct GPS spoofing detection method is given for two decision variables in Sections 4
and 5 using the two performance measures, the probability of detection and the DMSA. The conclusion
is presented in Section 6.
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2. The Structure of the First-half of the Proposed Direct GPS Spoofing Detection Method

2.1. Block Diagram to Obtain the Acceleration Error from GPS Receiver and Accelerometer

In this study, GPS spoofing detection is done by using the comparison of accelerations obtained
from the GPS receiver and accelerometers. The block diagram of Figure 1 shows the procedure to
obtain the difference of the two acceleration measurements. The accelerometers measure the specific
force f̂ b

acc and then, it is changed into f̂ n
acc through the transformation matrix Cn

b . In f̂ b
acc and f̂ n

acc,
the superscript b denotes the body frame and n denotes the navigation frame. The navigation frame
uses the north(x)-east(y)-down(z) (NED) frame in this study. AHRS produces the transformation
matrix Cn

b by using the sensor outputs and Kalman filter. Cn
b denotes the direction cosine matrix from

the body frame to the navigation frame. The hat (ˆ) denotes measured or calculated values containing
errors and Ψ denotes the skew symmetric matrix of the attitude error.

It is assumed that IMU calibration and initial alignment is performed in advance depending on the
characteristics of various inertial sensors since there are many kinds of gyroscopes, such as ring laser
gyro, fiber optic gyro, hemispherical resonator gyro, and low cost micro-electro-mechanical system
(MEMS) gyro, and so on, and different gyroscope has different error sources, and accelerometer has
also many types, such as pendulous type, vibrating type, silicon type, and MEMS type. Figure 1 shows
the IMU calibration and initial alignment with the dotted block, which will not be considered in this
paper. Thus misalignment, bias, scale factor, and others are assumed to be compensated in advance.
The IMU calibration and initial alignment is an essential process in the inertial navigation system and
thus there are much research results which have been already performed [19,20]. Only GPS spoofing
detection will be considered in this paper.

Matrices use capital letters, and vectors, small letters. Matrices and vectors will use bold letters
and scalars use plain letters.
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Figure 1. Block diagram to obtain the acceleration error from the Global Positioning System (GPS)
receiver and accelerometer.

2.2. GPS Kalman Filter

The GPS receiver usually provides position and velocity information. To obtain acceleration from
the GPS receiver, the Kalman filter is used by including acceleration as a state variable. The dynamics
of the GPS receiver can be described by the state-space model as in Equation (1), which has 11 state
variables such as 3-dimensional position, velocity, acceleration, GPS receiver’s clock bias cb, and drift cd.

.
xgps = Fgpsxgps + wgps. (1)

where xgps =
[
x,

.
x,

..
x, y,

.
y,

..
y, z,

.
z,

..
z, cb, cd

]′
and the state variable xgps denotes the error state,
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Fgps =


FX O3×3 O3×3

O3×3 FY O3×3

O3×3 O3×3 FZ

O3×3

O3×3

O3×3

O2×2 O2×2 O2×2 FW

, wgps =


wX

wY
wZ

wW

, FX = FY = FZ =


0 1 0
0 0 1
0 0 0

, FW =

[
0 1
0 0

]
,

wX =


0
0
wx

, wY =


0
0

wy

, wZ =


0
0

wz

, wW =

[
wb
wd

]
,

and wx, wy, wz, wb, wd are independent white noises.
Pseudo range is the distance between the GPS satellite and the receiver. The difference between

the measured pseudo range ρi and the estimated pseudo range ρ̂i is used as the measurement in the
Kalman filter for i-th GPS satellite

zi = ρ̂i − ρi = Hixgps + vi

where Hi =
[
axi 0 0 ayi 0 0 azi 0 0 1 0

]
, axi = xi−x̂u

r̂i
, ayi =

yi−ŷu
r̂i

, azi = zi−ẑu
r̂i

,

r̂i =

√
(xi − x̂u)

2 + (yi − ŷu)
2 + (zi − ẑu)

2, (xi, yi, zi) is the position of i-th GPS satellite, (x̂u, ŷu, zu) is
the estimated user position, and vi is the white noise. The whole measurement equation is given
as follows:

zgps = Hgpsxgps + vgps (2)

where zgps = [z1 z2 · · · zm]
′, Hgps = [H′1 H′2 · · · H′m ]′, vgps = [v1 v2 · · · vm]

′.
From the dynamic Equation (1) and the measurement (2), the accelerations

..
x,

..
y, and

..
z can be

estimated using the Kalman filter [21].

2.3. AHRS

AHRS provides the attitude and heading and thus, the direction cosine matrix Cn
b can be calculated

uniquely if the rotation sequence of roll, pitch, and heading is pre-defined. Many approaches have
been proposed for AHRS [22–25] using accelerometer, gyroscope, and magnetometer. Accelerometers
provide roll and pitch, and magnetometers provide heading. Hence the roll, pitch, and heading
obtained from accelerometers and magnetometers can be compared with those from the gyroscope,
and thus the Kalman filter can be used to estimate attitude and heading.

