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Abstract: The gear fault signal under different working conditions is non-linear and non-stationary,
which makes it difficult to distinguish faulty signals from normal signals. Currently, gear fault
diagnosis under different working conditions is mainly based on vibration signals. However, vibration
signal acquisition is limited by its requirement for contact measurement, while vibration signal analysis
methods relies heavily on diagnostic expertise and prior knowledge of signal processing technology.
To solve this problem, a novel acoustic-based diagnosis (ABD) method for gear fault diagnosis under
different working conditions based on a multi-scale convolutional learning structure and attention
mechanism is proposed in this paper. The multi-scale convolutional learning structure was designed
to automatically mine multiple scale features using different filter banks from raw acoustic signals.
Subsequently, the novel attention mechanism, which was based on a multi-scale convolutional
learning structure, was established to adaptively allow the multi-scale network to focus on relevant
fault pattern information under different working conditions. Finally, a stacked convolutional neural
network (CNN) model was proposed to detect the fault mode of gears. The experimental results
show that our method achieved much better performance in acoustic based gear fault diagnosis
under different working conditions compared with a standard CNN model (without an attention
mechanism), an end-to-end CNN model based on time and frequency domain signals, and other
traditional fault diagnosis methods involving feature engineering.

Keywords: acoustic-based diagnosis; gear fault diagnosis; attention mechanism; convolutional
neural network

1. Introduction

As a one of the most important components in transmission systems, gears are widely used in
many types of machinery, such as wind turbines, construction machinery, automobiles, and other
fields [1], thanks to their unique merits, such as large transmission ratio, high efficiency, and heavy
load capacity [2,3]. The working performance of gears directly influences the operational reliability of
the whole machinery [4]. However, due to poor environmental conditions and the intensive impact
load operational condition of transmission systems, gears are vulnerable to display some faults and
cause the machine to break down. This may lead to significant economic losses [5]. Therefore, research
on fault diagnosis for gears can effectively avoid catastrophic failure and reduce economic loss.

Recently, the fault diagnosis of gears has been extensively studied by researchers. However, most
current studies focus on mainly stable working conditions. In the real world, gears usually work
under variable and fluctuant operation conditions [6]. As such, the nonlinear and non-stationary
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characteristics of signals under variable conditions exhibit many unique characteristics, such as strong
nonstationary, frequency mixing, and modulated phenomena [7]. Traditional fault diagnosis methods
and technologies, which are only applicable to gears under stationary conditions [1], are incapable of
detecting and identifying gear fault patterns under variable conditions.

To solve this issue, gear fault diagnosis under variable conditions has become the subject of
extensive research and has aroused researchers’ great concern in the past few years. Liu et al. [8]
proposed a method for gear fault diagnosis under slight variations in working conditions via empirical
mode decomposition (EMD) and multi-fractal detrended cross-correlation analysis (MFDCCA). By using
EMD and MFDCCA methods, the multi-fractal fault features can effectively extract and distinguish
fault modes. In order to avoid mode mixing, Chen et al. [9] proposed to use complementary ensemble
empirical mode decomposition (CEEMD) technology to decompose the raw vibration signals and select
the intrinsic mode functions (IMFs) using a correlation analysis algorithm (CorAA) for a probabilistic
neural network to classify the gear fault patterns under different working conditions. Xing et al. [10]
adopted the intrinsic time-scale decomposition (ITD) and singular value decomposition methods to
improve the robustness of gear fault feature extraction under variable conditions. Zhang et al. [11]
proposed a method for gear fault diagnosis under different working conditions based on local
characteristic-scale decomposition (LCD) denoising and the vector mutual information method.
Chen et al. [12] performed gearbox fault diagnosis under variable speed conditions via analysis of the
torsional vibration signals in the time-frequency domain. Though these studies, rich methods, and
technologies for gear fault diagnosis have been accumulated and provide a pivotal function under
variable conditions, most of the methods typically use vibration signals as the main measurement
values to diagnose gear faults in variable working conditions for use in vibration analysis [13]. In many
practical conditions, the installation of vibration sensors is constrained by some working conditions and
the complex structure of the equipment themselves, which makes the signal acquisition inconvenient.
Moreover, vibration signals are easily masked in some special environments, such as high humidity,
high temperature, and high corrosion; therefore, the application of vibration signal analysis methods
for gear fault diagnosis under variable conditions is limited due to the requirement of contacted
measuring. Meanwhile, those studies that adopt vibration analysis methods, usually rely on signal
processing technology to decompose raw vibration signals into several proper signal components to
extract valuable features for distinguishing gear fault patterns under different working conditions.
Although all these vibration signal analysis methods can work well in fault mode detection tasks, they
rely heavily on diagnostic expertise and prior knowledge of signal processing technology [14], which
may lead to tedious and inefficient procedures in practical diagnosis tasks. Considering the existing
issues, the effective methods and technologies of gear fault diagnosis under variable conditions still
needs to be further developed.

