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Abstract: We propose a free-resolution probability distributions map (FRPDM) and an FRPDM-based
precise vehicle localization method using 3D light detection and ranging (LIDAR). An FRPDM is
generated by Gaussian mixture modeling, based on road markings and vertical structure point
cloud. Unlike single resolution or multi-resolution probability distribution maps, in the case of the
FRPDM, the resolution is not fixed and the object can be represented by various sizes of probability
distributions. Thus, the shape of the object can be represented efficiently. Therefore, the map size is
very small (61 KB/km) because the object is effectively represented by a small number of probability
distributions. Based on the generated FRPDM, point-to-probability distribution scan matching and
feature-point matching were performed to obtain the measurements, and the position and heading of
the vehicle were derived using an extended Kalman filter-based navigation filter. The experimental
area is the Gangnam area of Seoul, South Korea, which has many buildings around the road. The root
mean square (RMS) position errors for the lateral and longitudinal directions were 0.057 m and 0.178
m, respectively, and the RMS heading error was 0.281◦.

Keywords: free-resolution probability distributions map (FRPDM); precise vehicle localization; 3D
LIDAR; urban area; road marking; vertical structure

1. Introduction

Precise vehicle localization must be performed for autonomous driving, wherein a localization
accuracy of less than 0.5 m in the lateral direction [1] and less than 1 m in the longitudinal direction
is generally required for a 95% confidence level. A global navigation satellite system (GNSS), such
as the global positioning system (GPS) used for vehicle localization, utilizes the satellite’s outgoing
radio waves to determine the position. However, in an environment with many buildings, such as
an urban area, only a small number of satellite radio waves are received because many waves are
blocked. Because of the multipath error caused by reflection of radio waves by the buildings, the
above conditions cannot be met, even with precision navigation equipment such as a GPS real-time
kinematic (RTK).

To solve this problem, many studies are being conducted to generate a map using various sensors
and to match it with the sensor data to perform vehicle localization. Especially, 3D light detection and
ranging (LIDAR) is widely used because it provides precise distance and intensity information using a
3D point cloud. 3D-LIDAR-based maps largely include point cloud maps, line maps, landmark maps,
grid maps, and probability distribution maps.

A point cloud map [2,3] is a map that accumulates the scanned LIDAR point cloud and uses the
LIDAR scan data as they are, enabling precise position estimation. However, because it stores a large
amount of data, it requires a very large map size and takes a long time to process.
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A line map [4–6] detects road markings or vertical structures in LIDAR point clouds and converts
them into lines. Because only lines are stored in the map, the map size is small. However, the position
estimation performance is relatively low. In addition, such maps consist of lines, errors may occur
depending on the positions of the detected lines because the position of the line to be detected may
vary depending on the width. Therefore, large errors may occur when matching with a line of a
wide-width object.

A landmark map [7,8] is generated by detecting a specific landmark. Because only the landmark
points are stored in the map, the map size is very small. In addition, if the landmark detection
performance is good, the localization performance is also outstanding. However, when a landmark
does not exist, or is insufficient, the vehicle localization performance is very poor. Because a landmark
must be detected, position errors may occur because of misdetection.

A grid map [9–11] is a map of the surrounding environment divided into grids of a certain
resolution. Because the scan data is created as a grid map for matching, no detection process is
required. Fast matching is possible with its form of a two-dimensional (2D) matrix by using the fast
Fourier transform correlation method, as shown in [11]. However, a larger grid resolution degrades
the localization performance, and a smaller resolution increases the map size.

Lastly, a probability distribution map (PDM) [12,13] is a map of LIDAR point cloud data expressed
as the probability distribution. In general, it is generated as a map based on a single Gaussian
probability distribution. The point cloud is divided into grids of a single resolution to derive the
mean and covariance of each grid. Because the shape of the point cloud is expressed using the
probability distribution, the map size is small. If the probability distribution is similar to the shape
of the point cloud, the map matching performance is outstanding. Unlike iterative closest point
(ICP) scan matching [14], which is a point-to-point matching method, the processing speed is faster
because a relatively smaller number of probability distributions and matchings are performed. Normal
distributions transform (NDT) scan matching is a commonly used matching method [15,16]. NDT scan
matching derives the probability density function (PDF) between the point cloud and the probability
distribution in the map grid, and the optimal solution is derived through the generated score function
using a nonlinear function optimization method. Because it is performed iteratively until it finds the
minimum value of the function, the processing speed is determined by the speed of convergence.
However, for a single resolution based PDM, the matching performance and processing speed vary,
depending on the grid resolution. If grid resolution is large, matching is faster because of the faster
convergence speed. In contrast, if there is a complex point cloud, it may not be expressed properly,
resulting in poor matching performance. If the grid resolution gets smaller, complex shapes can be
represented, but the map size increases because of the large number of grids. Because of the low
convergence speed, the matching speed is also reduced. In addition, because there is a high possibility
of falling into local minima, it is difficult to correct the error again when the position error increases.

In this study, a free-resolution probability distributions map (FRPDM) was generated using the
Gaussian mixture modeling (GMM) and proposed as an accurate and robust vehicle localization
method for urban areas. The FRPDM does not have a fixed resolution, unlike a multi-resolution
map that consists of multiple fixed grid resolutions. Therefore, it can be expressed as the probability
distribution of various sizes according to the size of the object.

The existing multi-resolution based PDMs include the Gaussian mixture map proposed by
Wolcott [17,18] and the multi-layered normal distributions transform (ML-NDT) [19] proposed by Ulaş.
Wolcott generated the multi-resolution Gaussian mixture map by the method in which the height
of the building scanned with LIDAR is converted into the probability distribution for each grid and
stored in the smallest grid, and the probability distributions of smaller grids are incorporated into
that of a larger resolution grid using GMM. Using this method, the root mean square error (RMSE) is
estimated to be very precise, at 0.1 m and 0.13 m, in the lateral and longitudinal directions, respectively.
However, because the search area is set and the correlation is performed by grid resolution, the
processing speed is much less (4500 ms, CPU only), and the map size is relatively large (44.3 MB/km).
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Ulaş proposed a scan matching technique using multi-resolution ML-NDT by setting multiple grid
resolutions. For the ML-NDT, the problem of the convergence speed and matching performance
determined according to the grid size in the existing NDT scan matching was resolved by generating
the probability distributions of grids of various resolutions and performing scan matching sequentially
from the largest grid resolution. However, the processing speed is less because scan matching is
required for each grid resolution. Because the probability distribution is stored for each grid resolution,
the map size is large as well.

In contrast, the FRPDM divides the extracted point cloud by object without any resolution and
converts it into probability distributions through GMM. Because multiple probability distributions can
be generated for each object, the shape of the object can be represented effectively in the probability
distribution of various sizes.