In many cases, quaternion is used to avoid deadlock and to save time. Quaternion q is defined as
one scalar and a three- or four-dimensional vector as follows:

q = q0 + q1i + q2 j + q3k= [q0 q1 q2 q3]
′

The direction cosine matrix Cn
b is related with the quaternion q as in (3).

Cn
b =


q2

0 + q2
1 − q2

2 − q2
3 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

 (3)

The quaternion q is updated as the following differential equation

.
q =

1
2

Wq
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where W =


0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

.
The direction cosine matrix Cn

b , which is the output of AHRS, can be described as

Ĉn
b = (I + Ψ)Cn

b

where Cn
b is the true direction cosine matrix, and Ψ denotes the orientation error of AHRS and is a skew

symmetric matrix as follows:

Ψ =


0 −δψ δθ
δψ 0 −δφ
−δθ δφ 0

,

δφ
δθ
δψ

 =

δφ ∼ N

(
0, σ2

φ

)
δθ ∼ N

(
0, σ2

θ

)
δψ ∼ N

(
0, σ2

ψ

)


(4)

whereφ is roll,θ is pitch, andψ is heading. As discussed in Section 2.1, it is assumed that IMU calibration
and initial alignment is performed in advance before AHRS block as in Figure 1. Thus deterministic
and some random errors are compensated in the IMU calibration and initial alignment block. Then the
remaining orientation error δφ, δθ, and δψ can be assumed to have Gaussian distribution as in (4).

3. Definition of the Decision Variables and the Structure of the Second-half of the Proposed
Direct GPS Spoofing Detection

This section describes the acceleration error equation for the direct GPS spoofing detection and
defines two decision variables to decide whether a spoofing signal exists or not. One decision variable
is the magnitude of the horizontal acceleration error and the other is the magnitude of the north (or
east) direction acceleration error. The probability density functions and the thresholds for spoofing
detection are given for the two decision variables.

3.1. Acceleration Error Equation

The acceleration estimated from the GPS receiver is described as follows,

f̂ n
gps = f n

gps + εn
gps (5)

where f n
gps is the true moving acceleration (plus spoofing acceleration if any) in the navigation frame

and εn
gps is the white noise.

The specific force measured from the accelerometers f̂ b
acc in the body frame is transformed into the

navigation frame f̂ n
acc by using the direction cosine matrix Ĉn

b obtained from the AHRS as follows,

f̂ n
acc = Ĉn

b f̂ b
acc =

(
Cn

b + ΨCn
b

)(
f b
acc + εb

acc

)
≈ f n

acc + Ψ f n
acc + εn

acc (6)

where f n
acc is the true specific force, Ψ is defined in (4), and εn

acc is the white noise of accelerometers.
The Coriolis effect is assumed to be negligible with the assumption of low moving velocity for brevity.
Notice that the z-component of f n

acc contains the gravity.
The acceleration error equation is described from the difference of f̂ n

gps and f̂ n
acc as follows:

z = f̂ n
gps − f̂ n

acc (7)
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3.2. Decision Variable zmag as the Magnitude of the Horizontal Acceleration Error

Suppose that the hypothesis H0 denotes the case of the absence of the spoofing signal, and H1

denotes the case of the presence of the spoofing signal. For hypothesis H0, the acceleration error is
denoted as z0, and for hypothesis H1, the acceleration error is denoted as z1. Then, z0 and z1 can be
described from Equations (5) and (6) as follows:

z0 = f̂ n
gps − f̂ n

acc = εn
gps −Ψ f n

acc − ε
n
acc =


z0n

z0e

z0d

 (8)

z1 = f̂ n
gps,spoo f ed − f̂ n

acc = f n
s + εn

gps −Ψ f n
acc − ε

n
acc

=


f n
s,n + εn

gps,n − δψ f n
acc,e + δθ f n

acc,d − ε
n
acc,n

f n
s,e + εn

gps,e + δψ f n
acc,n − δφ f n

acc,d − ε
n
acc,e

f n
s,d + εn

gps,d − δθ f n
acc,n + δφ f n

acc,e − ε
n
acc,d

 =


z1n
z1e
z1d

 (9)

where f n
s,n, f n

s,e, f n
s,d are north, east, down components of spoofing acceleration.

Only the x, y components of the acceleration error equation (8), (9) are used in this study.
The acceleration errors z0 and z1 are expressed in the navigation frame and the superscript n will be
omitted henceforth, for brevity.

