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Abstract: In this paper, the seismic assessments of two footbridges, i.e., a single-span steel frame
footbridge and a three-span cable-stayed structure, to the spatial variation of earthquake ground
motion (SVEGM) are presented. A model of nonuniform kinematic excitation was used for the
dynamic analyses of the footbridges. The influence of SVEGM on the dynamic performance of
structures was assessed on both experimental and numerical ways. The comprehensive tests were
planned and carried out on both structures. The investigation was divided into two parts: in situ
experiment and numerical analyses. The first experimental part served for the validation of both the
finite element (FE) modal models of structures and the theoretical model of nonuniform excitation
as well as the appropriateness of the FE procedures used for dynamic analyses. First, the modal
properties were validated. The differences between the numerical and the experimental natural
frequencies, obtained using the operational modal analysis, were less than 10%. The comparison
of the experimental and numerical mode shapes also proved a good agreement since the modal
assurance criterion values were satisfactory for both structures. Secondly, nonuniform kinematic
excitation was experimentally imposed using vibroseis tests. The apparent wave velocities, evaluated
from the cross-correlation functions of the acceleration-time histories registered at two consecutive
structures supports, equaled 203 and 214 m/s for both structures, respectively. Also, the coherence
functions proved the similarity of the signals, especially for the frequency range 5 to 15 Hz. Then,
artificial kinematic excitation was generated on the basis of the adopted model of nonuniform
excitation. The obtained power spectral density functions of acceleration-time histories registered
at all supports as well as the cross-spectral density functions between registered and artificial
acceleration-time histories confirmed the strong similarity of the measured and artificial signals.
Finally, the experimental and numerical assessments of the footbridges performance under the known
dynamic excitation generated by the vibroseis were carried out. The FE models and procedures
were positively validated by linking full-scale tests and numerical calculations. In the numerical
part of the research, seismic analyses of the footbridges were conducted. The dynamic responses
of structures to a representative seismic shock were calculated. Both the uniform and nonuniform
models of excitation were applied to demonstrate and quantify the influence of SVEGM on the
seismic assessment of footbridges. It occurred that SVEGM may generate non-conservative results in
comparison with classic uniform seismic excitation. For the stiff steel frame footbridge the maximum
dynamic response was obtained for the model of nonuniform excitation with the lowest wave velocity.
Especially zones located closely to stiff frame nodes were significantly more disturbed. For the flexible
cable-stayed footbridge, in case of nonuniform excitation, the dynamic response was enhanced only
at the points located in the extreme spans and in the midspan closely to the pillars.
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1. Introduction

Dynamic properties of footbridges have been extensively studied in recent decades. Especially,
improvements in the behavior of structures, with regard to their susceptibility to a variety of
human-induced dynamic impacts, were examined [1,2]. Other considerations, like aerodynamic
behavior, correlation of numerical results with measured dynamic properties, and seismic
assessment [3–7] were also investigated. After the earthquake in New Zealand in September 2010,
severe damages of footbridges were observed [8]. The Medway St footbridge in Christchurch became
a symbol of the destructive power of the September 2010 earthquake.

In seismic assessment, it is reasonable to consider the spatial variation of earthquake ground
motion (SVEGM) for long footbridges, which dimensions are comparable with lengths of seismic
waves. Like other so-called multiple-support structures, they are exposed to SVEGM [9–13] and their
foundations undergo concurrently various kinematic excitation in terms of amplitudes and frequencies.

The influence of SVEGM on the dynamic performance of bridges has been widely studied since the
data collected from seismic arrays (e.g., SMART 1 strong motion array in Taiwan) became available [13].
The following factors causing SVEGM were recognized; wave passage effect (time delay of excitation
at various points of a structure foundation), incoherence effect (loss of coherence resulting from wave
reflection and refraction in a nonuniform foundation ground), and local soil/site effect (difference in
ground conditions in particular points of the ground) [11]. In general, researchers have proved that
the SVEGM effects tend to decrease the global structural response to seismic shocks. However, the
significant pseudo-static component of structural response, increasing of the global response, was
also recognized [11]. This effect was observed for the higher, antisymmetric, modes of vibration
excitations [14,15]. Léger et al. [16] compared the results from analysis of the four-span bridge where
the wave velocity was varied. The comparison showed that the dynamic response increases as the
wave velocity decreases. Zembaty [17] provides the numerical investigation of a four-span bridge
and discusses the random vibrations of a structure kinematic wave excitations. Sextos et al. [18]
explored the results from the in situ monitoring of the Evripos bridge. The work focused on the
analysis of the SVEGM effect during two earthquakes and on the dynamic performance of the structure.
The authors documented, based on in situ test, that the asynchronous kinematic loading of the structure
excited higher modes while reducing the vibrations on its fundamental natural frequency. The seismic
assessments based on concept of SVEGM were also presented for other multiple-support structures,
like dams, pipelines, or tunnels [19–21].

Different models of nonuniform of kinematic excitation were implemented to represent SVEGM.
The basic models consider only wave passage effect [16]. More developed models takes into account
incoherence effect [22]. The most advanced models are formulated considering also local site
effects [11,23]. Spatial variability of earthquakes is also considered in EC 8 standard [24]. For the
design purposes, this effect is taken into account for bridges at least 600 m long or when the geological
discontinues are observed. The EC 8 also provides the set of models and methods of seismic assessment
of structures to SVEGM.

The main objective of this research was to explore the influence of SVEGM on seismic assessment
of two pedestrian bridges on both experimental and numerical ways. A single-span steel frame and a
three-span cable-stayed footbridge were taken into consideration. The comprehensive experimental
testing was planned and carried out on both structures.

Results of numerical analyses gain reliability when they undergo positive experimental validation.
Otherwise, without insightful experimental control, it is difficult to state with certainty that the
outcomes resulted from the FE modeling and procedures are an accurate representation of structural
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performance. This was the concept behind the authors’ framework for linking in situ tests and
numerical assessment of seismic behavior of the footbridges.