Figure 1 shows a comparison of the PDM generation results, where panel (a) is the 3D LIDAR
point cloud and panels (b) and (c) show the results of generating a single resolution PDM with grid
resolutions of 2 m and 1 m, respectively. As shown in this figure, panel (b) does not properly express
the form of road markings. In contrast, panel (c) is almost the same as the road markings. However,
because there are a large number of probability distributions, the map size increases. In contrast,
panel (d), which is generated by the FRPDM, effectively expresses the form of road markings with
a small number of probability distributions. In addition, unlike the existing single resolution PDM,
the FRPDM involves probability distributions of various resolutions, enabling fast and precise map
matching with one scan matching.
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Figure 1. Comparison of probability distribution map (PDM) generation result: (a) Point cloud, (b)
single resolution PDM (2 m), (c) single resolution PDM (1 m), and (d) free-resolution probability
distributions map (FRPDM).

In addition, road markings and vertical structures were extracted from the LIDAR point cloud
to generate the FRPDM. Road markings are always present on the road. Therefore, they are mainly
used as the information for vehicle localization. In addition, in urban areas, there are many vertical
structures around the roads. A vertical structure refers to a structure built vertically on the ground,
such as a building or a traffic sign, around the road. This factor causes a GNSS error but can also be
used as information for localization. When localization is performed using road markings, it can be
used in most cases because road markings always exist on the road. Because they are placed on the
road precisely, precise vehicle localization can be performed. However, if there are many obstacles on
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the road, localization performance is reduced because there are few road-marking points that can be
extracted. In the case of a large position error, it is difficult to perform data association. In contrast,
vertical structures are less distributed around roads than road markings. Because the outer wall is long,
it is easy to perform data association. Even if a large position error occurs, it is easy to correct the error.
However, because of the small distribution, it is difficult to derive a precise localization performance.
Therefore, if road markings and vertical structures are used at the same time, their advantages are
combined to offset their disadvantages, and to obtain a very precise vehicle localization result.

Figure 2 shows the process of vehicle localization. As shown in Figure 2, we conducted error
correction of the initial vehicle position and heading. When error correction was completed, we
performed a time update step using the position and heading increment from the GPS/dead reckoning
(DR). Finally, we obtained measurements from map matching, and the position and heading were
estimated using the navigation filter with measurements.
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Figure 2. Process of Vehicle Localization.

The contributions of this study are as follows:

1. Proposal of a new type of map generation technique called the FRPDM,
2. Proposal of the precise vehicle localization method in urban areas based on the FRPDM map.

The proposed FRPDM has the following advantages:

• We generate an easily available map in urban areas using road markings and vertical structures,
• We generate a map with a very small size (61 KB/km),
• Automatic map generation is performed through algorithm execution without manual work,
• We satisfy the localization accuracy requirements for autonomous vehicle driving,
• We perform fast map matching (average 37 ms, CPU only),
• Even if the initial position error is large, error correction is possible.

This paper is organized as follows. Section 2 describes how to generate the FRPDM, and Section 3
explains the FRPDM-based precise vehicle localization method. Section 4 analyzes the FRPDM-based
vehicle localization performance through experimental results, and Section 5 concludes this study.

2. Method of Free-Resolution Probability Distributions Map (FRPDM) Generation

In this section, we explain how to generate the FRPDM. The FRPDM is a map that extracts
road markings and vertical structures from the 3D LIDAR point cloud and stores the probability
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distributions converted through the GMM. Unlike conventional single resolution or multi-resolution
maps, the FRPDM has no fixed resolution, and the probability distribution depends on the size of the
object. In addition, one object can be represented by multiple probability distributions using the GMM.
Therefore, even a complex object can be represented by multiple probability distributions. This allows
us to generate a map that efficiently represents the object form with a small map size.

Figure 3 shows a flowchart of the FRPDM generation process. As shown in this figure, the FRPDM
is generated through three processes: generating the pose graph optimization based on precise map
trajectory [20–22], extracting the road-marking/vertical structure point clouds [6], and generating
the GMM based on the probability distribution map. The detailed FRPDM generation method is
described below.
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2.1. Precise Map Trajectory Generation Based on the Pose Graph Optimization

A precise map trajectory derivation is essential for vehicle localization using a map. Generally,
an expensive GPS (RTK)/inertial navigation system (INS) is used to derive a trajectory for the mobile
mapping system (MMS) [23,24]. However, when there are many buildings around, such as in urban
areas, errors occur because of multipath even when expensive equipment is used.

Figure 4 shows the map trajectory of an urban area for the FRPDM generation. As shown in this
figure, buildings are concentrated in all sections. Therefore, inconsistency occurs in the map trajectory
because of multipath error, thus negatively impacting the reliability of the generated map. To solve this
problem, we performed pose graph optimization. GPS (RTK)/INS equipment (NovAtel RTK/SPAN
system) was used for the initial trajectory for pose graph optimization. The edge measurements for
graph generation were used to obtain the relative position and posture between the trajectory nodes,
derived by the ICP scan matching based on the point cloud scanned with 3D LIDAR.

Figure 5 shows the result of pose graph optimization. On the left are road-marking maps [11],
generated based on trajectories derived by the GPS (RTK)/INS and the pose graph optimization,
respectively. On the right is the result of each trajectory. While the road markings generated by the
GPS (RTK)/INS trajectory are inconsistent with each other, the road markings generated by the pose
graph optimization match each other. In this study, we generated the FRPDM based on the trajectory
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derived from the pose graph optimization and used it as the ground truth for analyzing the position
estimation performance.
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2.2. Extraction of Road Markings and Vertical Structures

To generate a probability distribution map using the LIDAR point clouds, point cloud extraction
is required to generate probability distributions. In this study, we extracted the point clouds of the
road markings and vertical structures to generate a probability distribution map. Road markings
were painted on the road using bright paint to make them stand out from the surrounding asphalt.
Consequently, the road markings could be distinguished from the asphalt using the intensity differences.
The vertical structures mainly comprise buildings and traffic signs in the form of lines, so they can be
separated by the line extraction algorithm. The detailed description is as follows.
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2.2.1. Road-Marking Extraction

For road-marking extraction, it is necessary to first select the point clouds on only the road. For
this study, only the point clouds on the road were extracted using the height filter [25]. To use the
height filter, only the point clouds below a certain height were selected for each LIDAR layer. The
height differences between the consecutive points among the selected point clouds were compared to
distinguish the point clouds with the greatest height difference and extract the point clouds that were
the lowest. Through this process, the dynamic objects on the road surface were removed, and only the
road point clouds were extracted.