As a typical non-contact measurement, acoustic-based diagnosis (ABD) methods, which have the
capability to overcome the limitation of vibration measurement, are widely used in the fault diagnosis
field. Lu et al. [15–17] proposed an acoustic-based fault diagnosis method based on near-field acoustic
holography for detecting gear fault patterns under stationary working conditions. Glowacz [18,19]
design several acoustic-based diagnosis methods with novelty acoustic features to detect the fault of
commutator motors, electric impact drills, and coffee grinders. By combing time-frequency data fusion
technology and the Doppler feature matching search (DFMS) algorithm, Zhang et al. [20] proposed a
train bearings fault diagnosis method, which is based on wayside acoustic signals. Inspired by their
study, Zhang et al. [21] designed an improved singular value decomposition with a resonance-based
wayside acoustic signal sparse decomposition technique as an adaptive form of train bearings fault
feature extraction. However, like the vibration-based diagnosis method, all the existing acoustic-based
methods are also heavily rely on prior knowledge of signal processing technology rather than utilizing
intelligent fault diagnosis techniques. This is because the fault data distribution that we obtain in one
working condition are not consistent in another different working condition in real applications [22],



Sensors 2020, 20, 1233 3 of 21

which means the distribution difference between training data and test data changes as the working
condition varies, which can lead to a dramatic drop in performance.

To manage the obstacles, we considered the role of the attention mechanism. As a novel intelligent
method, the attention mechanism, which has the capability to adaptively capture temporal correlations
between different sequences [23] and allows for feature extraction networks to focus on the relevant
characteristics without signal processing technology and feature engineering, are commonly explored
in various structural prediction tasks, such as document classification [24], speech recognition [25–27],
and environmental classification [28,29]. Therefore, in this paper, we propose a novel ABD method for
gear fault diagnosis under different working conditions based on a multi-scale convolutional learning
structure and attention mechanism. In our methods, a multi-scale convolutional learning structure
was designed to automatically mine multi-scale features using different filter banks from raw acoustic
signals. Then, a novel attention mechanism, which was based on a multi-scale convolutional learning
structure, was established to adaptively allow the multi-scale network to focus on relevant fault pattern
information under different working conditions. Finally, a stacked convolutional neural network
(CNN) model was proposed to detect the fault mode of the gears.

The main contributions of this paper are as follows:

1. We are the first to propose an acoustic-based diagnosis method to detect the fault patterns under
different working conditions, where this method obtains information directly from raw acoustical
signals without manual signal processing and feature engineering.

2. We are the first to introduce the attention mechanism theory into the acoustic-based diagnosis
field to address gear fault pattern recognition under different working conditions by designing a
novel attention-based mechanism that is based on a multi-scale convolutional learning structure
to adaptively extract relevant fault patterns information and reduce data distribution variation
under different working conditions.

3. We designed a novel attention-based, multi-scale CNN model based on the two innovations above.
It outperformed a single-scale network and multi-scale network without attention mechanism,
and achieved favorable results relative to other methods using manual feature engineering based
on the function of multi-scale structure and an attention mechanism.

2. Model Building

In this section, we briefly introduce the mathematical model of our acoustic-based gear fault
diagnosis method, which can be roughly divided into three parts. In the first part, a multi-scale
convolutional layer operates directly on raw acoustic signals and automatically mines fault features
using different filter sizes and strides to construct feature vectors. In the second part, an attention
mechanism is adopted to obtain reasonable attention weight vectors from the convolutional layer, which
are multiplied with each feature vector of the pooling layer. In the last part, the multi-dimensional
attention output matrix, which is concatenated with the multi-scale attention structure, is constructed
as a stacked CNN input to train the network. The block diagram of the proposed method is shown in
Figure 1.
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Figure 1. Block diagram of the proposed method.

2.1. Multi-Scale Convolution Operation

A commonly used approach for an end-to-end neural network is to pass the raw acoustic signal
through a 1D convolutional layer, which has a fixed filter size and stride length to create invariance to
phase shifts and further down-sample the signals. However, those methods are still constrained in
various prediction tasks for two reasons: (1) There is always a trade-off when choosing the filter size.
A high-scale filter size may have a good frequency resolution but does not have a sufficient filter for
location in the high frequency area. A low-scale filter size, on the contrary, focuses on more frequency
bands but has a low resolution [30,31]. (2) Features extracted using a fixed filter size cannot make
full use of the raw signal information to build a discriminative representation for different patterns.
Considering this, a multi-scale convolutional function, which has the capability to learn discrepant
features, has been applied to address the obstacles. By extracting features with multiple different
scale filter banks and splitting responsibilities based on what filter banks can efficiently represent,
multi-scale convolutions have already been successfully used in various recognition fields, such as
image classification [32], environmental sound classification [30], and speech recognition [33].

Inspired by their work, we designed a multi-scale convolutional learning structure to extract
multi-scale fault features from raw acoustic signals. The structure is shown in Figure 2.