The investigation was divided into two parts: in situ tests and numerical seismic assessment
of the footbridges. The first experimental part served for the comprehensive validation of both the
FE models of structures and the adopted theoretical model of nonuniform excitation. Moreover, the
dynamic responses of footbridges to known kinematic excitations were recognized in both experimental
and numerical ways. The comparison of the measurements and calculations allowed for the global
validation of the FE models as well as procedures used in dynamic calculations. Once the comprehensive
experimental validation was provided, the seismic assessment of the footbridges under a selected
seismic shock was carried out in the second part of the research. The analyses allowed demonstration
and quantification of the influence of SVEGM on the seismic assessment of footbridges. Especially,
the performed calculations enabled to recognize whether the SVEGM phenomenon may generate
non-conservative results in comparison with results of classic analysis in which uniform seismic
excitation is assumed.

The main novelty of the presented research lies in performing experimental studies on real
footbridges together with confronting the obtained experimental results with the results of numerical
simulations. The presented in situ validation of numerical results concerns three aspects: the modal
properties of two real footbridges, the theoretical model of nonuniform kinematic excitation and
the dynamic behavior of the structures under the known excitation through the comparison of the
measured and calculated dynamic responses of both footbridges. Especially, the experimental in situ
validation of the model of nonuniform kinematic excitation as well as the experimental check-up of
the structures’ responses to nonuniform excitation make this study innovative in the field of civil
engineering. These aspects are not highlighted in other studies.

2. Theoretical Background of Spatial Variation of Earthquake Ground Motion

In the paper, numerical approach was applied for the dynamic analysis of the footbridges.
The dynamic responses of structures to kinematic excitations were evaluated by the time history
analysis using direct integration method for the solution of equations of motion. The mathematical
formulation of motion of a general multi-degree of freedom structure under kinematic loading takes
the following form [11,25],[
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The second equation resulting from conversion of Equation (1) is necessary only for calculation of
support forces occurring due to the kinematic excitation. It is omitted in the paper.
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The vector of total displacements of the structure
{
ut

s

}
(as well as vectors of total velocities and

accelerations) consists of two parts, i.e.,
{
ud

s

}
—the dynamic component and

{
up

s

}
—the quasi-static

component [11,25]. Therefore, the vector of total displacements can be quantified as follows.

{
ut

}
=

{
ud

s
0

}
+

{
up

s
ug

}
. (3)

The quasi-static component is expressed by Equation (4):{
up

s

}
= [R]

{
ug

}
, (4)

where [R]—a transformation matrix, which is expressed with the formula

[R] = −
[
K−1

ss

][
Ksg

]
. (5)

After including Equations (3)–(5), Equation (2) becomes equivalent to

[Mss]
{

..
ud

s

}
+ [Css]

{
.
ud

s

}
+ [Kss]

{
ud

s

}
=

(
[Mss]

[
K−1

ss

][
Ksg

]
−

[
Msg

]){ ..
ug

}
+

(
[Css]

[
K−1

ss

][
Ksg

]
−

[
Csg

]){ .
ug

}
. (6)

EC 8 [24] allows for skipping the second element of the right hand side of Equation (6), especially
in the case of the Rayleigh stiffness-proportional model of damping. Taking into account Formula (5),
which describes the transformation matrix [R], the following equation of motion of a structure under
kinematic excitation can be formulated,
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The dynamic response of a structure to kinematic excitation obtained by numerical integration
of Equation (7) depends on the ground accelerations vector

{ ..
ug

}
. The individual components of this

vector represent time histories of the ground accelerations at particular supports of the structure.
However, time histories of accelerations are usually registered by a seismological station at one control
point only. Therefore, if nonuniform kinematic excitation is intended in numerical simulations of a
multiple-support structure, application of Equation (7) requires additionally an assumption of a model
of excitation.

In this study a model of nonuniform kinematic excitation taking into consideration only the
wave passage effect was adopted. In the model it is assumed that subsequent points of the ground
in the direction of wave propagation repeat the same motions with a time delay dependent on wave
velocity. Therefore, the appropriate assumption of wave velocity is of a crucial meaning for dynamic
calculations of a multiple-support structure [9,12,26].

3. General Framework of the Research

The research was divided into experimental, in situ, and numerical parts. The general framework
of the in situ tests is shown in Figure 1. Identical framework was executed for both analyzed footbridges.
This part of the research was carried out in three stages.
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Figure 1. General concept of the experimental investigation carried out in three stages: 1st stage—the
validation of the modal models of both footbridges with regard to the results of in situ experiment, 2nd
stage—the validation of the theoretical model of nonuniform kinematic excitation through the similarity
assessment of the measured and artificial excitations, and 3rd stage—the validation of the dynamic
responses of the footbridges through the comparison of the measured and calculated accelerations at
representative points of the structure.
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The first stage of in situ investigation allowed for the validation of the FE models of both
footbridges. In this stage, the following steps were conducted (see Figure 1).

• The experimental modal models of both footbridges were created employing the operational
modal analysis (OMA) techniques.

• The numerical modal models of both footbridges were obtained through assembling the FE
models of both footbridges and the calculation of dynamic properties of both structures.

• The validation of the FE models of both footbridges with regard to the results of in situ experiment
was carried out using the modal assurance criterion (MAC) theory.

The second stage of the in situ investigation enabled the experimental validation of the adopted
theoretical model of nonuniform kinematic excitation. In this stage, the following steps were carried
out (see Figure 1).

• The experimental measurements of bridges’ responses resulting from nonuniform kinematic
excitation generated by the vibroseis, i.e., measurements of acceleration-time histories on the
consecutive structural supports and estimation of shock wave velocities on the basis of the
cross-correlation (CCr) functions of the acceleration-time histories registered at two consecutive
structures’ supports.

• The generation of artificial acceleration-time histories for the consecutive supports of both
footbridges, based on the adopted model of nonuniform kinematic excitation.

• The validation of the theoretical model of nonuniform kinematic excitation through the similarity
assessment of the measured and artificial excitations using the power spectral density (PSD) and
the cross-spectral density (CSD) functions.

The third stage of in situ investigation enabled the validation of dynamic performance of the
footbridges as well as the appropriateness of the FE procedures used for dynamic analyses. In this
stage, the following steps were carried out (see Figure 1).

• The experimental measurements of the dynamic responses of both footbridges (in terms of
acceleration-time histories registered at selected output measurement points of the structures)
under nonuniform excitation of known amplitudes and frequency range, generated by the vibroseis
placed in close proximity to a footbridge.