In Equation (9), the random variables z1n and z1e, which are north and east components of z1,
have Gaussian distribution and the probability density function (PDF) is as follows,

z1n : fZ1n(z) =
1

√
2πσn

e
−

(z− fs,n)2

2σ2
n where σ2

n = ε2
gps,n + σ2

ψ f 2
acc,e + σ2

θ f 2
acc,d + ε2

acc,n (10)

z1e : fZ1e(z) =
1

√
2πσe

e
−

(z− fs,e)2

2σ2
e where σ2

e = ε2
gps,e + σ2

ψ f 2
acc,n + σ2

φ f 2
acc,d + ε2

acc,e (11)

3.2.1. Probability Density Function of the Magnitude of the Horizontal Acceleration Error zmag

z1mag is defined as the magnitude of the horizontal component of z1 as follows:

z1mag =
√

z2
1n + z2

1e, where z1n ∼ N
(

fs,n, σ2
n

)
and z1e ∼ N

(
fs,e, σ2

e

)
with σ2

n and σ2
e being defined in

(10) and (11).
The variances σ2

n and σ2
e have different values and depend on the AHRS attitude accuracy times

moving acceleration. Thus σ2
n and σ2

e are time-varying if the moving acceleration varies with time.
The PDF of the z1mag could not be found in the literature and thus it was derived in this paper and

called as Shim PDF. Lemma 1 shows the PDF of z1mag.

Lemma 1. (Shim PDF) Consider the independent Gaussian random variables X and Y with X ∼

N
(
m1, σ2

1

)
and Y ∼ N

(
m2, σ2

2

)
. Then, the magnitude Z =

√
X2 + Y2 has the following PDF:

fZ(z) =
z

σ1σ2
exp

−1
4

 1
σ2

1

+
1
σ2

2

(z2 + α2
)I1(z), z ≥ 0 (12)

where I1(z) = 1
2π

∫ 2π
0 exp[ 1

4

(
1
σ2

2
−

1
σ2

1

)
z2 cos(2θ) +

√(
m1
σ2

1

)2
+

(
m2
σ2

2

)2
·z cos(θ−φ)]dθ, and α2 =

2(σ2
2m2

1+σ
2
1m2

2)
σ2

1+σ
2
2

=
2
(

m2
1
σ2

1
+

m2
2
σ2

2

)
1
σ2

1
+ 1
σ2

2

, φ = tan−1
(

m2σ
2
1

m1σ
2
2

)
= tan−1


m2
σ2

2
m1
σ2

1

.
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Proof. The variable change for the independent Gaussian random variables X and Y is as

U =
X
s

, V =
Y
s

where U ∼ N

m1

s
,
σ2

1

s2

, V ∼ N

m2

s
,
σ2

2

s2

, and s =
√
σ2

1 + σ2
2

Defining µ1 = m1
s and µ2 = m2

s , b =
σ2

1−σ
2
2

σ2
1+σ

2
2
, it can be understood that U ∼ N

(
µ1, 1+b

2

)
, V ∼

N
(
µ2, 1−b

2

)
and− 1 ≤ b ≤ 1.

The idea of using s and b above comes from Hoyt’s paper [26]. Consider the joint PDF fUV(u, v).

fUV(u, v) = fU(u) fV(v) = 1√
π(1+b)

exp
[
−

(u−µ1)
2

1+b

]
·

1√
π(1−b)

exp
[
−

(v−µ2)
2

1−b

]
= 1

π
√

1−b2
exp

[
−

(u−µ1)
2

1+b −
(u−µ2)

2

1−b

]
Defining R =

√
U2 + V2, the PDF fR(r) can be obtained as follows:

fR(r) =
∫ 2π

0 fUV(u, v)rdθ

=
∫ 2π

0 fUV(r cosθ, r sinθ)rdθ

=
∫ 2π

0
1

π
√

1−b2
exp

[
−

(r cosθ−µ1)
2

1+b −
(r sinθ−µ2)

2

1−b

]
rdθ

By algebraic manipulation of the above equation, fR(r) =
r

π
√

1−b2
exp

[
−

r2+β2

1−b2

] ∫ 2π
0 exp

[
br2 cos(2θ)+rA cos(θ−φ)

1−b2

]
dθ where β2 = (1− b)µ2

1 + (1 + b)µ2
2, A =

2
√
(1− b)2µ2

1 + (1 + b)2µ2
2, φ = tan−1

(
(1+b)µ2
(1−b)µ1

)
.