Figure 2. Multi-scale feature extraction mechanism.
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Three scale convolution kernels were used to operate the input signal vector to extract different
features and increase the bias to achieve a result. The function is defined as followed:

xl
j = f

(
xk ·ω

l
j + bl

j

)
, (1)

where xk represents the input raw signal vector; j represents the three different convolutional scales
( j = 1, 2, 3), corresponding to low, mid, and high filter sizes; ωl

j represents the convolutional operation

between the input vector and output feature map l at different scales; bl
j is a bias that corresponds to

the output vector xl
j, which represent the convolution operation result of the feature map l in scale j;

and f is an activation function.
Then, each of the three different output vectors were subsampled by the max pooling layer in turn

such that vectors of different sizes were rescaled to the same size.

2.2. Temporal Attention Mechanism

The acoustic signals obtained in one working condition may not follow the same temporal
structure in another working condition and those signals are often masked by noises that are generated
from the gearbox parts and transmitted via an elastic medium, i.e., through the air. We designed a
novel temporal attention mechanism that puts more attention on the relevant information frames and
suppresses noise ones to provide acoustic-based fault diagnosis under different working conditions to
overcome those limitations.

In order to reduce the impact of channel information, we first used a 1 × 1 kernel size with
one channel to aggregate the feature maps along the channel dimension to produce a multi-scale
convolutional learning structure. Then, we adopted different convolutional operations for multi-scale
vectors to transform the features map into the same scale and generate a temporal attention map
through the softmax activation function. Finally, we multiplied the attention map with the feature
vector of the pooling layer to obtain the attention output matrix. The detailed structure of the temporal
attention mechanism is shown in Figure 3 and detailed information about the operation process are
given below.

Figure 3. Temporal attention mechanism.

Let Convi_1(i = 1, 2, 3) denote the feature vector of the multi-scale convolution learning structure.
We first operate a 1 × 1 kernel size over Convi_1 ∈ RT×1×C to generate one channel feature map
Att_Convi_1 ∈ RT×1×1. Then, multi-scale 2-D convolution with a different kernel size was adopted to
learn the hidden representation and compress the features map into the same scale using different
strides. The softmax activation function was applied to normalize the attention weight of Convi_1 and
produce the temporal attention map. The mathematical equations are expressed as:

Att_Convi_1 = Conv1×1(Convi_1) i = 1, 2, 3, (2)
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Att_Convi_2 = Att_Convi_1 ·ωi + bi i = 1, 2, 3, (3)

Atm = so f tmax(Att_Convi_2) i = 1, 2, 3. (4)

Finally, by multiplying the attention map Atm with the feature vector of the pooling layer, we
obtained the attention output matrix Ato. The equation is defined as followed:

Ai
ot =

(
xl

j

)
pool
×Ai

tm, (5)

where
(
xl

j

)
pool

represents the lth feature map of the jth pooling layer ( j = 1, 2, 3). The j value refers to

what is described in Section 2.1.

2.3. Fault Pattern Recognition Based on a CNN

We adopted a stacked convolutional neural network as a base structure for the recognition of
gear fault patterns under different working conditions. The network consisted of four functional
layers: the convolutional layer, the batch normalization layer (BN), the pooling layer, and the fully
connected layer.

The attention output matrix from three different scales were concatenated along the channel
dimension as a multi-dimensional matrix input into the convolutional layer. The stacked convolutional
layer can be viewed as a fault pattern recognition module in an attention-based multi-scale CNN
model. Through repetitive convolution operations, the network has the ability to learn high-level
representation from the inputted multi-dimensional matrix. The process can be expressed as follows:

yl
j =

T∑
i=t

yl−1
i ·ωl

i j + bl
j, (6)

where yl−1
i represents the ith output feature map of the former convolutional layer, and ωl

i j represents
the convolutional kernel, which is used to operate between the ith feature map of the former layer and
the jth feature map of layer l. T represents the feature atlas of the former layer and bl

j represents the

bias of layer l corresponding to the output matrix yl
i, which represents the convolution operation result

of the jth feature map in layer l.
The output matrix of the convolutional layer is normalized by the BN layer such that the mean

and variance of the feature become 0 and 1, respectively. Then, we used functions to transform
and reconstruct a certain level of features to maintain the data distribution. Those equations can be
expressed as:

y2 =
y1 − µ
√
σ2 + ε

, (7)

y3 = f (γy2 + β), (8)

where µ and σ2 represent the mean and variance of the mini-batch in Equation (7), and γ and β are
the two parameters in Equation (8), which can be learned by the training network. f represents the
activation function, which is used to analyze nonlinear information for the output features of the
BN layer.

Then, the max pooling layer was applied to the subsample feature information of the BN layer to
prevent overfitting.

Finally, through a combination of these high-level representations in a nonlinear way, a fully
connected layer that recognizes gear fault patterns under different working condition was produced.
The mathematical equations of the fully connected layer can be expressed as:

h
(
yl
)
= f

(
wyl−1 + b

)
, (9)
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where yl−1 represents high-level information of the former layer, h
(
yl
)

represents the output nonlinear
information from the fully connected layer l, and ω and b represent the weight and bias, respectively.