• The numerical recognition of the dynamic responses of footbridges (in terms of acceleration-time
histories calculated at selected output measurement points of the structures) under known
nonuniform excitation generated by the vibroseis.

• The validation of both the FE models of both footbridges and the nonuniform model of excitation
as well as the FE procedures used for dynamic analyses through the comparison of the measured
and calculated dynamic responses of both footbridges.

In the numerical part of the research the seismic analyses of the footbridges were conducted. The
dynamic responses of the structures to a selected seismic shock were calculated. Both the uniform and
nonuniform models of kinematic excitation were applied for the dynamic calculations that enabled to
demonstrate and quantify the influence of the SVEGM phenomenon on the seismic assessments of
both footbridges. Based on the comprehensive experimental validation of the FE models conducted
in the first, in situ, part of the research, it can be concluded that the results of the numerical seismic
analyses reflected the real performance of the footbridges subjected to the SVEGM phenomenon.

4. Structural Layouts and FE Models of the Footbridges

Two pedestrian bridges were selected for the investigation. The first footbridge is a single-span
steel frame structure (Figure 2). The primary structural system consists of two steel frames, which
are uniform box sections with 30.00 mm wall thickness. The footbridge deck is a steel-reinforced
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concrete slab supported by concrete girders and steel cross bars. The deck is attached to the steel
frames with elastomeric bearings and steel hangers as linking elements. The parts of the steel frames
are fully connected to the footbridge deck forming a steel–concrete composite. The total length of
the steel frames is 50.50 m. They are fixed in the steel-reinforced concrete pile cups. The abutments
are supported on reinforced concrete piles. The structure is relatively stiff in comparison with other
typical footbridges.
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Figure 2. The single-span steel frame footbridge: (a) general view and (b) structural layout.

The second footbridge is the three-span cable-stayed bridge (Figure 3). The suspended structure
is composed of three spans—the central span is 60.00 m long and the two outer spans are 25.50 m
long. The total length of the footbridge is 120.00 m. The footbridge deck is a composite of steel girders
and a steel-reinforced concrete slab with a thickness of 15.00–18.00 cm. The depth, flange width, web
thickness, and flange thickness of steel beams are the standard measurements of IPE360 (girders) and
IPE220 (cross bars). The steel beams form a grid. The deck of the footbridge is connected to two
steel pylons (11.80 m high) by cables. The structure is equipped with elastomeric bearings as linking
elements between the deck and the abutments. The pillars and abutments are founded on reinforced
concrete piles with a diameter of 100 cm.
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The 3D finite element (FE) models of both structures were assembled, and dynamic analyses were
completed with the ABAQUS/Standard [27]. The structural parts of the frame bridge are represented
by a deck and steel frames by shell elements, girders and cross bars by beam elements, abutments
and elastomeric bearings by solid elements, and hangers by truss elements. The structural parts the
cable-stayed footbridge are modeled by a deck, steel pylons, steel girders and steel cross bars by shell
elements; abutments, pillars, and elastomeric bearings by solid elements; and cables by truss elements.

The fixed boundary conditions, reflecting the high rigidity of the foundations as well as high
stiffness of the subsoils, were applied at the end of the abutments and pillars. The following element
types were used in the FE analyses (Abaqus referenced); linear quadrilateral shell elements of type
S4R, quadratic hexahedral solid elements of type C3D20R, linear line beam elements of type B31, and
elastic truss elements (T3D2) with no compressive stiffness (“no compression” option). The latter
elements were used for modeling hangers and cables to guarantee that compressive stresses would
not be generated during dynamic analysis [27]. However, when such numerical approach is used,
instability of the model can appear. This difficulty was overcome by overlaying each truss element,
which has no compression stiffness with beam element and has low compression stiffness. This enables
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obtaining a stiffness greater than zero, which has the effect of stabilizing the model. A level of 5% of
the cables’ stiffness was selected for the stabilizing elements. “Tie” constraints were used to guarantee
identical kinematic behavior of the truss and the beam elements. The modulus of elasticity of the
steel elements was adopted as 210 GPa with the Poisson’s ratio of 0.29. Both structures are equipped
with elastomeric bearings that are composed of two steel plates with elastomeric laminae in between.
In the FE calculations, the homogenization theory was applied for the elastomeric laminae [28].
The geometrical parameters for the elastomeric bearings based on the real dimensions of bearings.
Usually, a two-parameter Mooney–Rivlin model is used as a constitutive model of hyperelastic,
nonlinear, elastomeric-bearing material. However, the parameters of the Mooney–Rivlin material
(C10 and C01) can be replaced with the equivalent elasticity modulus: E = 6 (C10 + C01) [28]. In this
paper, the parameters of the Mooney–Rivlin model (adopted as C10 = 0.292 MPa and C01 = 0.177
MPa [28]) were replaced with the equivalent elasticity modulus (2.814 MPa). The Poisson’s ratio of
the elastomeric material was taken as 0.49. For the steel plates the elasticity modulus 210 GPa and
Poisson’s ratio 0.3 were adopted.

5. Experimental Set-Up

The layouts of measurement points for the testing scenario realized for both footbridges are
shown in Figures 4a and 5a, respectively. The measurement points consisted of three piezoelectric
high sensitivity (10,000 mV/g) accelerometers 393B12 PCB Piezotronics located in three directions.
The frequency range of accelerometers was from 0.15 to 1000 Hz. All sensors were wire connected.
Data sampling of the signal was 1024 Hz.

During all tests the data were collected at input and output measurement points of both footbridges.
The input measurement points—F_IMP for the frame (first bridge) and C_IMP for the cable-stayed
footbridge (second bridge)—served for recording the motion of structures’ supports, whereas the
output measurement points—F_OMP for the frame and C_OMP for the cable-stayed footbridge—were
dedicated to register the motion of main elements of structural systems.

In the first stage of the experimental part (see Figure 1), the validation of the FE modal models of
the structures was performed using the operational modal analysis (OMA). For the OMA procedures
only the output measurement points (F_OMP and C_OMP) were launched. Active measurement
points, which served for data collection in this stage, are shown schematically in Figures 4b and 5b for
both footbridges, respectively.