From the relation between random variables Z and R as Z = sR, the PDF of Z can be obtained
from fZ(z) = 1

s fR
(

z
s

)
as:

fZ(z) =
1
s
·

z/s

π
√

1− b2
exp

−
(

z
s

)2
+ β2

1− b2


∫ 2π

0
exp

b
(

z
s

)2
cos(2θ) +

(
z
s

)
A cos(θ−φ)

1− b2

dθ (13)

From algebraic manipulation of Equation (13), 1
s ·

z
s

π
√

1−b2
= z

σ1σ2
·

1
2π and exp

[
−
( z

s )
2
+β2

1−b2

]
=

exp
[
−

1
4

(
1
σ2

1
+ 1

σ2
2

)(
z2 + α2

)]
is obtained, and the integral term in Equation (13) becomes the integral

term of I1(z), which results in Equation (12). �

Rayleigh PDF and Rice PDF are well-known PDFs as the relation to Gaussian, and those two PDFs
are special cases of Equation (12), which becomes Rayleigh PDF with the condition of m1 = m2 = 0
and σ1 = σ2, and becomes Rice PDF with the condition of σ1 = σ2.

Defining z0mag as the magnitude of the horizontal component of z0 as follows, z0mag =
√

z2
0n + z2

0e,

where z1n ∼ N
(
0, σ2

n

)
, z1e ∼ N

(
0, σ2

e

)
.

The PDF of z0mag can be obtained from Lemma 1 with m1 = m2 = 0 and the result is shown in
Corollary 2.
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Corollary 2. Consider the independent Gaussian random variables X and Y with X ∼ N
(
0, σ2

1

)
and Y ∼

N
(
0, σ2

2

)
. Then the magnitude Z =

√
X2 + Y2 has the following PDF:

fZ(z) =
z

σ1σ2
exp

−1
4

 1
σ2

1

+
1
σ2

2

z2

I0

1
4

 1
σ2

2

−
1
σ2

1

z2

, z ≥ 0 (14)

where I0(z) = 1
π

∫ π
0 ez cosθdθ,

Proof. Equation (14) can be obtained easily from the PDF in Equation (12) with m1 = m2 = 0 and
manipulation in the I0(z) part. �

Equation (14) can be found in Reference [27] without proof.

3.2.2. Threshold to Detect GPS Spoofing for the Decision Variable zmag

In this study, the probability of false alarm is used to obtain the threshold for the detection of
spoofing. The threshold γmag to detect GPS spoofing is defined according to the pre-defined probability
of false alarm P f a as follows :

prob
{
z0mag ≥ γmag

}
= prob

{
zmag ≥ γmag

∣∣∣H0
}
= P f a (15)

where

zmag =

√
z2

n + z2
e (16)

and the probability is calculated from the integral of equation (14) from γmag to infinity.
Whether a spoofing signal exists or not is decided by the following decision rule:

zmag

H1

≷

H0

γmag

The variable zmag above is said to be a decision variable since it is used to decide whether there is
a spoofing signal or not.

3.3. Decision Variable zabsN (or zabsE) as the Magnitude of the North (or East) Direction Acceleration Error

3.3.1. Probability Density Function of the Magnitude of The North (or East) Acceleration Error zabsN
(or zabsN)

Defining z1absN and z0absN as the magnitude of the north component of z1 and z0, respectively,
z1absN = |z1n| and z0absN = |z0n| (similarly, z1absE = |z1e| and z0absE = |z0e|).

The PDF of z1absN (or z1absE) and z0absN (or z0absE) can be obtained as Equations (17) and (18),
which are called folded Gaussian [28], since z1n and z0n have Gaussian density functions as z1n ∼

N
(

fs,n, σ2
n

)
and z0n ∼ N

(
0, σ2

n

)
.

fZ1absN (z) =
1

√
2πσn

e
−

(z− fs,n)2

2σ2
n +

1
√

2πσn
e
−

(z+ fs,n)2

2σ2
n , z ≥ 0 (17)

fZ0absN (z) =
2

√
2πσn

e
−

z2

2σ2
n , z ≥ 0 (18)
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3.3.2. Threshold to Detect GPS Spoofing for the Decision Variable zabsN

The threshold γabsN to detect GPS spoofing is defined according to the pre-defined probability of
false alarm P f a as follows :

prob
{
z0absN ≥ γabsN

}
= prob

{
zabsN ≥ γabsN

∣∣∣H0
}
= P f a (19)

here
zabsN = |zn| (20)

and the probability is calculated from the integral of Equation (18) from γabsN to infinity. Whether
a spoofing signal exists or not is decided by the following decision rule:

zabsN

H1

≷

H0

γabsN

3.4. The Structure of the Second-Half of the Proposed Direct GPS Spoofing Detection

This subsection shows the structure of the proposed second-half of direct GPS spoofing detection
method in Figure 2, which is drawn after the rightmost signal in Figure 1. The analysis of the proposed
structure shown in Figure 2 will be given in Sections 4 and 5 in detail.