2.4. Architecture and Parameters of the Attention-Based Multi-Scale CNN Model

The detailed information of the architecture and parameters of the attention-based multi-scale
CNN model are shown in Figure 4 and Table 1, respectively. The architecture of the attention-based
multi-scale CNN model consists of two parts: (a) the attention-based multi-scale feature extraction
module and (b) the fault pattern recognition module.

Figure 4. Architecture of the attention-based multi-scale convolutional neural network (CNN)
model. It contains (a) an attention-based multi-scale feature extraction module and (b) a fault
pattern recognition module.

These two modules can be divided from the concatenate layer. The attention-based multi-scale
feature extraction module contains a multi-scale convolutional learning structure with an attention
mechanism. The network operates on an input acoustic signal, which consists of 16,000 sampling
points using three different scale convolutional neural networks of different scales. The three chosen
scales are low-scale (size 11, stride1), mid-scale (size 51, stride 4), and high-scale (size 101, stride 8).
Each scale has 32 filters in their convolutional layer. As an independent part in the network, the
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attention mechanism contains two convolutional layers to adaptively pay more attention to the relevant
information frames from the output of the three convolutional layers. The kernel size of the two
convolutional layers were set as (1, 1) and (64, 1) in the low scale, (1, 1) and (32, 1) in the middle
scale, and (1, 1) and (16, 1) in the high scale. Then, the attention output matrix is concatenated along
the channel dimension as a multi-dimensional matrix 500× 1× 96 (two-dimensional feature matrix ×
channels). Finally, in order to convolve the feature matrix from time and frequency in module (b), the
attention output matrix is reshaped from 500× 1× 96 to 500× 96× 1 before being used as an input to
“conv2” for further processing.

The fault pattern recognition module contains three convolutional layers, two pooling layers,
and one fully connected layer. The first convolutional layer uses 32 filters with a (5,5) kernel size and
stride of (1,1). The second and third convolutional layers repeatedly use 64 filters with a (3,3) kernel
size and the strides were set to (1,1) and (2,2), respectively. The pooling layer is applied to subsample
feature information after the first and second convolutional layers. All the kernel sizes and strides
for the pooling layer were set to (2,2). In addition, the BN layer is used as a function layer, which
can alleviate the problem of exploding and vanishing gradients following each convolutional layer
(before the pooling layer). Finally, the output feature of the BN layer is flattened and passed to the
fully connected layer with 256 nodes and the softmax activated output layer for final recognition.

Table 1. Parameters of the attention-based multi-scale CNN model.

Layer Input Shape Filter Kernel Size Stride Output Shape

Conv1_1 [batch,16000,1,4] 32 (11,1) (1,1) [batch,16000,1,32]
Conv2_1 [batch,16000,1,4] 32 (51,1) (4,1) [batch,4000,1,32]
Conv3_1 [batch,16000,1,4] 32 (101,1) (8,1) [batch,2000,1,32]

Conv2 [batch,500,96,1] 32 (5,5) (1,1) [batch,500,96,32]
Pool2 [batch,500,96,32] - (2,2) (2,2) [batch,250,48,32]
Conv3 [batch,250,48,32] 64 (3,3) (1,1) [batch,250,48,64]
Pool3 [batch,250,48,64] - (2,2) (2,2) [batch,125,24,64]
Conv4 [batch,125,24,64] 64 (3,3) (2,2) [batch,63,12,64]

Fc5 [batch,48384] - - - [batch,256]
Output [batch,256] - - - [batch,12]

3. Experimental Setup and Datasets

3.1. Experimental System

Our study was a preliminary attempt at going from the theory and simulation experiment to the
practical engineering application. In order to obtain pure acoustic signals that were not disturbed by
environmental noise, the gear fault diagnosis experiments were conducted in a semi-anechoic chamber.
The experimental system that we designed can be divided into three parts: the experiment table, the
measuring system, and the data recoding software. The experiment table, as shown in the top-left
corner of Figure 5 [34], consisted of the following equipment: a variable frequency motor, a two-stage
gearbox, a tension controller, a frequency converter, and a magnetic brake. By adjusting the frequency
converter and the tension controller, we could control the speed of the motor and simulate the load
condition of the two-stage gearbox. The measuring system, as shown in the right picture of Figure 5,
consisted of four free-field 4189-A-021 model microphones from Brüel & Kjær (Copenhagen, Denmark)
and a data acquisition instrument from HEAD Acoustics (Herzogenrath, Germany). In our study, the
four free-field microphones were arranged to provide a four-channel microphone array, where they
were arranged symmetrically with a hemispherical enveloping surface and the coordinates were set
according to the ISO 3745:2003 standard to collect all the gears’ acoustic signals. Then, the microphone
array and data acquisition instrument were connected using a Bayonet Nut Connector (BNC) interface
for data transmission. In addition, the data was recoded using Artemis 6.0 software, which is shown in
bottom-left of Figure 5.
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In our experiments, we chose the low-speed shaft of the two-stage gearbox as the object for
detecting the gears’ fault patterns under different working conditions. The gears’ fault patterns,
as shown in Figure 6 [34], consisted of a tooth fracture, pitting, and wear. We set the motor at three
speeds—900 rev/min, 1800 rev/min, and 2700 rev/min—by controlling the frequency and adjusting
the magnetic brake using two load conditions—0 Nm and 13.5 Nm—via tension control to simulate
different working conditions. Regarding those conditions, we believe that the acoustic signal that we
obtained can be viewed as only containing the gears due to the general assumption that the interference
of other parts of the gearbox, such as the bearing and shaft via vibration, was minor. All the acoustic
signals of the gears were recorded as an audio file that was 60 s long for further analysis.