In the second stage, the validation of the theoretical model of nonuniform kinematic excitation,
adopted in this study, was carried out. For the experimental detection of nonuniform kinematic
excitation, only the input measurement (F_IMP and C_IMP) were needed. Active measurement points,
used for data collection in this stage, are presented in Figures 4c and 5c. In the case of the frame
footbridge the input points (F_IMP) were located on the structure’s foundation. As the footbridge
foundation was rigid and the recorded stiffness of subsoil was high, accelerations registered on the
foundation represented in fact the ground motion. In the case of the cable-stayed footbridge, the
input points (C_IMP) were located on the top of each pillar of the structure. The high rigidity of
foundation and pillars allowed considering the motion registered at pillars and the ground motion as
being identical.

In the third stage, the global validation of the FE models of structures and the theoretical model
of nonuniform excitation, as well as for the FE procedures used for dynamic analyses, was provided.
For the global validation purposes both the input (F_IMP and C_IMP) as well as the output (F_OMP
and C_OMP) measurement points had to be launched. Active measurement points, used for data
collection in this stage, are presented in Figures 4d and 5d.
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The nonuniform kinematic excitation ground vibrations were generated by the THOMAS vibroseis
apparatus (see Figure 6). The vibroseis generates vibrations by a plate striking the ground. These
vibrations are transmitted to foundations through the ground. The total mass of the apparatus is
32,000 kg and the range of excitation frequencies is 2–250 Hz. The locations of the vibroseis during the
experiments are presented in Figures 4a and 5a. These locations ensured that the input measurement
points were placed along the direction of generated waves propagation. The vibroseis may execute
sweeps, i.e., vibrations of frequency linearly or exponentially fluctuating in the time domain.
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The time-frequency characteristics of both the linear and exponential sweeps are shown in
Figure 7a,b, respectively. The data were transformed by the Short-Time Fourier Transform (STFT) with
the rectangular window (13 dB W = 1) with normalization by amplitudes. The segment length of the
STFT was 1664.
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The time-frequency characteristics illustrate the intensity of the obtained signals and the time
period of low frequencies registered at one footbridge support. It is visible in Figure 7 that better
time-frequency characteristics (in terms of generating low frequencies with higher amplitudes) were
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obtained from the exponential sweep. Based on this observation, it was decided that the exponential
sweeps will be generated for all further vibroseis tests.

6. Theoretical Background for In Situ Tests

A set of mathematical tools were applied for the analysis of signals [11,29]. The experimental
estimation of dynamic properties of the footbridges was based on ambient vibrations caused by
operational excitation. In the experiment, data at output measurement points were collected. As a
natural frequency estimator of the experimental modal model, the summation of all combinations
of auto- and cross-spectral density functions (PSD and CSD) between data recorded at all output
measurement points was used. The peak picking method was used as the method for the estimation of
natural frequency values. The frequencies for which extreme values of the estimator appeared were
identified as being the eigenfrequencies of the structure. The auto-spectral density function is provided
by Equation (8):

Sxx( f ) =

∫
∞

−∞

Rxx(τ)e− j2π f tdt, (8)

where Rxx is the autocorrelation for the x(t) signal registered in the control point. The autocorrelation
function is given by the Formula (9):

Rxx(τ) = lim
T→∞

1
T

∫ T

0
x(t)x(t + τ)dt (9)

where t is time, x(t) is the data registered in the first control point, and τ is time delay.
The cross-spectral density function is defined by Equation (10):

Sxy( f ) =

∫
∞

−∞

Rxy(τ)e− j2π f tdt, (10)

where Rxy is the cross-correlation for the x(t) and y(t) signals registered in the control point. The
cross-correlation function is given by the Formula (11):

Rxy(τ) = lim
T→∞

1
T

∫ T

0
x(t)y(t + τ)dt (11)

where t is time, x(t) is data registered in the first control point, y(t) is data registered in the second
control point, and τ is time of delay between x(t) and y(t) signals. The cross-correlation function has
the maximum value Rxy(τ0) for the τ0 that represents the time delay of the signal.

The modal assurance criterion (MAC) was used as a mathematical tool for the verification of the
obtained mode shapes from both modal models [29]. The MAC(i, j) values for the i and j eigenvectors
were extracted on the basis of Equation (12):

MAC(i, j) =

(
{Ψi}

T
{
Ψ j

})2

(
{Ψi}

T
{Ψi}

)({
Ψ j

}T{
Ψ j

}) , (12)

where Ψi, Ψ j are modal vectors.
For duplicate mode shapes, the MAC(i, j) index has a value of 1; for different eigenvectors, the

MAC(i, j) index has a value of 0. In practise, the boundaries of the MAC(i, j) values, which verify
modal model positively, were quoted as being greater than 0.8 and less than 0.2.

Spatial variability of earthquake ground motion means that the excitation at different points of
a structure foundation is not identical. Due to the passage wave effect, the time delay in excitation
registered at two supports of a structure appears. In the experiment, signals at the input measurement
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points of both structures were collected. The cross-correlation function (CCr), given by the formula
(11), was used as an estimator that provides the time shift of a signal between two supports.

As the incoherence effect may significantly change the signals collected at different points, the
frequency content of the signals that were registered in the input measurement points was investigated
by the coherence function. The coherence function (CH) is a linear non-dimensional estimator, which
is calculated from the signals x(t) and y(t):

Cxy( f ) =

(
Sxy( f )

)2

Sxx( f )Syy( f )
, (13)

where Sxx( f ) and Syy( f ) are power spectra of signals x(t) and y(t), respectively; Sxy( f ) is cross-power
spectrum for these signals; and f is frequency.

The values of the Cxy( f ) are in range from 0 to 1. The value of coherence of 0 at a given frequency
means there is no similarity between the data at this frequency. A coherence value of 1 at a given
frequency means that the spectral contents at this frequency are identical [12].

In the signals generated by the vibroseis and registered on supports were compared with the
numerical data generated based on the adopted model of nonuniform kinematic excitation. In this
model, the decrease of vibration amplitudes, caused by distance from the source of vibration, was
evaluated on the basis of Equation (14) [26]:

Ar = A0

( r0

r

)n
e−α(r−r0), (14)

where Ar is the amplitude of the vibration at distance r from the source of vibrations, A0 is the measured
amplitude of the vibration at distance r0 from the source, n is the discrepancy factor (for the Rayleigh
waves n = 0.5), and α is soil-dependent absorption factor (α = 0.01÷ 0.1).