In Section 4, it will be observed that the decision variable zabsN (or zabsE) shows a higher detection
probability than zmag in the condition that both moving acceleration and spoofing acceleration head
within roughly 25◦ from the north (or east). Section 5 shows that when DMSA is used for performance
measure, the decision variable zabsN (or zabsE) shows a smaller DMSA than zmag in the condition that
both moving acceleration and spoofing acceleration head within roughly 25◦ from the north–south
direction (or east–west direction). From these results, a direct GPS spoofing detection method is
proposed as follows:

If any of the three decision variables zmag, zabsN, and zabsE are larger than or equal to the
corresponding thresholds, then a spoofing signal is declared to exist.

Note that the threshold γmag(t), γabsN(t), and γabsE(t) in Figure 2 are time-varying, not constant.
The threshold γmag(t) is obtained from Equation (15) given the probability of false alarm P f a, where the
PDF is Equation (14) with σ1 = σn and σ2 = σe. The north and east variances σ2

n and σ2
e given in

Equations (10) and (11) contain the moving acceleration and thus σ2
n and σ2

e are time-varying, which is
why γmag(t) is time-varying. The threshold γabsN(t) is obtained from Equation (18) and the PDF
contains σn, which is time-varying. Thus γabsN(t) depends on the moving acceleration and becomes
time-varying. Similarly γabsE(t) is time-varying. The red line and arrow in Figure 2 means that the
threshold γmag(t), γabsN(t), and γabsE(t) depend on the moving acceleration f̂ n

acc.
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prob{zmag ≥ γmag|H0} = ∫
z
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(

1

σn
2
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1

σe
2
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1

4
(

1

σe
2
−

1

σn
2
) z2) dz

∞

γmag

 

= Pfa 

(21) 

Figure 2. The Structure of the Second-half of the proposed direct GPS spoofing detection after Figure 1.
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4. Performance Analysis of the Decision Variables using the Probability of Detection

This section shows the performance of the proposed direct GPS spoofing detection method for the
two decision variables zmag and zabsN (or zabsE) which are defined in Section 3.

4.1. Detection Threshold According to Moving Acceleration

Suppose that the probability of false alarm P f a is pre-defined. Then, spoofing detection thresholds
γmag and γabsN(or γabsE) are determined according to P f a as in Equations (15) and (19). Taking the PDF
Equations (14) and (18) into account, Equations (21) and (22) are obtained from Equations (15) and (19)
to further obtain γmag and γabsN.

prob
{
zmag ≥ γmag

∣∣∣H0
}
=

∫
∞

γmag

z
σnσe

exp
[
−

1
4

(
1
σ2

n
+

1
σ2

e

)
z2

]
I0

(
1
4

(
1
σ2

e
−

1
σ2

n

)
z2

)
dz = P f a (21)

prob
{
zansN ≥ γabsN

∣∣∣H0
}
=

∫
∞

γabsN

2
√

2πσn
e
−

z2

2σ2
n dz = P f a (22)

where σ2
n = ε2

gps,n + σ2
ψ f 2

acc,e + σ2
θ f 2

acc,d + ε2
acc,n and σ2

e = ε2
gps,e + σ2

ψ f 2
acc,n + σ2

φ f 2
acc,d + ε2

acc,e.
To see the detection performance result clearly, the vertical moving acceleration is supposed to

be zero and the gravity is compensated before the acceleration error is obtained. Thus the following
variances in Equation (23) are used in the simulation from now on.

σ2
n = ε2

gps,n + σ2
ψ f 2

acc,e + ε2
acc,n and σ2

e = ε2
gps,e + σ2

ψ f 2
acc,n + ε2

acc,e (23)

The detection thresholds γmag and γabsN depend on the variances σ2
n and σ2

e which are functions
of moving acceleration facc as in (23). Thus, the detection threshold γmag and γabsN are not constant
but vary according to the magnitude and direction of the moving acceleration facc. Figure 3 shows
detection thresholds γmag and γabsN according to the direction of facc with two cases of magnitude,
(a)

∣∣∣ facc
∣∣∣ = 0.2 m/s2 and (b)

∣∣∣ facc
∣∣∣ = 0.4 m/s2. The threshold is the distance from the origin for the

corresponding direction of facc. It is observed that for the same magnitude of moving acceleration,
γmag has maximum values in the north and east directions and γabsN has the minimum value in the
north direction. Similarly, γabsN has the minimum value in the east direction.
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4.2. Effects of Moving Acceleration on the Performance of Spoofing Detection

This subsection analyzes the effects of moving acceleration on the performance of spoofing
detection. The effects of moving acceleration, magnitude and direction are separately examined,
for both decision variables zmag and zabsN which are defined in Section 3.

The probability of detection Pd is used for the performance of spoofing detection with the
pre-defined probability of false alarm P f a. When the detection threshold γmag and γabsN are obtained
from P f a, the corresponding detection probabilities Pd,mag and Pd,absN are defined as follows:

Pd,mag = prob
{
zmag ≥ γmag

∣∣∣H1
}

and Pd,absN = prob
{
zabsN ≥ γabsN

∣∣∣H1
}

(24)

where the probability density functions (12) and (17) are integrated from the detection threshold
to infinity.