Figure 5. Experimental system in a semi-anechoic chamber.

Figure 6. Fault pattern of the gears.

3.2. Dataset

In order to verify that the method we proposed is effective and feasible under different working
conditions, we built two different datasets, A and B, that represented the two load conditions of 0 Nm
and 13.5 Nm, respectively. Each dataset contained an audio file of four types of gears (one normal type
and three fault types) at three different speeds, and each type was recorded to produce a four-channel
audio file that was 60 s long. Each file was divided into 1-s samples with no overlap because 1-s
samples are an optimal size for analysis based on empirical experiments in audio processing tasks.
Then, each dataset contained 21,600 samples with 18,000 used as training samples and 3600 used as
testing samples.

3.3. Implementation Detail

We used the cross-entropy as a loss function to train the attention-based multi-scale CNN model
for multi-fault type classification under different working conditions. We applied the Adam algorithm
in the training step to optimize the model, where learning rate was set to 0.003. In addition, we used
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rectified linear units as activation functions for each layer. When training, the dropout layer, which
was followed by the fully connected layer, was employed to prevent overfitting with a 0.5 dropout rate.
Finally, the early stopping approach and the no-improvement-in-10-epochs strategy was adopted to
identify the number of epochs via the testing set.

4. Experimental Result and Analysis

4.1. Time and Frequency Analysis in Different Working Conditions

The time and frequency domain information of the acoustic signals that we obtained from
four types of gears at three different speeds under two load conditions are shown in Figure 7.
The subplots (a), (b), and (c) represent the time and frequency domain signal of gears under two load
conditions at 900 rev/min, 1800 rev/min, and 2700 rev/min, respectively. The left panel of each subplot
shows the four types of gears in a no-load condition and the right panel shows the same type in a
13.5-Nm-load condition.

Comparing the time and frequency domain signals from the subplots, we can see that the signal
amplitudes of the gears were different in the time and frequency domains under variable speed
conditions. To be specific, with the increasing of the operation speed, the maximum amplitude of the
majority types of gears in the time domain also increased under the same load condition. Meanwhile,
from the frequency domain signal, we found that the magnitude of the frequency amplitude for the
same types of fault signals under variable speed conditions was different, but the distribution of
the amplitude was not affected by the varying speed. For example, in the frequency domain, the
normal gears had a higher amplitude at 2700 rev/min speed condition than the same type of gears at
900 rev/min and 1800 rev/min under the no-load condition, but the distribution of the amplitude, which
was concentrated in the range of 0–500 Hz and 1000–1200 Hz, was consistent in the three different speed
conditions. Based on the description above, we could infer that the variable speed caused the amplitude
modulation phenomenon of the acoustic signal, but did not influence the frequency modulation.

Furthermore, comparing the time and frequency domain signals under the no-load condition
and load condition at 900 rev/min, 1800 rev/min, and 2700 rev/min, we observed that the acoustic
signals for four types of gears seemed to be obviously different in the two load conditions. From the
time-domain signal, we saw that the gears with a wear type and the gears with pitting under the
no-load conditions had a higher amplitude range than the same fault type under the 13.5-Nm-load
condition at 900 rev/min, but it was the opposite at 1800 rev/min. Moreover, the waveform of each type
of gear in the time domain were different, which means the temporal structure and energy modulation
patterns of the signal under the two load conditions were diverse. Meanwhile, according to the
magnitude and distribution of the frequency amplitude in the ranges of 0–500 Hz and 1000–1200 Hz,
we found that the frequency signal of the four types of gears under the two loads were also different,
especially for the normal and pitting types of gears. As for the normal gears at 900 rev/min, the
frequency component under the no-load condition was around 0–500 Hz and 1000–1200 Hz, while the
frequency component under the load condition was around 1000–1200 Hz. Equally, the gears with the
pitting type had the same phenomenon at 1800 rev/min. This indicates that the acoustic signals of
gears under different load conditions were not only affected by the amplitude modulation, but also
by the frequency modulation. In addition, another interesting phenomenon we observed was that
the type of gear signal that we obtained under the no-load condition at one speed may follow the
same magnitude and distribution of frequency amplitude under the load condition at another speed.
For example, the normal gears under the no-load condition at 900 rev/min had a similar amplitude and
distribution of frequency to the same gear type under the 13.5-Nm-load condition at 1800 rev/min.
This means that the gear fault diagnosis under variable load conditions is more complex and difficult
than that of a variable speed condition. Therefore, we proposed an attention-based multi-scale CNN
model for gear fault diagnosis under variable load conditions.
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Figure 7. Cont.
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Figure 7. Four different types of gear signals in the time and frequency domains under two load
conditions: (a) signal at 900 rev/min, (b) signal at 1800 rev/min, and (c) signal at 2700 rev/min.