7. Results of in Situ Experiments and Discussion

7.1. Stage 1: Experimental vs. Numerical Modal Models of the Structures

The experimental modal models of both footbridges were created using OMA techniques.
The results of modal assessments for both structures were presented in details in works [6,7]. For the
OMA procedures only the output measurement points (F_OMP and C_OMP) were launched (see
Figures 4b and 5b).

In the case of the first frame footbridge, accelerations at two output points (F_OMA_1 and
F_OMP_2) were registered. The 10 s fragment of acceleration-time history registered at point F_OMP_2
in the vertical direction as a result of ambient vibration is presented in Figure 8a. The natural frequency
estimator of the experimental modal model (i.e., the summation of all combinations of PSD and CSD
functions between data recorded at all output measurement points) is illustrated in Figure 8b.

In the case of the cable-stayed footbridge (second bridge), accelerations at six output points (form
C_OMA_1 to C_OMP_6) were registered. The 15 s fragment of acceleration-time history registered at
measurement point C_OMP_3 in the vertical direction as a result of ambient vibration is presented in
Figure 9a. The natural frequency estimator of the experimental modal model is presented in Figure 9b.
The natural frequencies of both footbridges estimated through the in situ investigation, are shown in
Table 1, in which the experimental and numerical results and summarized.
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Table 1. Dynamic characteristics of the footbridges [6,7].

The Single-Span Steel frame Footbridge—Bridge One

Mode
Natural Frequency fi [Hz] Differences

[%]
MACii [–] Logarithmic

Decrement δi [–]FE Analysis OMA

1 1.71 1.76 2.92 0.92 0.131
2 2.45 2.68 9.39 0.84 0.101
3 3.33 3.15 5.41 0.80 0.056
4 3.41 4.19 22.87 0.78 0.035
5 4.40 4.47 1.59 0.83 0.025

The Three-Span Cable-Stayed Footbridge—Bridge Two

Mode
Natural Frequency fi [Hz] Differences

[%]
MACii [–] Logarithmic

Decrement δi [–]FE Analysis OMA

1 1.93 1.95 1.04 0.95 0.092
2 2.21 2.41 9.05 0.94 0.079
3 2.61 2.58 1.15 0.94 0.077
4 3.86 3.69 4.40 0.91 0.075
5 4.37 4.28 2.06 0.72 0.033
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The experimental estimation of modal shapes was conducted using ambient vibrations.
The acceleration-time histories, registered at all output measurement points, were filtered around
the consecutive natural frequencies of each footbridge. Third-order Butterworth band-pass filters
with a width of 0.04 Hz were used in both cases. This filter is usually used for experimental modal
shapes estimation as it provides (in the contrary to Chebyshev or elliptic filters) monotonic amplitude
response without ripples in both passband and stopband as well as quick roll-off around the cutoff

frequency [30]. Differences in phase and amplitudes of the filtered signals, registered by sensors placed
at different points, indicated that they represented the natural modes accompanied with the obtained
natural frequencies.

The validation of the experimentally-obtained mode shapes was carried out by means of the
AutoMAC tool [29]. On the basis of the AutoMAC values, which were less than 0.2 out of the diagonal
for both footbridges, a correlation between mode shape vectors was ruled out. Therefore, sufficient
number of the measurement points was installed to uniquely identify the individual modes.

The numerical modal models of both footbridges were obtained through assembling the FE
models of structures and the natural frequencies as well as mode shapes were estimated numerically
(see Table 1). The mode shapes of both footbridges are shown in Figures 10 and 11, respectively.Sensors 2020, 20, x FOR PEER REVIEW 16 of 29 
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Figure 10. (a) 1st, (b) 2nd, (c) 3rd, (d) 4th, and (e) 5th mode shapes of the frame footbridge [6].

The MAC criterion was used to verify the numerical modes of both footbridges with respect to
experimental results. The MAC indices related to different modes were not always equal zero, and the
MAC indices related to the same modes were not always equal one. This inaccuracy may occur due
to the limited number of output measurement points used in the in situ experiments. However, still
more than 90% of the obtained MAC values fulfilled the criteria of being greater than 0.8 on the matrix
diagonals and being less than 0.2 on the diagonals [29].

The logarithmic decrements of damping were also obtained experimentally for every estimated
eigenvalue of both footbridges. The acceleration-time histories of all control points were filtered around
the estimated natural frequencies. The free decay plots were obtained at every measurement point
in all three directions. All obtained free decay plots enabled the estimation of average logarithmic
decrements for all natural frequencies (see Table 1).
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The validation of the FE models of footbridges using the MAC theory was carried out.
Experimentally obtained modal vectors provided data for verification of the FE modal models
of the footbridges. The obtained results showed strong similarity as far as the natural frequencies and
the values of the MACi,i indices were taken into account. As a measure of the similarity, the errors
between numerical and experimental results were evaluated. The errors are less than 10%, except
for the fourth natural frequency of the frame footbridge. Again, this inaccuracy may have resulted
from the limited number of output measurement points used in the in situ experiments of the frame
footbridge. Therefore, the first stage of experimental investigation allowed for the positive validation
of the FE models of the footbridges.

7.2. Stage 2: Experimental vs. Theoretical Model of Nonuniform Kinematic Excitation

The experimental detection of nonuniform kinematic excitation generated by the vibroseis, i.e.,
measurement of acceleration-time histories on the consecutive supports at input points (F_IMP and
C_IMP) of the footbridges and estimation of shock wave velocities, was carried out. The ground
vibrations were generated by the vibroseis (see Figure 6), placed in close proximity to the footbridges
(see Figures 4a and 5a). The exponential sweep with a frequency range of 2 to 50 Hz was realized. Total
duration of the sweep was 60 s. In this stage only the input measurement points F_IMP and C_IMP
were active (see Figures 4c and 5c).