4.2.1. Performance of Spoofing Detection According to the Magnitude of Moving Acceleration

The probability of detection Pd depends on both moving acceleration facc and spoofing acceleration
fs. The effect of the magnitude of moving acceleration is focused on in this subsection.

Suppose that the probability of the false alarm is pre-defined as P f a = 0.001, the AHRS attitude
accuracies of roll, pitch, and heading are 2◦, 2◦, and 4◦, respectively, and moving acceleration is heading
north. Figure 4 plots Pd according to the magnitude of fs and shows that Pd increases as

∣∣∣ fs∣∣∣ increases.
The big arrow in cyan color in the upper left corner of Figure 4 denotes the moving acceleration facc and
the narrow arrow in red color denotes the spoofing acceleration fs. Figure 4a shows the case of both
facc and fs heading north, and plots four curves, two pink in color and two black in color, where the
two pink curves show Pd,mag and the two black curves show Pd,absN. The two black curves are same
as one, implying that two cases of

∣∣∣ facc
∣∣∣ = 0.1 m/s2 and

∣∣∣ facc
∣∣∣ = 0.2 m/s2 do not cause any effect on

Pd,absN, while the two pink curves show different results. As
∣∣∣ facc

∣∣∣ changes from 0.1 m/s2 to 0.2 m/s2,
the performance of using zmag, which is Pd,mag, deteriorates. Figure 4a shows that the performance of
using zabsN is always better than that of using zmag when both facc and fs head north. Figure 4b shows
similar results as Figure 4a when fs heads 20◦ east from north.

The reason the two black curves are the same in Figure 4 despite two different
∣∣∣ facc

∣∣∣s is because
the variance σ2

n in (10) does not contain facc,n, but facc,e. When facc heads north, facc,e = 0 and thus for
a different north speed, the threshold γabsN is same, which provides the same Pd,absN.
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Figure 4. Probabilities of spoofing detection, Pd,mag and Pd,absN when (a) Both facc and fs are heading
north, (b) facc is heading north and fs heading northeast 20◦ (arrow in cyan: moving acceleration facc,
narrow arrow in red: spoofing acceleration fs ).

4.2.2. Performance of Spoofing Detection According to the Direction of Moving Acceleration

In this subsection, the effect of the direction of moving acceleration on the spoofing detection
performance is presented. When the direction of facc changes from north to northeast of 30◦, Figure 4a
changes into Figure 5, where two black curves are distinct. Since the direction of facc changes from
north to northeast of 30◦, the east component facc,e exists and thus σ2

n is different for different speeds,
which results in a different threshold γabsN and thus different Pd,absN. For both zmag and zabsN the
performance Pd deteriorates as

∣∣∣ facc
∣∣∣ increases from 0.1 m/s2 to 0.2 m/s2. Looking into the black curve

of
∣∣∣ facc

∣∣∣ = 0.1 m/s2 carefully in Figures 4a and 5, it is observed that Pd,absN with facc heading north is
bigger than Pd,absN with facc heading northeast of 30◦. For both Figures 4 and 5, the performance of
Pd,absN is better than that of Pd,mag.
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Figure 4. Probabilities of spoofing detection , 𝑃𝑑,𝑚𝑎𝑔  and 𝑃𝑑,𝑎𝑏𝑠𝑁  when (a) Both 𝒇𝒂𝒄𝒄 and 𝒇𝒔  are 

heading north, (b) 𝒇𝒂𝒄𝒄 is heading north and 𝒇𝒔 heading northeast 20° (arrow in cyan: moving 

acceleration 𝒇𝒂𝒄𝒄, narrow arrow in red: spoofing acceleration 𝒇𝒔). 
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4.3. Effects of Spoofing Acceleration on the Performance of Spoofing Detection

This subsection analyzes the effects of spoofing acceleration on the performance of spoofing
detection. The effects of the direction of the spoofing acceleration are examined for both decision
variables zmag and zabsN.