4.2. Effectiveness of the Multi-Scale Convolution Operation

In order to verify the hypothesis that the multi-scale convolutional learning structure is superior
to the single-scale convolutional structure in for gear fault diagnosis tasks, we first compared the
performance of our multi-scale convolutional neural network with that of a low-scale convolutional
neural network, mid-scale convolutional neural network, and high-scale convolutional neural network
with no attention mechanism. These three models remained at only one scale each, which is shown in
Figure 2. The input and the rest of the network structure is the same as in Figure 4 for fair comparison.
The two evaluation methods were designed to evaluate the performance of models under different
load conditions:

In evaluation A, we used the training samples of dataset A to train these CNN models and test it
on the test samples of dataset B.

In evaluation B, we used the training samples of dataset B to train these CNN models and test it
on the test samples of dataset A.

The classification accuracy was used as the evaluation criterion. The equation is defined as:

ACC =
N1

N2
, (10)

where N1 represents the number of test samples that were predicted properly and N2 represents the
total number of test samples.

The test results of the multi-scale network and single-scale network in the two evaluation methods
are shown in Table 2. From the result, we saw that the recognition accuracy of the multi-convolutional
neural network reached 81.1% and 71.0% for the two evaluation methods, respectively. This was an
improvement of 2.5%, 2.3%, and 1.6% compared with the low-scale, mid-scale, and high-scale networks
for evaluation A, respectively. Also, the multi-scale convolutional neural network achieved the best
accuracy for evaluation B. The improvement from the single-scale model to the multi-scale model



Sensors 2020, 20, 1233 13 of 21

proved that the model, which contained different scales, was capable of learning more discriminative
features from the waveforms.

Table 2. Prediction accuracy of multi-scale CNN and single CNN model.

CNN Model
without Attention

Accuracy (%)

Evaluation A
Train on A
Test on B

Evaluation B
Train on B
Test on A

Multi-scale 81.1 71.0
Low-scale 78.6 70.8
Mid-scale 78.8 64.4
High-scale 79.5 62.3

To further understand how the multi-scale convolution operations help to improve the performance
of fault pattern recognition, we visualized the frequency magnitude of the response of the multi-scale
feature maps Conv1 of the model in Figure 8. As indicated in this figure, the 32 filters were viewed as
band-pass filters to learn a particular frequency area, and each filter was sorted based on their center
frequencies. From the left picture of Figure 8, we observed that the curve of the center frequency
almost matched the sound feature of the human auditory system. This means that the low-scale
structure was able to extract features from all frequency areas. Conversely, the high-scale structure,
which is shown in the right of Figure 8, was located in the low-frequency area with fine-grained filters.
It shows that the high-scale structure tended to concentrate on low-frequency components and ignore
high-frequency information. Moreover, the mid-scale performed between the low-scale and high-scale
networks. In general, a model with a narrow kernel size can cover all frequency areas but obtains
a low-frequency resolution, and a model with a wide kernel size does not have sufficient filters in
the high-frequency range but gives good frequency resolution. It indicates that learning structures of
different scales can extract discrepant features based on what they can efficiently represent. This may
explain the result that we present in Table 2 where the multi-scale models obtain a better performance
than the single-scale models.

Figure 8. Frequency magnitude response of the multi-scale convolutional filters of the first layer.
The filters are sorted by their center frequency. Left shows the frequency response of the low-scale
network, middle shows the frequency response of the mid-scale network, and right shows the frequency
response of the high-scale network.

4.3. Comparison of a Standard CNN Model and Attention Models

To verify the effectiveness of the attention mechanism, we applied the attention mechanism
to a multi-scale convolutional neural network and each single-scale network for a fair comparison.
The performances of the models are summarized in Table 3.



Sensors 2020, 20, 1233 14 of 21

Table 3. Prediction accuracy when applying an attention mechanism.

CNN Model
With Attention

Accuracy (%)

Evaluation A
Train on A
Test on B

Evaluation B
Train on B
Test on A

Multi-scale 93.3 82.8
Low-scale 86.7 76.2
Mid-scale 87.6 75.1
High-scale 86.3 76.4

In Table 3, it is shown that the performances of each model presented a significant improvement
when using an attention mechanism compared with the standard model, which did not use an
attention mechanism, especially in the case of the multi-scale convolutional model. The attention-based
multi-scale CNN model achieved a 93.3% accuracy in evaluation A and 82.8% in evaluation B. This was
12.2% and 11.8% higher than the accuracy of the standard multi-scale CNN model. Meanwhile, by
using an attention mechanism, the improvement range of recognition performance of the single-scale
model was from 6.8% to 8.8% for evaluation A and from 5.4% to 14.1% for evaluation B. The test
results indicate that the attention mechanism was effective at gear fault diagnosis under different
load conditions.