Figure 6 shows the result of road point cloud extraction through the height filter. The red point
clouds are the extraction results, and the blue point clouds are the other point clouds. As shown in this
figure, only the road surface is extracted and the surrounding dynamic objects are removed.
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To extract the road markings from the extracted road point clouds, the binarization process using
LIDAR intensity was required. For this purpose, we used the Otsu thresholding method [26]. This
method finds the optimal threshold by using the brightness distribution of the image pixels. It is
possible to find the optimal threshold with this method even if the intensity level changes.

Figure 7 shows the result of road-marking extraction. As shown in this figure, only the
road-marking points were extracted apart from the asphalt. All road-marking point clouds extracted
for the FRPDM generation were accumulated and stored.
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2.2.2. Vertical Structure Extraction

To extract the vertical structure, we performed line fitting for each LIDAR layer using the
iterative-end-point-fit (IEPF) algorithm [27]. The IEPF algorithm performs clustering by comparing the
distance between the points and fitting the clustered points to a line through the split–merge process.
Compared with several line fitting algorithms, this method exhibits high processing speed and suitable
accuracy [28].

Figure 8 shows the result of line fitting using the IEPF algorithm. IEPF was performed by extracting
the point clouds above a certain height for line extraction. All the point clouds were fitted into the
lines. However, as shown in this figure, there are not only the vertical structures, but also outliers such
as roadside trees. Therefore, an outlier removal process was required.
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Figure 9 shows the pseudocode of the outlier removal algorithm. Outlier removal was performed
using the variance of the line and the length of the line. The variance of the line denotes the distances
between the lines and the points. First, for outlier removal, the lines fitted for each layer were combined
through the clustering process. Then, the outliers were removed by selecting only the lines satisfying
the conditions, using the variance of the line and the line length.

Sensors 2020, 20, 1220 8 of 29 

 

into the lines. However, as shown in this figure, there are not only the vertical structures, but also 
outliers such as roadside trees. Therefore, an outlier removal process was required. 

Figure 9 shows the pseudocode of the outlier removal algorithm. Outlier removal was 
performed using the variance of the line and the length of the line. The variance of the line denotes 
the distances between the lines and the points. First, for outlier removal, the lines fitted for each layer 
were combined through the clustering process. Then, the outliers were removed by selecting only the 
lines satisfying the conditions, using the variance of the line and the line length. 

Figure 10 shows the result of the vertical structure line extraction. Blue circles denote outliers, 
and the vertical structures extracted are indicated as red dots. As shown in this figure, the outliers 
were removed, and only the vertical structures were extracted. 

The extracted road markings and vertical structures were accumulated according to the map 
trajectory nodes, as shown in Figure 11. The probability distribution map was generated using all the 
accumulated point clouds. 

 
Figure 8. Result of line fitting using iterative-end-point-fit (IEPF) algorithm. 

 
Figure 9. Pseudocode of outlier removal algorithm. Figure 9. Pseudocode of outlier removal algorithm.

Figure 10 shows the result of the vertical structure line extraction. Blue circles denote outliers,
and the vertical structures extracted are indicated as red dots. As shown in this figure, the outliers
were removed, and only the vertical structures were extracted.
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The extracted road markings and vertical structures were accumulated according to the map
trajectory nodes, as shown in Figure 11. The probability distribution map was generated using all the
accumulated point clouds.
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2.3. Gaussian Mixture Modeling (GMM)-Based FRPDM Generation

To generate the FRPDM using the road-marking and vertical structure point clouds extracted in
Section 2.2, the point cloud must be converted into probability distributions. The conversion of the
point clouds into probability distributions comprises four steps: eliminating the outlier points using
the occupancy grid filter, clustering the point clouds through object clustering, generating probability
distributions using the GMM, and removing overlapped probability distributions.

Although outliers were removed when the road-marking and vertical structure point clouds were
extracted, as stated in Section 2.2, a small number of outliers may still need to be extracted. To eliminate
these, we used an occupancy grid filter [29]. The occupancy grid filter removes the point clouds with
low probability from the grid. This is done by dividing the point clouds into grids of a certain size and
calculating the occupancy probability per grid. Generally, because only a few outlier points tend to be
extracted, the occupancy probability is calculated to be low. Therefore, they can be removed by the
occupancy grid filter.
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Figure 12 shows the result of the outlier removal using the occupancy grid filter. As shown in this
figure, the outliers are removed by the occupancy grid filter because of the low occupancy probability
when the occupancy grid is generated. After removing the outliers through the occupancy grid filter,
the point clouds are classified via object clustering.
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Gaussian mixture probability distribution conversion using the GMM was performed in an entire
area of the map for representing the whole shape of the object. Because the probability distribution is
estimated using the maximum likelihood estimation (MLE) method, the processing time exponentially
increases when all point clouds are converted at once. Therefore, the processing time can be reduced
by classifying the point clouds by object through clustering and performing the GMM for each object.

Figure 13 shows the result of object clustering. Clustering was performed using the k-nearest
neighbor algorithm. As shown in Figure 13, the point clouds were classified by object and were converted
into the probability distributions through the GMM. A method called the expectation–maximization
(EM) algorithm [30] can be applied for the GMM.
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Figure 14 shows the pseudocode of the EM algorithm for the GMM. Point clouds classified by
object clustering and the number of probability distributions are input. First, the K-mean clustering
is conducted for the parameter initialization. After the parameter initialization, the expectation-step
(E-step) and maximization-step (M-step) are performed repeatedly to derive the parameters of the
probability distribution. As shown in this figure, the likelihood estimation is performed by the E-step,
and the parameters of the probability distribution are determined by the M-step.
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Figure 14. Pseudocode of the expectation–maximization (EM) algorithm for Gaussian mixture
modeling (GMM).

However, to perform GMM, it is necessary to determine the number of probability distributions to
be estimated. Therefore, we designed a method of increasing the number of probability distributions
until a certain threshold was reached, after calculating the ratio as the density of the probability
distribution and the point cloud therein.

Figure 15 shows an example of increasing the number of probability distributions. As shown in
the figure on the left, when the number of probability distributions is one, the probability distribution
is generated by the distribution of the entire point cloud. At this time, the ratio can be derived by
calculating the density between the probability distribution and the point cloud. The equation is
as follows. [

e1 e2
]
= 2·

[
v1 v2

]
ρPD = n2/(e1·e2)

ρPC = N/(e1·e2)

r = ρPC/ρPD

. (1)
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Equation (1) calculates the density between the probability distribution and the point cloud. First,
to calculate the density, it is necessary to uniformize the distribution of point clouds. Therefore, we
performed down sampling to distribute the point clouds at regular intervals using the grid filter prior
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to performing the GMM. v is the Eigen vector of the estimated probability distribution, and e is the
length of probability distribution. We can derive the area of the probability distribution using e1 and e2.
The density of the probability distribution (ρPD) is derived by dividing the square of (n), which is the
inverse of the grid size, by the area of the probability distribution. Likewise, the density of the point
cloud (ρPC) can be derived by dividing the number of point clouds in the probability distribution (N)
by the area of the probability distribution. The ratio between the two densities (r) is calculated, and if
it is less than the threshold, the number of probability distributions is increased until the condition is
satisfied, as shown in Figure 15. If all point clouds in the object satisfy the condition, the probability
distribution estimation ends.