Acceleration-time histories in vertical direction, which occurred at the structures’ supports due to
the exponential sweep, were registered at all input measurement points. The analyses of the signals
are presented in Figures 12–15. The signals registered at points F_IMP_1 and F_IMP_2 of the frame
footbridge are shown in Figure 12a, whereas signals collected at points C_IMP_2 and C_IMP_3 of the
cable-stayed footbridge are presented in Figure 14a. The coherence functions (CH) between the signals
registered at points F_IMP_1 and F_IMP_2 as well as at points C_IMP_2 and C_IMP_3 were calculated
and shown in Figures 12b and 14b. This allowed for the recognition of the incoherence effect that
may occur due to the SVEGM phenomenon. Next, the time-frequency characteristics of the examined
nonuniform kinematic excitation are shown in Figures 13 and 15 for both footbridges, respectively.
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the cable-stayed footbridge due to the exponential sweep and (b) coherence function of the signals at
points C_IMP_2 and C_IMP_3.
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the cable-stayed footbridge due to exponential sweep.

In Figures 12b and 14b, a high level of noise can be observed. This random noise could be
generated by activities in the environment where data acquisition was carried out. It could be created
by traffic, like truck and vehicles moving nearby, wind or a river (in case of the experiment on the
cable-stayed footbridge). The noise could also originate from refraction and reflection of waves
generated by the vibroseis and it was detected by the receivers with the signal. As the noise was not
suppressed or removed from the signals registered at the supports of the footbridges, the presented
coherence functions between these signals are affected by a relatively high level of noise as well.

It can be observed (see Figure 12b) that the coherence between signals at point F_IMP_1 and
F_IMP_2 of the frame footbridge is satisfactory. Especially, in the frequency range of 5 to 25 Hz, the
values are located over 0.8. In the case of the cable-stayed footbridge the coherence between signals at
point C_IMP_2 and C_IMP_3 is a bit worse (see Figure 14b). However, still, in the frequency range of 7
to 17 Hz the values are over 0.8. The weak coherence for frequencies less than 5 Hz resulted from the
fact, that, due to physical limitations, the ground force output from the vibroseis at low frequencies is
limited. In consequence, harmonic distortion at low frequencies appears that results in significant loss
of coherence. However, the investigation of the coherence functions proved that for seismic signals
with dominant frequencies located in the range of 5 to 15 Hz, the adopted model of nonuniform
kinematic excitation in which the loss of coherence is neglected can be adequate. The time-frequency
characteristics of the excitation, shown in Figures 13 and 15 for both footbridges, respectively, illustrate
the intensity of the obtained signals and the time period of low frequencies registered at the footbridges’
supports. It can be observed that the signals on the consecutive structures’ supports are similar as far
as the frequency content is considered.

The apparent wave velocity was evaluated on the basis of the cross-correlation functions (CCr)
between the acceleration-time histories registered at two consecutive structure’s supports for both
footbridges. The CCr functions (Equation (11)) between the signals at points F_IMP_1 and F_IMP_2
(see Figure 12a) of the frame footbridge and between the signals at points C_IMP_2 and C_IMP_3 (see
Figure 14a) of the cable-stayed footbridge were calculated. The obtained estimators are presented in
Figure 16. The maximum values of the CCr functions indicated the time shifts of signals registered
on two consecutive structures’ supports. The apparent wave velocity was calculated as a quotient
of the distance between the input measurement points (44.75 m between F_IMP_1 and F_IMP_2 and
60.00 m between C_IMP_2 and C_IMP_3) and the value of time shifts of the waves (0.22 and 0.28 s
for the frame and cable-stayed footbridge, respectively). For the frame footbridge the apparent wave
velocity was 203 m/s, whereas for the cable-stayed footbridge 214 m/s.
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Figure 16. Cross-correlation functions between signals caused by exponential sweep at points: (a)
F_IMP_1 and F_IMP_2 of the frame and (b) C_IMP_2 and C_IMP_3 of the cable-stayed footbridge.

The artificial kinematic excitation, i.e., acceleration-time histories applied to all supports of the
structures, was generated based on the adopted model of nonuniform kinematic excitation. As a
basic acceleration-time history was applied for the first supports of the structures at the input points
(F_IMP_1 and C_IMP_1), the registered excitation resulting from the exponential sweeps were used.
For the generation of excitations of the consecutive supports at the points (F_IMP_2 and C_IMP_2,
C_IMP_3, C_IMP_4, for both footbridge, respectively) the apparent wave velocities of 203 and 214
m/s, were used for the frame and cable-stayed footbridges, respectively. The decrease of vibration
amplitudes, caused by a distance from the source of vibration, was evaluated from Equation (13). The
maximum accelerations, registered during the sweeps at two input points of the frame footbridge
(F_IMP) and at four input points of the cable-stayed footbridge (C_IMP), were compared with the
artificial curves of amplitude reductions in Figure 17. It may be stated that the maximum measured
values of accelerations are in a very good agreement with their theoretical prediction.
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Figure 17. Comparison of the maximum accelerations, registered during the exponential sweeps (a) at
two input points of the frame footbridge and (b) at four input points of the cable-stayed footbridge
with the artificial curves of amplitude reductions.

The validation of the theoretical model of nonuniform kinematic excitation through the similarity
assessment of the measured and artificial excitations was performed using the power spectral density
(PSD) and cross-spectral density (CSD), which were calculated at all supports of the footbridges.
The PSD and CSD functions calculated for the input points F_IMP_2 and C_IMP_3 of both footbridges
are compared in Figure 18. Again, a good agreement of both functions was observed which confirmed
the similarity of the registered and the artificial acceleration-time histories. The high level of noise
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in PSD functions, visible in Figure 18, was generated by activities in the environment where data
acquisition was performed, as explained previously for the coherence functions (Figures 12b and 14b).
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Based on the above investigation it may be concluded that the adopted theoretical model of
nonuniform kinematic excitation was positively validated with regard to the experimentally detected
nonuniform kinematic excitation.

7.3. Stage 3: Experimental vs. Numerical Dynamic Performance of Footbridges under Known Nonuniform
Kinematic Excitation

The experimental dynamic responses of the footbridges were obtained from loading generated by
the vibroseis at a constant frequency (20 Hz) with 10 s duration sweeps. This loading was acting on
the footbridges’ supports as nonuniform kinematic excitation. The accelerations at all input (F_IMP
and C_IMP) and output points (F_OMP and C_OMP) were measured. Therefore, the input data, the
accelerations acting on the footbridges supports and measured at the input points, the output data,
and the dynamic responses of footbridges in terms of the accelerations measured at the output points
were experimentally measured.