Figure 6 shows the spoofing detection probability when spoofing direction changes from 0◦ to 40◦

from north in the case of facc heading north as (a) and heading 30◦ east from north as (b). The horizontal
axis is the magnitude of spoofing acceleration. It shows that Pd,mag does not depend on the direction of
spoofing acceleration while Pd,absN decreases as the spoofing direction changes from 0◦ to 40◦ from
north. This is because the north component of spoofing acceleration decreases as the spoofing direction
gets far away from the north. It is observed that Pd,absN is greater than Pd,mag when the direction of fs is
less than 20◦ for both Figure 6a,b.Sensors 2020, 20, 954 13 of 22 
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∣∣∣ = 0.6 m/s2,
where fs is red color and facc is cyan color; (a) facc is heading north, (b) facc is heading 30◦ east
from north.
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4.4. Effects of Sensor Accuracy on the Performance of Spoofing Detection

This subsection analyzes the effects of sensor accuracy on the performance of spoofing detection.
Figure 7a considers AHRS accuracies of 2◦, 2◦, and 4◦ for the roll, pitch, and heading errors while
Figure 7b considers AHRS accuracies of 1◦, 1◦, and 2◦. It is observed that Pd,mag(pink color) decreases
as the magnitude of facc increases or AHRS accuracy deteriorates. When both facc and fs head north,
Pd,absN is greater than Pd,mag in Figure 7. Better the AHRS accuracy, the better is the spoofing detection
performance and this can be explained in Figure 8 which shows that with better AHRS accuracy,
the threshold is smaller, which results in higher detection performance.
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Figure 7. Probability of spoofing detection, Pd,mag and Pd,absN according to Attitude and Heading
Reference System (AHRS) accuracy.Sensors 2020, 20, 954 14 of 22 
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Figure 8. Comparison of spoofing detection threshold according to AHRS accuracy - the angles denote
the direction of facc, i.e., ∠ facc.

5. Performance Analysis of the Decision Variables Using the Detectable Minimum Spoofing
Acceleration (DMSA)

This section compares the performance of the proposed direct GPS spoofing detection method for
the two decision variables zmag and zabsN (or zabsE) using the minimum threshold of spoofing detection
with pre-defined false alarm probability and detection probability.
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5.1. Spoofing Detection Threshold According to Moving Acceleration

The detection threshold γmag and γabsN according to the direction of facc for the two cases of∣∣∣ facc
∣∣∣ = 0.2 m/s2 and

∣∣∣ facc
∣∣∣ = 0.4 m/s2 are shown in Figure 3, where two decision variables zmag and

zabsN are used. Figure 9 shows Figure 3a,b together again upon adding the case of
∣∣∣ facc

∣∣∣ = 0.6 m/s2

under the condition of P f a = 0.001 and the AHRS attitude accuracy of 2/2/4◦. Figure 9 shows the exact
threshold γmag and γabsN and is obtained using Equations (21) and (22) given the pre-defined p f a.
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Figure 9. The threshold of spoofing detection γmag and γabsN according to facc, the angle denotes the
direction of facc, i.e., ∠ facc.

5.2. Definition of DMSA

This section defines the detectable minimum spoofing acceleration (DMSA) and compares the
DMSA for the decision variables zmag and zabsN.

DMSA is the magnitude of the minimum spoofing acceleration to obtain a pre-defined detection
probability Pd given a pre-defined false alarm probability P f a. P f a = 0.001, Pd = 0.99, and AHRS
attitude accuracy of 2/2/4◦ are used for DMSA in the simulations. Figure 10 shows an example of the
computation results of DMSA, where the big arrow in cyan color is the moving acceleration facc and
the angles of 0 through 360◦ denote the angle of spoofing acceleration fs. The contour of red ‘+’ is the
set of DMSA for all directions of fs. For example, the ‘x’ point means that when fs comes from 330◦

direction, the DMSA is the distance from the origin to ‘x’ point, which guarantees Pd = 0.99.

5.2.1. Contour of DMSA Using The Decision Variable zmag Depending on The Moving Acceleration

For a given DMSA in Figure 10, the values of P f a, Pd, and AHRS attitude accuracy are fixed in
advance, and thus the moving acceleration is the only remaining parameter that can affect the DMSA.
Figure 11a–c show the contour of DMSA according to ∠ facc of 0◦, 30◦, and 45◦. Greater the | facc

∣∣∣,
the bigger the DMSA. The contour of DMSA in Figure 11c appears like a circle since the north and east
component of facc are same and thus σn = σe. To check the effect of the AHRS accuracy, the DMSA is
calculated for two sets of AHRS attitude accuracy of 1/1/2◦ and 2/2/4◦ in Figure 11d which shows that
the better the accuracy, the smaller the contour of DMSA.
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Figure 11. Contour of DMSA using the decision variable zmag, the angle denotes the direction of fs, i.e.,
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5.2.2. Contour of DMSA Using The Decision Variable ZabsN Depending on the Moving Acceleration

This subsection shows the contour of DMSA for the decision variable ZabsN = |zn|. Figure 12
shows the contour of DMSA for ∠ facc = 0◦. When facc heads north, the variance σn does not depend on
| facc

∣∣∣ as shown in Figure 9, so the threshold and DMSA are the same for different magnitudes of facc

as in Figure 12a,b. The contour of DMSA is a line passing through the minimum point of the north
direction. Figure 13 shows the contour of DMSA for ∠ facc = 30◦. In this case, the east component of
facc has an effect on the σn, which results in a different threshold and DMSA according to different | facc

∣∣∣
as in Figure 13. The bigger the acceleration, the bigger is the DMSA.
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∣∣∣ = 0.4m/s2.
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Figure 13. Contour of DMSA using the decision variable ZabsN (∠ facc = 30◦ ), the angle denotes the
direction of fs, i.e., ∠ fs.