When the GMM is completed, the point cloud is converted into the probability distribution
(Figure 16). As shown in the figure, the road-marking point clouds were converted into the probability
distributions with similar shapes. Likewise, complex shapes can be efficiently represented in probability
distributions through the GMM.
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When the generation of the probability distributions using the GMM is completed, overlapped
probability distributions should be removed. Because the probability distributions generated above
are determined according to the number of probability distributions, there is a possibility that another
probability distribution overlaps within the probability distribution. If there is another probability
distribution that overlaps with the generated probability distribution, unnecessary calculations may
have to be performed when matching the map. In addition, the map size increases as the number of
probability distributions increases.

Figure 17 shows the pseudocode for the removal of the overlapped probability distributions. First,
the Mahalanobis distance between two probability distributions (ζ) is derived, which is the distance
between two points in terms of the ratio of standard deviation. Therefore, it is the most optimal
parameter that can determine if a probability distribution exists in another probability distribution. If
ζ is less than the threshold, it is determined that the mean of a probability distribution exists in another
arbitrary probability distribution. At this time, the eigenvalues of the two probability distributions
are derived. The eigenvalue refers to the size of covariance. Therefore, by comparing the eigenvalues
of the two probability distributions, we can determine which probability distribution is larger. If the
ratio of the eigenvalues between two probability distributions is greater than a certain threshold, the
probability distribution of the smaller eigenvalue is removed. Through this process, smaller probability
distributions existing in a probability distribution are eliminated.

However, in addition to the above cases, there are overlapping probability distributions. To
remove them, the Mahalanobis distance for the remaining probability distribution is calculated. If ζ is
less than the threshold, the correlation coefficient of the two probability distributions (ρ) is derived.
The correlation coefficient is a parameter representing the degree of correlation between the covariance
variables, which can be used to find the direction of probability distribution. If the difference between
the correlation coefficient of the two probability distributions is less than a certain threshold, it can be
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determined that the two probability distributions almost overlap. Through this process, the overlapped
probability distributions are removed, resulting in the final map.Sensors 2020, 20, 1220 13 of 29 
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Figure 18 shows the result of overlapped probability distribution removal. In Figure 18a, the smaller
probability distribution inside a probability distribution is removed. In Figure 18b, the probability
distributions overlap with each other. Even when the probability distributions are overlapping, they
are removed using the correlation coefficients.Sensors 2020, 20, 1220 14 of 29 
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Table 1 is an example of the FRPDM. As shown in this table, the type of probability distribution,
the mean of the probability distribution (µx and µy), and the covariance elements of the probability
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distribution (σx2 , σxy and σy2 ) are stored in the map. As shown above, because there is little information
stored in the map, the capacity required to generate the map is very small. The mean of the probability
distribution is stored as the absolute position coordinates, based on the latitude and longitude, so
that it can be used for any vehicle and the covariance of the probability distribution is stored as the
ENU frame.

Table 1. Example of the FRPDM.

Index Type µx (◦) µy (◦) σx2 (m2) σxy (m2) σy2 (m2)

1 Road marking 37.123521433 127.053851023 1.22 0.43 0.12
N Vertical Structure 37.143205021 127.050295821 5.78 0.84 0.33

2.4. Advantages of Using the FRPDM

The FRPDM has two advantages over other maps. The first is that the map size is extremely small,
and the second is the ability to effectively represent objects of various sizes.

As shown in Table 1 in Section 2.3, the FRPDM stores only six elements in the map. The FRPDM
has no fixed grid resolution, and the size of the probability distribution depends on the size of the object.
Therefore, even large objects can be represented by one probability distribution without division, so
the map size is very small compared to other maps.

Table 2 shows a comparison of the map sizes per km. As shown in this table, the FRPDM is the
smallest in size. The smaller the map size, the wider the area a map can cover. Therefore, it can be
regarded as a suitable map when considering a vehicle moving over a large area.

Table 2. Comparison of map sizes.

Map Size
Multi-res

Gaussian Mixture
Map [18]

Binary Grid
Map (10 cm)

[11]

Extended Line
Map [6]

Single-Res
PDM (4 m) FRPDM

MB/km 44.3 0.901 0.134 0.124 0.061

The FRPDM provides sufficient information for vehicle localization even when the map size is
small. In the example shown in Table 2, the multi-resolution Gaussian mixture map stores the height of
the vertical structure as Gaussian mixture distributions. Therefore, if there are few buildings around,
the localization performance is low, and the availability is low as well. It also has the largest size among
the maps in Table 2. In the case of a binary grid map, only binary information is included in the grid
through the binarization process. Therefore, the map size is smaller than a general grid map. However,
because the grid resolution must be small for precise localization, the basic map size is relatively large
as compared to other maps. The extended line map is a map that stores road markings and vertical
structures as lines. Because it only stores the node links of the lines, the map size is small. However,
because of the nature of a line, only the length is expressed, which causes errors depending on the
width of the object. The probability distribution map can express not only the length but also the width
of objects using the mean and the covariance. Therefore, the localization performance may be the best
when the shape of the object is similar to that of the probability distribution. However, the single
resolution-based PDM expresses the shape of an object with a single Gaussian probability distribution,
depending on the grid resolution. Therefore, if the shape of the object is complicated, it is impossible
to express it properly with a large resolution. As the resolution decreases, the map size increases
exponentially. In contrast, the FRPDM expresses an object with multiple probability distributions using
the GMM. Because it does not have a fixed resolution, an object can have probability distributions of
various sizes. Therefore, even complex shapes, such as road markings, can be effectively expressed,
thereby improving the localization performance.
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3. FRPDM-Based Precise Vehicle Localization Method

In this section, we explain the precise vehicle localization method using the FRPDM generated in
Section 2. For the FRPDM, the size of the probability distribution depends on the size of the object
without a fixed resolution, as described in Section 2. Consequently, because there are probability
distributions of various sizes, it is possible to provide fast and precise map matching, unlike the
traditional single resolution PDM, where the map matching speed and performance depend on
the grid resolution. For the multi-resolution PDM, precise map matching is possible by matching
probability distributions of multiple resolutions; however, the processing is slow because it must
process all of the grid resolution. In contrast, the FRPDM performs map matching only once, so it can
be processed quickly.