The dynamic responses of the footbridges were numerically calculated. The acceleration-time
histories, which were registered in the input points (F_IMP and C_IPM) were applied as kinematic
excitations of both footbridges supports in the FE analysis. The acceleration time histories calculated at
the output points (F_OMP and C_OMP) were the numerical dynamic responses of the footbridges.

The dynamic responses of the footbridges under the nonuniform kinematic excitation were
calculated using full-time history analysis. It was conducted with the Hilber–Hughes–Taylor time
integration algorithm provided in the ABAQUS/Standard software for a direct step-by-step solution [27].
The step varied from 10 to 5s, and from 10 to 2 s, according to convergence requirements.

The Rayleigh model of damping with coefficients α (for mass proportional damping) and β
(for stiffness proportional damping) was used for the numerical simulations. Damping ratio values
were adopted from the experimental modal model (see Table 1). The following values of coefficients
were applied: α = 0.4003, β = 0.0005 for the frame footbridge (obtained for the 1st and 2nd natural
frequency, see Table 1) and α = 0.3075, β = 0.0003 for the cable-stayed footbridge (for the 1st and 3rd
natural frequency, see Table 1).

The validation of numerical performance of footbridges and the appropriateness of the FE
procedures used for dynamic analyses was done by comparison of the numerical and experimental
accelerations collected at output measurement points F_OMP and C_OMP (Tables 2 and 3). The mean
errors between the maximal experimental and numerical accelerations were 11 and 20% for the frame
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and the cable-stayed footbridge, respectively. Taking into consideration the complexity of the FE
models as well as the nature of SVEGM, it can be stated that the measured and calculated accelerations
are in sufficient agreement and the numerical performance of footbridges strongly resembles the
experimentally found behavior of the structures.

Table 2. The values of maximum acceleration in the output measurement points for the frame footbridge.

Method
Acceleration [cm/s2]

Axis
Output Measurement Point (F_OMP)

1 2 3 4 5 6 7 8

In situ experiment
X 5.98 6.80 3.52 3.02 4.39 5.77 4.48 3.67

Y 3.49 2.75 4.05 3.29 6.90 5.23 6.91 5.69

Z 12.49 9.14 21.08 6.88 9.82 5.67 4.89 4.79

FE analysis
X 5.38 5.91 3.82 3.39 4.89 6.06 4.98 4.07

Y 3.91 3.04 3.93 3.15 7.54 5.38 6.31 5.97

Z 12.32 11.59 18.37 7.94 8.27 6.91 5.59 5.54

Table 3. The values of maximum acceleration in the output measurement points for the
cable-stayed footbridge.

Method
Acceleration [cm/s2]

Direction
Output Measurement Point (C_OMP)

1 2 3 4 5 6

In situ experiment
X 7.14 8.04 6.81 6.17 9.35 5.74

Y 7.01 8.48 6.37 6.67 6.90 8.47

Z 23.74 17.72 31.12 28.37 24.80 28.18

FE analysis
X 8.23 9.87 7.55 7.49 11.42 7.38

Y 8.99 10.52 7.79 7.21 8.51 11.37

Z 29.72 21.72 35.31 36.25 28.37 29.73

Due to the complex experimental testing, carried out on three stages, the results of further
numerical seismic analyses reflect the real dynamic performance of the structures under nonuniform
ground motions with high similarity.

8. Dynamic Performance of the Footbridges under a Selected Seismic Shock—Practical
Application of the Measurement Results of the SVEGM Effect

8.1. Seismic Event Chosen for Calculations

In the numerical part of the research, the seismic dynamic responses of the structures to a selected
seismic shock were calculated. Both the uniform and nonuniform models of kinematic excitation were
applied for the dynamic calculations that enabled to demonstrate and quantify the influence of SVEGM
on the seismic assessment of the footbridges.

An earthquake of the Richter magnitude 5.1 was used as kinematic excitation of the footbridges
in the time history analyses (THA) [31]. The recorded acceleration-time histories of the shock are
presented in Figure 19, whereas the frequency spectra are shown in Figure 20. It can be observed that
the dominant frequencies of the shock are located in the range of 5 to 8 Hz.

This seismic event was chosen as the 2012 Northern Italy Earthquakes represent a good case
study regarding the losses caused by a moderate earthquake in a densely populated and economically
well-developed area in European Union [32]. Moreover, the experimental investigation of the coherence
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functions (see Figures 12b and 14b) proved that the validated model of nonuniform kinematic excitation,
in which the loss of coherence is neglected, is appropriate for excitations with the dominant frequency
range around 5–15 Hz.
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and (c) Z direction.

The accelerations presented in Figure 21 were applied to all supports of the structures as the
uniform kinematic excitation. For the case of the nonuniform excitation, the registered seismic shock
was used as the excitation of the first support of the footbridges. The artificial acceleration-time
histories of excitations of the next supports of the structures were obtained based on this loading.
The wave velocities of 203 and 214 m/s, measured during in situ experiments for both footbridges,
respectively, were assumed (see Figure 16).
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8.2. Dynamic Performance of the Single-Span Steel Frame Footbridge

The dynamic performance of the structures was assessed using the calculated von Mises stresses.
The von Mises stress-time histories for the output points F_OMP_1, F_OMP_4, and F_OMP_7 located
on the left frame of the footbridge (see Figure 4a) are presented in Figure 21. The stress-time histories
were obtained for two variants, i.e., the uniform and the nonuniform (with the seismic wave velocity
203 m/s) excitation. The comparison of stress-time histories obtained for all output points demonstrate
that the dynamic response of the footbridge to the shock is greater when the model of nonuniform
excitation is applied.