To provide a better understanding how a temporal attention mechanism helped to improve the
performance of the multi-scale CNN model in the gear fault diagnosis task, we visualized the results
of randomly selected filters from the multi-scale pool layer and temporal attention output for four
different types of gear input signals under the two load conditions. Figure 9 shows the visualization
result of the attention-based multi-scale CNN model for evaluation A. The first and third rows represent
the waveform under the no-load condition and 13.5-Nm-load conditions, respectively. The second and
fourth rows represent the attention output corresponding to the waveform of the two load conditions,
respectively. From this figure, we found that the temporal attention mechanism, which was based on
the multi-scale CNN model, was able to adaptively focus on the relevant temporal information from
the different waveforms of the two load conditions while reducing the impact of the data distribution
variation. Furthermore, from the attention output, we found that the attention weights of the four gear
types were different for different time stamps. For example, the tooth fracture condition in gears had
three high-weighted areas at time stamps in the ranges of #30–#50, #100–#200, and #430–#500 frames,
while the high-weighted areas of the gears with pitting were in the ranges of #180–#230, #300–#320,
and #450–#480. This may indicate that the learned temporal attention was able to detect the essential
feature information required to distinguish these four types of gears under the two load conditions.

Figure 10 shows the visualization results of the attention based multi-scale CNN model for
evaluation B. From this figure, we found two phenomena. First, the learned temporal attention was also
able to locate the meaningful temporal parts from the different waveforms of the two load conditions
for evaluation B. Meanwhile, the four types of gears could be easily distinguished according to the
distribution of the time stamps. This visualization result was similar to that obtained for evaluation A.
Second, the high-attention-weights area of the four gear types for evaluation B were not consistent with
the high-attention-weights area for evaluation A. This may be due to the fact that the temporal attention
mechanism, which was trained on different datasets, could generate different attention weights to
focus on different temporal parts.

The above visualization results may explain why the temporal attention mechanism was effective
at gear fault diagnosis under different load conditions.
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Figure 9. Visualization results of randomly selected filters from the multi-scale pool layer and
temporal attention output for four different types of gear input signals under the two load conditions
corresponding to the attention based multi-scale CNN model for evaluation A.

Figure 10. Visualization results of randomly selected filters from the multi-scale pool layer and
temporal attention output for four different types of raw gear signals under the two load conditions
corresponding to the attention based multi-scale CNN model for evaluation B.
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4.4. Comparison between the Attention-Based Multi-Scale CNN Model and Other Methods

In this section, we compare our model with traditional methods that combine one of the most
powerful acoustic features, namely MFCC (Mel-frequency cepstral coefficients), with a convolutional
neural network and several classic fault diagnosis methods, which have been successfully used in
fault pattern recognition tasks based on time, frequency, manual features, and machine learning
algorithms, to analyze the performance of our model. Meanwhile, the end-to-end model, which is
based on time and frequency domain signals that we proposed in a previous work, was also used for
further comparison.

We adopted the commonly used parameter [35,36] to construct the MFCC feature, the first
derivative of the MFCC feature (MFCC-delta) and the second derivative of the MFCC feature
(MFCC-delta-delta) as matrix features. Then, we fed it into the convolutional neural network, whose
structure is the same as module (b) of the multi-scale CNN model in Figure 3 to provide a fair
comparison. The procedure of the classic fault diagnosis methods can be divided into two parts:
manual feature extraction and fault identification. The manual features that we extracted include the
root-mean-square error (RMS) [37], spectral centroid [38], and Mel spectrogram in the log domain [39],
which represent the popularity acoustic features in the time, frequency, and time–frequency domains,
respectively. We fused these manual features at the feature level for improving the representation
of the fault information. Then, we fed it into several classic machine learning classifiers [40–45] that
are widely used in fault diagnosis tasks for comparison. The end-to-end model that we proposed in
a previous work [34] used time and frequency signals as raw input signals to detect the gear fault
patterns. The test results of those methods on two datasets are shown in Table 4.

From the results, we found that the accuracy of the MFCC-delta CNN and the MFCC-delta-delta
CNN had similar performances, which were better than the MFCC CNN, but the accuracy of the best
traditional method, namely the MFCC-delta CNN, was 10% lower than our attention-based multi-scale
CNN for evaluation A. Moreover, the prediction accuracy of all methods declined for evaluation B, but
those traditional methods gave worse performances compared with our model. The above conclusions
indicate that our attention-based multi-scale CNN structure could learn more discriminative features
than traditional manual features by combining attention-based multi-scale information.

Furthermore, the recognition accuracy of our attention multi-scale CNN model reached 93.3% for
evaluation A and 82.8% for evaluation B. This was 5.4 % and 6.0% higher than the accuracy of the best
classic diagnosis method, namely manual features + k-nearest neighbor (KNN).

In addition, our attention multi-scale CNN model showed an improvement of 3.6% when
compared with the end-to-end CNN model for evaluation A. Furthermore, our model achieved at
least a 1.7% improvement over the end-to-end CNN model for evaluation B. The improvement proved
that the multi-scale CNN model based on the attention mechanism was able to adaptively learn
more efficient frequency representations using attention based multi-scale band-pass filters from raw
waveforms without frequency input signals.