Figure 19 shows the precise vehicle localization process based on the FRPDM. The sensors used for
vehicle localization are the GPS/DR and the 3D LIDAR. Vehicle localization is performed through map
matching between the FRPDM and the accumulated point clouds that are extracted by the road-marking
and vertical structure extraction algorithms described in Section 2.2. Map matching is performed by
the point-to-probability distribution scan matching and feature–point matching methods. The vehicle
position and heading are estimated through the extended Kalman filter (EKF)-based navigation filter
using the measurements acquired by map matching. When we start vehicle localization, the GPS/DR
position is used for initial vehicle position. However, if the position error of the GPS/DR is large, map
matching is very hard because sensor data cannot be associated with the map. To solve this problem,
we perform error correction of the initial vehicle position for map matching when we start the vehicle
localization process.
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3.1. Map Matching Algorithm

In the case of the FRPDM, the grid resolution is not fixed, unlike the single resolution PDM or
multi-resolution PDM. Therefore, a new algorithm is required for point-to-probability distribution
scan matching. In this study, we propose a data association method between point and probability
distribution for scan matching based on the FRPDM. In addition, we propose feature point map
matching based on probability distribution. Using data association of the point-to-probability
distribution process, we can transform the point cloud to a probability distribution. After that, we
perform data association between the probability distribution of the map and that of the point cloud.
As a result, we can extract feature points that match the probability distribution of the map.
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The measurements for vehicle localization are obtained by matching the FRPDM with the point
clouds of the road markings and vertical structures extracted by the 3D LIDAR. However, there may
not be sufficient information for map matching using only the point clouds at the current time. Because
the road markings are painted on the road, only some of the road markings may be extracted when
there are many obstacles around, such as the vehicles during a traffic jam. In addition, because the 3D
LIDAR has a wide interval between vertical layers, information for longitudinal estimation is relatively
insufficient. Therefore, the point cloud of the previous time point is accumulated using the sliding
window method to compensate for the insufficient longitudinal information [31].

Figure 20 outline the process of point cloud accumulation. The GPS/DR is used for point cloud
accumulation of the position and heading per time point. As shown in this figure, the point clouds are
accumulated to compensate for the insufficient longitudinal information.
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Figure 21 shows the pseudocode of the point-to-probability distribution scan matching. The
point-to-probability distribution scan matching obtains the score and the Jacobian function between the
point and the probability distribution and then derives the optimal state variables through nonlinear
optimization (like the conventional NDT scan matching [15,16,19]), where the state variables, (x), are
the results of error correction through scan matching between the map and the point cloud. However,
unlike the NDT scan matching, which can be directly matched with probability distributions in a grid,
the FRPDM does not have a fixed grid, and a data association process is required for matching between
the point and the probability distribution.

Data association is performed through the process shown in Figure 22. For data association,
the probability distributions of the same type as the point are found, where the type means whether
the probability distribution of the map is a road marking or a vertical structure. After finding the
probability distribution of the matching type in the map, the Euclidian distance between the point and
the probability distribution is derived. The Euclidian distance is the actual distance between two points,
which gives the distance between the point and the mean of the probability distribution. By comparing
the Euclidean distances, we can find the nearest probability distribution. However, even if the actual
distance is less, the probability distribution may not match with the actual point because the magnitude
of each probability distribution is different. Therefore, the Mahalanobis distance (dMH) between the
point and the probability distribution found by the Euclidean distance is derived. As explained
in Section 2.3, the Mahalanobis distance confirms whether a point is included in the probability
distribution. However, even though the actual point and the probability distribution coincide because
of a localization error, the point may exist outside the probability distribution. Therefore, ΣROI is added
as the region of interest (ROI) to the covariance of the probability distribution to derive dMH. As a
result, if dMH is less than the threshold, the probability distribution that matches is finally found.
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Once we obtain the probability distribution corresponding to the point through data association,
we can derive the score and the Jacobian between the point and the probability distribution.

m = Midxmatch

{
µ, Σ

}
p = P̂i

q = (p− µ)

∂q
∂x =


∂qx
∂xtx

∂qx
∂xty

∂qx
∂xθ

∂qy
∂xtx

∂qy
∂xty

∂qy
∂xθ

 =
[

1 0 −px sinθ− py cosθ
0 1 px cosθ− py sinθ

]
S(p, m) = exp(− 1

2 qTΣ−1q)
J(p, m) = qTΣ−1 ∂q

∂x exp(− 1
2 qTΣ−1q)

. (2)

Equation (2) is used to derive the score and the Jacobian between the point and the probability
distribution [15]. The score between the matched point and the probability distribution (S(p, m)) is
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derived through data association. The Jacobian (J(p, m)) is derived by the partial differentiation of
the score.

S(x) =
[

S1 S2 · · · SN
]T

J(x) =
[

J1 J2 · · · JN
]T

D(x) = diag(J(x)T
·J(x))

δ(x) = −(J(x)T J(x) + λD(x))
−1

J(x)TS(x)

. (3)

Equation (3) generates the score function (S(x)) and the Jacobian function (J(x)) using the score
and the Jacobian derived for each point and derives the result (δ(x)) using the Levenberg–Marquadt
optimization method [19]. The Levenberg–Marquardt optimization method converges faster than the
Gauss–Newton method used for the general NDT scan matching and finds the optimal solution more
reliably. This reduces the processing speed by finding solutions through fewer iterations. Therefore,
the point-to-probability distribution scan matching was performed using the Levenberg–Marquadt
optimization method.

Figure 23 shows the result of point-to-probability distribution scan matching. We generate the
single resolution PDM (2 m) and the FRPDM based on a reference point cloud. We perform map
matching between initial point cloud and probability distribution using the single resolution PDM
and the FRPDM. As shown in Figure 23, when scan matching is performed using the single resolution
PDM, the error between reference point cloud and scan matching result is larger than that between
the reference point cloud and the initial point cloud. In contrast, the scan matching result using the
FRPDM almost matches the reference point cloud. The FRPDM can similarly express complicated
shapes of point cloud using multiple probability distributions. However, the single resolution PDM
has only one probability distribution in the grid. Therefore, the complicated shape of the point cloud
cannot be represented by the probability distribution properly. As a result, scan matching is not good
because the correlation between the point cloud and probability distribution is ambiguous.
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(b) FRPDM.

Other than the point-to-probability distribution scan matching, the measurements for vehicle
localization can be derived through the feature–point matching using the FRPDM. For using the
feature–point matching, we need to define the feature–point. The feature–point used in this study was
the mean of the probability distribution, and data association was performed using the covariance. For
the data association between the FRPDM and the point clouds, the point clouds need to be converted
into probability distributions.