The multi-variants analysis was conducted next to assess the influence of wave velocity on the
structural response. The maximum values of von Mises stresses obtained at the output points F_OMP_1,
F_OMP_4 and F_OMP_7 for different wave velocities (100, 500, 1000, 1500, 2000, and 250 m/s) are
presented in Figure 22. The maximum values were obtained when nonuniform model of excitation was
applied and the seismic wave velocity was 100 m/s. For the model of uniform seismic excitation, the
obtained values of Mises stresses were the lowest. The differences between results at all output points
were in the range of 10 to 50% (see Figure 23). In summary, the most significant influence of SVEGM
was observed at the output points F_OMP_1 and F_OMP_2. These points were localized closely to the
stiff nodes of the steel frame (see Figure 4a). The less significant differences were observed at output
points F_OMP_4, F_OMP_5, F_OMP_7 and F_OMP_8 located in the middle of the upper beam of
the frame.
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8.3. Dynamic Performance of the Three-Span Cable-Stayed Footbridge

The von Mises stress-time histories obtained for the uniform and the nonuniform excitation (with
the seismic wave velocity 214 m/s) at output point C_OMP_1 located on one extreme span and at output
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points C_OMP_2, C_OMP_3 located in the midspan of the cable-stayed footbridge (see Figure 5a) are
presented in Figure 24.
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Figure 24. Von Mises stress-time histories for the cable-stayed footbridge at control points: (a) C_OMP_1,
(b) C_OMP_2, and (c) C_OMP_3.

The comparison of stress-time histories at all output points demonstrate that the dynamic response
of the footbridge to the shock is greater at output points C_OMP_1 and C_OMP_2 for the model of
nonuniform excitation. However, at output points C_OMP_3 a reverse situation is observable.

For the cable-stayed footbridge, the multi-variants analysis was also conducted. The maximum
von Mises stresses at output points C_OMP_1, C_OMP_2, and C_OMP_3 for different wave velocities
are shown in Figure 25. For this footbridge, the differences between results are in the range of 5 to
50% (see Figure 26). In summary, for the cable-stayed footbridge two different scenarios at all output
points were observed. For the output points C_OMP_1 and C_OPM_6 located in the left and right
spans as well as for the C_OMP_2 and C_OMP_5 located in the midspan closely to the pillars (see
Figure 5a) the maximum values of von Mises stresses occurred for the model of nonuniform kinematic
excitation with the lowest wave velocity of 100 m/s. For the output points C_OMP_3 and C_OPM_4,
located in the midspan, the numerical simulations with the model of uniform excitation provided more
conservative results than the model of nonuniform excitation.
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9. Conclusions

The first experimental part of the research served for the validation of the FE models of structures,
the theoretical model of nonuniform excitation and the appropriateness of the FE procedures used
for dynamic analyses. The following conclusions can be formulated on the basis of the experimental
testing part:

1. The numerical modal models of both footbridges, obtained through assembling the FE models of
footbridges and the through the calculation of the dynamic properties, were positively validated
with regard to the experimental modal models obtained through the operational modal analysis
(OMA) techniques. The differences between the experimental and numerical natural frequencies
were generally less than 10%. The comparison of the experimental and numerical mode shapes
also revealed a good agreement between them since the values of MAC indices were satisfactory
for both structures.

2. The non-destructive test with the vibroseis generating kinematic excitation was carried out.
On the basis of the signals collected at all footbridges’ supports, nonuniform kinematic excitation
was detected. The apparent wave velocities, obtained on the basis of cross-correlation functions
between the acceleration-time histories at the consecutive supports of structures, are representative
for the clayey subsoils of both the frame and the cable-stayed footbridge. Also, the coherence
functions between these signals were extracted. The similarity and the frequency consistency of
the data recorded at the input points was satisfactory, especially for the frequency range of 5 to 15
Hz. Therefore, for seismic signals with such dominant frequency range, the adopted model of
nonuniform kinematic excitation, in which the loss of coherence is neglected, can be appropriate.

3. The artificial kinematic excitation was generated on the basis of the adopted model of nonuniform
kinematic excitation. The obtained PSD functions of the acceleration-time histories registered at
all supports as well as the CSD functions between the registered and artificial acceleration-time
histories for all supports confirmed the strong similarity of the measured and numerical signals.
Therefore, the adopted model of nonuniform kinematic excitation was positively validated with
regard to the experimentally detected nonuniform excitation.

4. The experimental and numerical assessments of the footbridges performance under the known
dynamic excitation induced by the vibroseis were carried out. As the overall agreement is
satisfactory, the FE models and procedures were positively validated by linking full-scale
experiments and numerical calculations. Therefore, the numerical performance of structures
reflects the real dynamic performance under known nonuniform excitation.

In the second part of the research the numerical seismic assessments of the footbridges subjected
to the representative seismic earthquake were presented. The following conclusions can be formulated
on the basis of the numerical part.
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1. For the stiff and relatively short single-span steel frame footbridge, the maximum structural
response was obtained for the model of nonuniform kinematic excitation with the lowest seismic
wave velocity. For the model of uniform seismic excitation, the response was the weakest.
The most significant influence of the SVEGM effect was observed when the points were localized
closely to the stiff node of the steel frame. The less significant differences were observed at points
located in the middle of the upper beam of the frame. Therefore, in case of stiff frame footbridges
the pseudo-static effects resulting from the nonuniformity of excitation enhance the dynamic
response of a structure, especially disturbing zones located closely to stiff supports.

2. For the flexible cable-stayed footbridge, two different scenarios were observed. For the output
points located in the extreme spans, as well as in the midspan closely to the pillars, the maximum
response occurred for the model of nonuniform kinematic excitation with the lowest wave velocity.
For the output points located in the middle of the main span, the numerical simulations with the
model of uniform excitation provided more conservative results. Therefore, in case of flexible
cable-stayed footbridges the pseudo-static effects originated from SVEGM disturb zones located
closely to the structure supports, whereas in the midspan of the structure the inertial effects
caused by the uniform excitation are stronger.

3. It is reasonable to consider the SVEGM effect for the seismic assessments of footbridges since
this phenomenon may generate non-conservative results in comparison with results of classic
analysis in which uniform seismic excitation is assumed.

Generally, the results of numerical seismic assessment of footbridges under nonuniform ground
motion are reliable as they are based on the comprehensive experimental testing validating the
implemented FE models and procedures. Therefore, the results of the whole research, both the
experimental and the numerical part, might be applicable for the seismic assessment of the types of
structures considered in the investigation.

The calculations were performed for the seismic event representative for Central Europe; however,
more calculations based on some benchmark earthquakes, e.g., El-Centro or Kobe, are planned in
future research to validate the proposed approach.

It should be emphasized that, in addition to the cognitive values of the research, the results
presented in the paper may find practical application in the dynamic diagnostics of footbridges. They
may also provide additional information for the industry, useful in the process of designing new objects
erected in seismic areas.
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