In Figure 11, we provide the confusion matrix in order to further analyze the performance of our
proposed method regarding the two evaluation methods. From the confusion matrix for evaluation
A, we observed that most fault patterns under different working conditions could obtain a high
classification accuracy, except for gears with pitting types at 1800 rev/min and 2700 rev/min. The
two categories appeared to be easily misclassified due to the signal of pitting types at 1800 rev/min
under the no load condition being similar to the same type at 2700 rev/min under the 13.5-Nm-load
condition, as caused by the amplitude modulation and frequency modulation, the phenomena of which
is discussed in Section 4.1. Furthermore, from the confusion matrix for evaluation B, we noticed that the
recognition accuracy declined for some classes, especially for gears with pitting types at 1800 rev/min.
According to Figure 10 in Section 4.3, we found that the temporal parts, where the attention mechanism
was located, were totally different for pitting-type gears, which means that the discriminative feature of
pitting-type gears that the model learned were different at 1800 rev/min under the two load conditions.
This may explain why the pitting-type gears displayed a lower performance for evaluation B. As for
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the rest of the classes, we suspect that the easy misclassification was due to some extra information
between the acoustic signals and fault types existing in the load working condition but not in the
no-load working condition such that the training the model in the load condition and testing it in
no-load condition could be viewed as diagnosis fault patterns with noise, which led to some degree of
overfitting in our model. In general, the attention-based multi-scale CNN model that we propose still
had better generalization capabilities under variable load conditions compared with the other methods.

Table 4. Prediction accuracy comparison of our attention-based multi-scale CNN model and
other methods. GBDT: Gradient Boosting Decision Tree, KNN: k-nearest neighbor, SVM: support
vector machine.

Method Feature
Recognition

Model

Accuracy (%)

Evaluation A
Train on A
Test on B

Evaluation B
Train on B
Test on A

Attention-based
multi-scale CNN Time signal Multi-scale CNN 93.3 82.8

MFCC CNN MFCC (b) module 78.7 59.4
MFCC-delta CNN MFCC-delta (b) module 83.3 58.8

MFCC-delta-delta CNN delta-Deltas (b) module 82.6 57.4
End-to-end stacked CNN Time–frequency signal _ 89.7 81.1
Multiple feature + KNN Multiple feature KNN 87.9 76.8
Multiple feature + SVM Multiple feature SVM 83.2 66.7

Multiple feature + GBDT Multiple feature GBDT 71.5 48.4

Figure 11. Confusion matrixes for the proposed attention-based multi-scale CNN model. The left matrix
shows the statistics for evaluation (A), while the right matrix shows the statistics for evaluation (B).

Finally, to better show the performance of the attention-based multi-scale CNN model for the two
evaluation methods, we visualized the prediction result of the model by using a t-SNE (t-distributed
stochastic neighbor embedding) algorithm (Figure 12). The t-SNE algorithm was operated on the
output matrix of the last fully connected layer to reduce the dimensionality to conveniently show the
classification result in three-dimensional space. From these visual results of three-dimensional space,
we observed that most features clustered successfully around the two evaluation methods, which
also proved that our attention-based multi-scale model achieved a better performance at acoustic
signal-based gear fault diagnosis under different working conditions.
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Figure 12. Feature visualization via t-SNE (t-distributed stochastic neighbor embedding). Left shows
the feature representations for the last fully connected layer of attention-based multi-scale CNN model
for evaluation (A). Right shows the feature representations for evaluation (B).

5. Conclusions

In this paper, a novel ABD method was proposed for gear fault diagnosis under different working
conditions based on a multi-scale convolutional learning structure and attention mechanism. By using
a multi-scale convolutional learning structure, our model was able to automatically mine more efficient
feature representations from raw acoustic signals. It achieved better performance than the single-scale
models. Based on the multi-scale convolutional learning structure, a novel attention mechanism,
which operated on the convolutional layer, was applied to adaptively extract relevant fault information
and reduce the data distribution variation under different working conditions. The experimental
result for the two evaluation methods showed that the accuracy of our model reached 93.3% and
82.8%, respectively. All the performance metrics were higher than those of the standard CNN
model, end-to-end CNN model based on time and frequency domain signals, and other traditional
fault diagnosis methods with manual features. This indicates that our model was more effective at
acoustic-based gear fault diagnosis under different working conditions. Furthermore, we analyzed the
discrimination of different scale convolutional learning structures using feature representations and
visualized the attention output to provide insight into the reason for the performance improvement
in the gear fault diagnosis task. In future, the attention-based mechanism method can be further
developed in the ABD field. We will continue to explore the effectiveness of the attention-based method
for bearing fault diagnosis, the multi-fault diagnosis of gears, and the coupling fault diagnosis of
gearboxes. Meanwhile, we will extend our attention-based method into other fault diagnosis fields
that are out of the controlled environment, such as fault diagnosis in normal environmental conditions
and strong environmental noise conditions.
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