Figure 24 shows an example of the point cloud to probability distribution conversion. As shown
on the left, point cloud matching with the probability distribution of the map can be found through
the point-to-probability distribution data association. Then, the matched point cloud is converted
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to a probability distribution, as shown on the right, to enable data association with the probability
distribution of the map.
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In Equation (5), the state of the vehicle is updated using the increment of the GPS/DR. 

Figure 24. Example of point cloud to probability distribution conversion.

The data association between probability distributions was performed as shown in Figure 25.
There are three parameters for data association between probability distributions: the distance, the
correlation coefficient, and the eigenvalue between the probability distributions. The distance between
probability distributions was derived using the mean of the probability distributions. The correlation
coefficient and the eigenvalue were derived using covariance. The correlation coefficient and the
eigenvalue indicate the direction and magnitude of the covariance, respectively. Therefore, this can
be used to determine the similarity between two probability distributions. In addition, the distances
between the probability distributions were compared to minimize errors that may be caused by
incorrect data association.
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3.2. Extended Kalman Filter (EKF) Configuration

In this section, we explain how to estimate vehicle position and the heading, using the navigation
filter configuration [32] based on the EKF. To use the EKF, the state and input vector need to be defined.

Xt =
[

xt yt θt
]T

ut =
[

∆xDRt ∆yDRt ∆θDRt

]T (4)
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Equation (4) defines the state and the input vector. The vehicle position in the ENU frame is
denoted by xt and yt. θt is the heading of the vehicle. The input vector is the increment of the position
and the heading of the GPS/DR. The time update using the state and the input vector is as follows.

X̂−t+1 = FX̂t + Gut

P−t+1 = FPtF + Q

F =


1 0 0
0 1 0
0 0 1

 G =


1 0 0
0 1 0
0 0 1


. (5)

In Equation (5), the state of the vehicle is updated using the increment of the GPS/DR.

ri =

√
(xi − xt)

2 + (yi − yt)
2

βi = tan−1(
yi−yt
xi−xt

) − θt

z = h(Xt, m) =



xt + ∆xt

yt + ∆yt

θt + ∆θt

r1

β1
...

rn

βn



. (6)

Equation (6) defines the measurement for the measurement update. Measurement z can be
obtained by state Xi and the FRPDM m using point-to-probability distribution scan matching and
feature–point matching. First, the point-to-probability distribution scan matching is performed based
on the position and heading predicted by the time update. As a result, we can derive the corrected
position and heading from scan matching, which are used as measurement. Another measurement
is the range and bearing between the feature points and the position and heading predicted by the
time update. xi and yi are mean of the point cloud probability distribution. Using xi and yi, we can
derive i-th range (ri) and bearing (βi) between probability distribution and predicted vehicle position
and heading.

H =
∂h(X̂−t , m)

∂X̂−t
=



1
0
0

0
1
0

0
0
1

−(x1−xt)√
(x1−xt)

2+(y1−yt)
2

−(y1−yt)√
(x1−xt)

2+(y1−yt)
2

0

(y1−yt)

(x1−xt)
2+(y1−yt)

2
−(x1−xt)

(x1−xt)
2+(y1−yt)

2 −1
...

...
...

−(xn−xt)√
(xn−xt)

2+(yn−yt)
2

−(yn−yt)√
(xn−xt)

2+(yn−yt)
2

0

(yn−yt)

(xn−xt)
2+(yn−yt)

2
−(xn−xt)

(xn−xt)
2+(yn−yt)

2 −1



, (7)

In Equation (7), H is the observation matrix for the measurement update, where the observation
matrix is derived using the Jacobian calculated by the partial differentiation of all measurements into
the state. As described in [8], for the observability of the measurement update, the state estimation can
be performed even with only one feature point. In this study, in addition to the feature point, the error
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correction of the vehicle derived by the point-to-probability distribution scan matching was obtained.
Therefore, the vehicle localization can be performed even when there are no feature points.

ỹt = z− h(X̂−t , m)

K = P−t HT(HP−t HT + R)−1

X̂t = X̂−t + Kỹt

Pt = (I −KH)P−t

. (8)

Equation (8) is the measurement update process, where ỹt is the residual between the measurement
and the predicted state. The state and the covariance (P) are updated by the Kalman gain (K).

3.3. Error Correction of Initial Vehicle Position Using the FRPDM

For vehicle localization using a map, an initial position for map matching must be determined.
Initial position is the position where the vehicle localization process begins. Generally, the initial
position is set based on the position of the GPS/DR. However, in urban areas, map matching may not
be performed properly because the position error of the GPS/DR tends to be very large.

Figure 26 shows the error of the GPS/DR in urban areas. The GPS/DR used was a commercial
sensor Micro-Infinite CruzCore DS6200. The ground truth is the map trajectory derived from pose
graph optimization in Section 2.1. As shown in the Figure 26, in urban areas, big errors tend to
occur because of blockage by buildings or multipath. Therefore, it is necessary to correct the vehicle
position error for precise map matching. Generally, in the case of vehicle localization using a map,
map matching is difficult when the initial position error is large. This is because the chance of proper
matching during the data association process is low when the sensor data are far from the map data.
In this study, we performed error correction of the initial vehicle position through scan matching using
probability distributions of vertical structures. Because the vertical structures tend to be far from one
another, it is easy to perform data association. In addition, the outer walls of buildings are usually
long. Therefore, the convergence is fast, even if the error is large. Thus, even if the GPS/DR error is
large, error correction is possible.
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Figure 26. Error of the GPS/DR in urban area.

Figure 27 shows an example of the map matching result when the initial position error is large.
Specifically, panel (a) shows the result of the error correction with the single-resolution PDM in the 2 m
resolution, and panel (b) shows the result of the error correction with the FRPDM. The initial error
between the point cloud and the PDM is 10 m for each of the x and y axes. As shown in this figure,
because the initial position error is larger than the grid resolution in (a), no matching is made between
the point cloud and the probability distribution, so the error cannot be corrected. Therefore, it can be
seen that the initial point clouds and the matching results overlap. Conversely, the initial position
error is corrected by matching the point clouds and the probability distributions through the data
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association in panel (b). As described, the initial position error can be corrected through matching with
a large size of probability distribution as that of a vertical structure.
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4. Experimental Results 

The experiment was performed in the same urban area depicted in Figure 4 and we drove two 
laps to get the vehicle trajectory. The approximate length of the vehicle trajectory was 5 km. In this 

Figure 27. Example of map matching result when initial position error is large. (a) Single resolution
PDM (2 m), (b) FRPDM.