5.3. Optimal Combined Contour of DMSA Using Both zmag and zabsN (or zabsE)

When both decision variables zmag and zabsN (or zabsN) are used, the optimal combined contour can
be obtained by combining Figures 11 and 12. Here, the optimal combined contour, colored in pink, is the
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inner most combined contour from the two contours of DMSA using zmag and zabsN. Figure 14a shows
the optimal combined contour in the case of | facc

∣∣∣ = 0.2 m/s2 and ∠ facc = 0◦. When the magnitude is
increased to | facc

∣∣∣ = 0.4 m/s2 while maintaining the direction, Figure 14b shows that the threshold
γmag is increased, but the threshold γabsN does not change. In Figure 14a,b, it is observed that when
facc heads north, as | facc

∣∣∣ increases, the difference γmag-γabsN becomes larger and the range of angles
where DMSAabsN < DMSAmag holds, becomes larger. Figure 14c,d show the case of ∠ facc = 30◦ and
∠ facc = 90◦, respectively. When facc heads east, i.e., ∠ facc = 90◦ as in Figure 14d, zabsE and γabsN should
be used instead of zabsN and γabsN.
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Figure 14. Optimal combined contour (pink color) of DMSA using both zmag and zabsN, the angle
denotes the direction of fs, i.e., ∠ fs; (a) ∠ facc = 0 ◦, | facc

∣∣∣ = 0.2 m/s2 , (b) ∠ facc = 0◦, | facc
∣∣∣ = 0.4 m/s2 ,

(c) ∠ facc = 30◦, | facc
∣∣∣ = 0.4 m/s2 , and (d) ∠ facc = 90◦, | facc

∣∣∣ = 0.4 m/s2 .



Sensors 2020, 20, 954 19 of 22

Figure 15 shows the combined contour of DMSA using both zmag and zabsN according to the
AHRS attitude accuracy. It shows that as the attitude accuracy enhances, the combined contour of
DMSA shrinks.
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Figure 15. Combined Contour of DMSA with respect to the AHRS attitude accuracy.

Figure 16a,b show the case of ∠ facc = 30◦ and ∠ facc = 120◦, respectively,
with | facc

∣∣∣ = 0.2, 0.4, 0.6 m/s2 . The decision variable zabsN is used for ∠ facc = 30◦ and zabsE is
used for ∠ facc = 120◦. It is observed that as | facc

∣∣∣ increases, the range of angles using zabsN (or zabsE)
becomes larger.
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Figure 17 shows the case of ∠ facc = 45◦ and the decision variables zmag, zabsN and zabsE are all
necessary to obtain the optimal combined contour.
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6. Conclusions

In this study, a direct GPS spoofing detection method is proposed, with AHRS and accelerometers
via the difference of the acceleration estimated from GPS receiver and the acceleration measured from
IMU. From the acceleration error expressed in the navigation frame, two decision variables are defined
for spoofing detection. One decision variable zmag, which may be commonly used, is defined as the
magnitude of the horizontal acceleration error. The other decision variable zabsN (or zabsE) is defined as
the magnitude of the north (or east) component of the acceleration error.

The spoofing detection performance can be evaluated using the detection probability, which can
be calculated from the probability density function of both decision variables. The decision variable
zabsN shows higher detection probability than zmag in the condition that both moving acceleration and
spoofing acceleration are heading within roughly 25◦ from the north or south. Similarly, the decision
variable zabsE shows higher detection probability than zmag in the condition that both moving acceleration
and spoofing acceleration are heading within roughly 25◦ from the east or west.

When detectable minimum spoofing acceleration (DMSA) is used, the decision variable zabsN (or
zabsE) shows smaller DMSA than zmag in the condition that both moving acceleration and spoofing
acceleration head are within roughly 25◦ from the north–south direction (or east–west direction).

The spoofing acceleration can happen to be any direction. Thus, given a pre-defined false alarm
probability, the best algorithm to detect GPS spoofing is that the three decision variables zmag, zabsN,
and zabsE are calculated and compared with the corresponding threshold, and declare the existence of
the GPS spoofing if any of the three decision variables exceed the corresponding threshold.

The proposed GPS spoofing detection method in this paper depends on the acceleration error.
If a ground vehicle runs across road irregularities such as potholes, bumps, and rubble, etc.,
then accelerometers may show large changes and deteriorate the GPS spoofing detection performance.
Therefore, the flying or driving environment may have an effect on the GPS detection performance.
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