Figure 28 shows the flowchart of error correction of the vehicle position. First, the approximate
position is estimated by performing scan matching between the point clouds and the probability
distributions of the vertical structures. Next, position estimation is performed more precisely through
scan matching between the point clouds and the probability distributions of the road markings.
However, in most cases, as shown in Figure 26, the initial position error is large, so it is necessary to
check whether the position is properly estimated. Therefore, the position estimation result was judged
by the ratio between the total point clouds, and the point clouds matched through the data association
process in Figure 22.
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Figure 29 shows the result of error correction of the initial vehicle position. The blue line represents
the position error of the GPS/DR, and the red line represents the initial vehicle position error updated
through the process in Figure 28. As shown in this figure, the estimated vehicle position occurred up to
about 3 m. Considering that the vehicle position is estimated within 3 m, it can be confirmed that error
correction of the initial position can be performed using the FRPDM, despite the large position error.
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4. Experimental Results

The experiment was performed in the same urban area depicted in Figure 4 and we drove two
laps to get the vehicle trajectory. The approximate length of the vehicle trajectory was 5 km. In this
paper, localization was performed by post-processing to verify the performance using all LIDAR data
(10 Hz). Figure 30 shows the experimental configuration. Where panel (a) is the vehicle platform and
panel (b) is the 3D LIDAR specification.
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Figure 30. Experimental configuration: (a) Vehicle platform, (b) 3D light detection and ranging (3D
LIDAR) (Velodyne HDL-32E) specification.

Two cases were compared to confirm the experimental results. One is the case of comparing the
vehicle localization results using the single resolution PDM, multi-resolution PDM, and the FRPDM.
The other was the case of comparing the vehicle localization using only the point-to-probability
distribution scan matching, and the vehicle localization using both the point-to-probability distribution
scan matching and the feature–point-based map matching. We analyzed the performance and reliability
of vehicle localization using the FRPDM through the two cases of comparisons above.

Figures 31 and 32 show the position and heading errors according to the map types. Only the
scan matching measurement was used for vehicle localization. In the case of vehicle localization using
the single resolution PDM, a large error occurred within a specific section. The reason was that the
error occurred during the time update, and it was not corrected properly. As explained in Section 3.2,
the increment of the GPS/DR was used for the time update. However, if the measurement obtained
through map matching fails to correct the increment error, the increment error accumulates, and the
position error increases.
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Figure 32. Heading error (map type).

Figure 33 shows the GPS/DR increment error. As shown in this figure, a large position error of
the vehicle localization using the single resolution PDM occurred when a large GPS/DR increment
error occurred. Therefore, it is difficult to correct a large error by map matching when using the single
resolution PDM, which has small grid resolution. In particular, when the grid resolution is 1 m, it takes
a long time to correct the large error because the single resolution PDM cannot match the point and
the probability distribution properly if the error is larger than the grid resolution. In contrast, for the
FRPDM, even if a large error occurs, the error can be corrected through map matching with a large size
of probability distribution.

Table 3 shows the comparison of localization performances among the five types of maps. The
grid resolutions of single resolution PDM are 1, 2, and 4 m. Multi-resolution PDM-based vehicle
localization is performed for sequential scan matching from the PDM with the largest grid resolution
(4 m) to the smallest grid resolution (1 m). As shown in Table 3, in the case of single resolution PDM,
the smaller the grid resolution, the higher the RMSE. As shown in Figure 33, if the GPS/DR increment
error is large, it is difficult to correct by map matching when grid resolution is small. However, the
larger the grid resolution, the worse the matching performance because probability distribution cannot
represent the shape of the object properly. In the case of the FRPDM, RMSE and 99% confidence
level error of position are smaller than the single resolution PDM. In addition, the position errors of
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lateral and longitudinal directions must be 0.5 m and 1 m, respectively, at a 95% confidence level for
safe autonomous driving. The FRPDM satisfies the condition at 99% confidence level. However, as
shown in Table 3, the multi-resolution PDM has the best performance for vehicle localization. The
multi-resolution PDM performs scan matching sequentially from the PDM with large grid resolution to
small grid resolution. Therefore, it is possible to solve the problem of matching performance according
to grid resolution, which is a disadvantage of scan matching using the single resolution PDM. As
a result, even if the position error is large, error correction is possible using a PDM with large grid
resolution, and precise map matching is possible using a PDM with small grid resolution. However, as
shown in Table 4, the multi-resolution PDM has the longest processing time compared to other map
types because the multi-resolution PDM is required for scan matching for each grid resolution PDM.
In addition, we need to store all of the PDM for each grid resolution. In contrast, the FRPDM performs
scan matching only once. In addition, unlike the single resolution PDM, the probability distribution
size is variable. Therefore, we can derive fast and precise map matching results using the FRPDM.
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Table 3. Comparison of localization performances (map type).

Map Type

Position Error (m) Heading Error (◦)

RMS 99% Confidence Level
RMS

Lateral Longitudinal Lateral Longitudinal

Single-res PDM (1 m) 0.336 0.629 1.702 2.182 0.307
Single-res PDM (2 m) 0.079 0.338 0.307 1.326 0.285
Single-res PDM (4 m) 0.074 0.233 0.276 0.736 0.284

Multi-res PDM 0.056 0.189 0.209 0.610 0.257
FRPDM 0.059 0.202 0.234 0.655 0.289

Table 4. Comparison of Map Matching Processing Times.

Map Type Processing Time (s)

Single-res PDM (1 m) 0.039
Single-res PDM (2 m) 0.035
Single-res PDM (4 m) 0.022

Multi-res PDM 0.138
FRPDM 0.037
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Figures 34 and 35 show the positions and the heading errors when only scan matching is used
and when scan matching and feature points are used together. As shown in Table 5, using the scan
matching and the feature point together demonstrated a better performance to correct the position
error in both lateral and longitudinal directions. The heading error was the smallest when using
both scan matching and feature points as well. In both cases, the position estimation condition for
an autonomous vehicle was satisfied to within a 99% confidence level. However, the reliability of
using the feature point was a little higher. When we used the scan matching and the feature-point
matching together, errors generated during the scan matching can be corrected by the feature–point
measurement. As a result, localization performance is better.Sensors 2020, 20, 1220 26 of 29 
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Table 5. Comparison of localization performance (map matching method).

Map Matching
Method

Position Error (m) Heading Error (◦)

RMS 99% Confidence Level
RMS

Lateral Longitudinal Lateral Longitudinal

Scan Matching 0.059 0.202 0.234 0.655 0.289
Scan Matching
+ Feature Point 0.057 0.178 0.219 0.570 0.281

Figure 36 shows the map matching results. Panel (a) shows only the case of scan matching and
panel (b) shows the case of scan matching and the feature–point matching together. The blue circle is
the ground truth, and the blue star shows the estimated vehicle position. As shown in this figure, the
error generated during the scan matching is corrected through the feature–point matching as shown
in panel (b). Therefore, using scan matching and the feature–point matching together enables more
precise and robust vehicle localization.Sensors 2020, 20, 1220 27 of 29 
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Figure 36. Comparison of Map Matching Result: (a) Scan Matching; (b) Scan Matching +

Feature–Point Matching.

Table 6 shows the processing time of vehicle localization using the FRPDM. The algorithm was
run based on MATLAB and processed using the CPU only. The CPU was an Intel Core i7-7700 @
3.60 GHz, and the RAM size was 16 GB. As shown in Table 5, the map matching processing time was
37 ms, indicating that map matching was performed very quickly. The map matching processing
time includes the point-to-probability distribution scan matching time, the feature-point matching
time, and the EKF execution time. The extraction processing time for the road-marking and vertical
structure extraction was 146 ms, so the total processing time was 183 ms. Given that the scan cycle of
the 3D LIDAR is 10 Hz, all data cannot be processed in real time on the current algorithm. However,
because it was confirmed that map matching can be processed very quickly, accurate and robust vehicle
localization is possible in real time, if the point cloud extraction can be processed quickly.

Table 6. Processing time of vehicle localization using the FRPDM.

Processing Time (s)

Extraction Map Matching Total Processing Time

0.146 0.037 0.183
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5. Conclusions

In this study, we propose FRPDM generation and the FRPDM-based precise vehicle localization
method using 3D LIDAR. The FRPDM was generated to be a very small size (61 KB/km). Because
it includes road-marking and vertical structure information, it is easily available in urban areas.
In addition, because it is a free-resolution map, with no limitation in resolution, small and large
probability distributions are included in the same map. Therefore, the convergence is faster than the
general point-to-probability distribution scan matching, and the method can perform accurate position
estimation. In addition, even if the initial position error is large, map matching is possible through data
association using the large size of probability distributions. As a result, error correction of the initial
vehicle position is possible. As a result of the FRPDM-based vehicle localization, the RMS position error
for the lateral and longitudinal directions are 0.057 m and 0.178 m, respectively. In addition, the RMS
heading error is 0.281◦. These results satisfy the localization accuracy requirements for autonomous
driving. In addition, it is confirmed that the average of the map matching time is 37 ms. As a result,
we can estimate the precise and reliable vehicle localization results very quickly using the FRPDM.

As proposed in this study, we generated a new type of map called the FRPDM and confirmed that
robust and precise vehicle localization is possible using the FRPDM. In the future, research on map
generation and localization in more areas is required.
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19. Ulaş, C.; Temeltaş, H. 3D multi-layered normal distribution transform for fast and long range scan matching.
J. Intell. Robot. Syst. 2013, 71, 85–108. [CrossRef]

20. Thrun, S.; Montemerlo, M. The graph SLAM algorithm with applications to large-scale mapping of urban
structures. Int. J. Robot. Res. 2006, 25, 403–429. [CrossRef]

21. Kümmerle, R.; Grisetti, G.; Strasdat, H.; Konolige, K.; Burgard, W. G2o: A general framework for graph
optimization. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation,
Shanghai, China, 9–13 May 2011.

22. Sünderhauf, N.; Protzel, P. Towards a robust back-end for pose graph slam. In Proceedings of the 2012 IEEE
International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012.

23. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The KITTI dataset. Int. J. Robot. Res. 2013,
32, 1231–1237. [CrossRef]

24. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. The KITTI vision benchmark suite. Available online: http:
//www.cvlibs.net/datasets/kitti (accessed on 20 April 2017).

25. Hata, A.Y.; Osorio, F.S.; Wolf, D.F. Robust curb detection and vehicle localization in urban environments. In
Proceedings of the 2014 IEEE Intelligent Vehicles Symposium Proceedings, Dearborn, MI, USA, 8–11 June 2014.

26. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern 1979, 9,
62–66. [CrossRef]

27. Borges, G.A.; Aldon, M.J. Line extraction in 2D range images for mobile robotics. J. Intell. Robot. Syst. 2004,
40, 267–297. [CrossRef]

28. Nguyen, V.; Martinelli, A.; Tomatis, N.; Siegwart, R. A comparison of line extraction algorithms using 2D
laser rangefinder for indoor mobile robotics. In Proceedings of the 2005 IEEE/RSJ International Conference
on Intelligent Robots and Systems, Edmonton, AB, Canada, 2–6 August 2005.

29. Konrad, M.; Szczot, M.; Dietmayer, K. Road course estimation in occupancy grids. In Proceedings of the
2010 IEEE Intelligent Vehicles Symposium, San Diego, CA, USA, 21–24 June 2010.

30. Xuan, G.; Zhang, W.; Chai, P. EM algorithms of Gaussian mixture model and hidden Markov model. In
Proceedings of the 2001 International Conference on Image Processing (Cat. No. 01CH37205), Thessaloniki,
Greece, 7–10 October 2001.

http://dx.doi.org/10.1155/2019/1296175
http://dx.doi.org/10.1177/0278364917696568
http://dx.doi.org/10.1007/s10846-012-9780-8
http://dx.doi.org/10.1177/0278364906065387
http://dx.doi.org/10.1177/0278364913491297
http://www.cvlibs.net/datasets/kitti
http://www.cvlibs.net/datasets/kitti
http://dx.doi.org/10.1109/TSMC.1979.4310076
http://dx.doi.org/10.1023/B:JINT.0000038945.55712.65


Sensors 2020, 20, 1220 30 of 30

31. Kim, K.W.; Lee, B.H.; Im, J.H.; Jee, G.I. Intensity local map generation using data accumulation and precise
vehicle localization based on intensity map. J. Inst. Control Robot. Syst. 2016, 22, 1046–1052. [CrossRef]

32. Bailey, T.; Nieto, J.; Guivant, J.; Stevens, M.; Nebot, E. Consistency of the EKF-SLAM algorithm. In Proceedings
of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15
October 2006.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.5302/J.ICROS.2016.16.0172
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Method of Free-Resolution Probability Distributions Map (FRPDM) Generation 
	Precise Map Trajectory Generation Based on the Pose Graph Optimization 
	Extraction of Road Markings and Vertical Structures 
	Road-Marking Extraction 
	Vertical Structure Extraction 

	Gaussian Mixture Modeling (GMM)-Based FRPDM Generation 
	Advantages of Using the FRPDM 

	FRPDM-Based Precise Vehicle Localization Method 
	Map Matching Algorithm 
	Extended Kalman Filter (EKF) Configuration 
	Error Correction of Initial Vehicle Position Using the FRPDM 

	Experimental Results 
	Conclusions 
	References

