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Abstract: Accurate, rapid and non-destructive disease identification in the early stage of infection
is essential to ensure the safe and efficient production of greenhouse cucumbers. Nevertheless,
the effectiveness of most existing methods relies on the disease already exhibiting obvious symptoms
in the middle to late stages of infection. Therefore, this paper presents an early identification method
for cucumber diseases based on the techniques of hyperspectral imaging and machine learning, which
consists of two procedures. First, reconstruction fidelity terms and graph constraints are constructed
based on the decision criterion of the collaborative representation classifier and the desired spatial
distribution of spectral curves (391 to 1044 nm) respectively. The former constrains the same-class and
different-class reconstruction residuals while the latter constrains the weighted distances between
spectral curves. They are further fused to steer the design of an offline algorithm. The algorithm
aims to train a linear discriminative projection to transform the original spectral curves into a low
dimensional space, where the projected spectral curves of different diseases own better separation
trends. Then, the collaborative representation classifier is utilized to achieve online early diagnosis.
Five experiments were performed on the hyperspectral data collected in the early infection stage of
cucumber anthracnose and Corynespora cassiicola diseases. Experimental results demonstrated that
the proposed method was feasible and effective, providing a maximal identification accuracy of 98.2%
and an average online identification time of 0.65 ms. The proposed method has a promising future in
practical production due to its high diagnostic accuracy and short diagnosis time.

Keywords: cucumber disease identification; hyperspectral imaging; discriminative projection;
collaborative representation; graph constraint

1. Introduction

Low temperature, scant lighting, high humidity and other extremely complicated greenhouse
environments frequently cause cucumber diseases. Moreover, most diseases spread rapidly. Thus,
accurate and rapid identification of diseases in the early stage of infection has great practical
significance. Traditional methods rely on naked eye observation [1,2], pathologic analysis including the
microscopic observation of pathogen morphology, as well as molecular, serological, and microbiological
diagnostic techniques [3]. Because of the poor real-time performance and high requirement for
professional analysts, pathologic analysis is rarely used in practical production [4]. As for naked
eye observation, it lacks unified measurement criteria to go on and is influenced by the observer’s
subjective consciousness and empirical knowledge, which often results in a wrong diagnosis. Moreover,
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due to the resolution ratio of the human eye, it is almost impossible to distinguish diseases only by
naked eye especially at the early stage of infection.

With the rapid development of computer vision and artificial intelligence, visual-image (composed
of three wavelength bands: 475, 520 and 650 nm) processing technique has been successfully exploited
for disease diagnosis [5–8]. The earliest study can date back to the mid-1980s. In 1985, Yasuoka
et al. [9] researched the infrared image of crop blades polluted by noxious gas. Since then, plant
disease diagnosis by analyzing the image of diseased blade started. Based on the optical filtering and
spectroscopic characteristics on healthy and diseased leaves, Sasaki et al. [10] established identification
parameters using a genetic algorithm and studied the automatic diagnosis of cucumber anthracnose.
El-Helly et al. [11] developed an image processing system to automatically detect disease spots and
well-differentiated cucumber downy mildew and powdery mildew diseases using an artificial neural
network. Geng et al. [12] analyzed the mean distribution of Cb and Cr channels in YCbCr space,
and effectively separated the information pertaining to cucumber downy mildew by constructing
an algorithm combining Cb and Cr channels. Peng et al. [13] extracted the color and texture features
of cucumber blades and established a linear discriminant model for cucumber downy mildew and
anthracnose. To effectively reduce the computation cost and improve the identification performance,
Zhang et al. [14] segmented diseased blades by K-means clustering, extracted shape and color features
from lesions, and realized the diagnosis using sparse representation classifiers. Their success suggests
that the visual-image processing technique has great potential in plant disease diagnosis. However,
their effectiveness depends on obvious symptoms. In other words, they work well only with obvious
disease spots containing the information of color, shape, texture, etc. But at the early infection stage,
disease symptoms are often unobvious, and visual-image-based methods struggle to work in such
a situation.

Unlike the common methods above, hyperspectral imaging (HSI) technique obtains both the
spatial and spectral information of plants over a large range of the light spectrum, which has shown
significant potentials and advantages for identifying plant diseases [2,3,15]. As we know, after infection,
changes in plant tissues occur earlier than disease symptoms and can be reflected by the radiation
to electromagnetic waves. Given that, HSI technique can be utilized to detect diseases based on
the variations of reflectance spectra, even if symptoms are unobvious. Over the past few years,
many HSI-based methods and systems have been developed, which can be roughly divided into two
categories: feature-extraction-based method and the effective-wavebands-based method. The latter
category also includes methods on reflectance indices obtained by combining the effective wavebands.
One of the best reflectance indices is the photochemical reflectance index (PRI), introduced by Gamon
et al. [16], which can show stress-induced changes in photosynthesis [17]. Though reflectance indices
can simplify the analysis of the reflectance spectrum, they can be affected by many factors, such as
illumination, atmosphere, soil background and location [17,18]. Compared with the reflectance indices
with fixed calculation formulas, feature-extraction-based methods have the advantage that one can
autonomously design appropriate algorithms to extract features that are invariant to interferences such
as illumination variations and atmospheric noise to a certain degree. Below, we introduce some effective
feature-extraction-based methods. Ma et al. [19] proposed an identification method for Fusarium head
blight by applying continuous wavelet analysis to the reflectance spectra of wheat ears. Chai et al. [20]
proposed rapid identification of cucumber diseases based on HSI and distance discriminant analysis.
Barbedo et al. [21] presented an automatic method to detect the fusarium head blight disease in wheat
kernels by performing morphological mathematical operations and spectral band manipulations on
hyperspectral data. Based on the HSI technique, Cen et al. [22] detected chilling injury in cucumbers by
combining three feature-extraction methods with two traditional classification methods, and achieved
the overall accuracy of 90.5%. Zhu et al. [23] utilized machine learning classifiers and variable selection
methods to research the potential of pre-symptomatic identification of tobacco disease. Although the
HSI technique has the capability to detect diseases at a much earlier infection stage, the vast majority
of current studies are still concentrated on the cases with obvious lesions.
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Consequently, this paper aims to establish an early identification method for cucumber diseases
based upon HSI technique. By analyzing the reflectance spectra of diseased and normal leaves, it can be
observed that the spectral curves of different diseases have a certain degree of similarity in appearance
and shape; besides, the coverage areas of the spectral curves corresponding to different diseases are
almost coincident. Therefore, it is very difficult to distinguish diseases in the original hyperspectral
data space. Moreover, hyperspectral data are generally of high dimensionality and direct processing
may result in high computation and time costs. To address such problems, this study attempts to train
a discriminative projection to transform the spectral curves into a low dimensional space, in which
the similarity of spectral curves of the same disease is enhanced while that of the different diseases is
weakened. However, even if the above goal is achieved, the projection does not necessarily guarantee
a positive impact on the ultimate goal because the training procedure is completely independent
of the subsequent diagnosis. To address this problem, we establish a connection between them by
utilizing the decision rule of the collaborative representation classifier (CRC) [24] to steer the training
procedure. Since the label and spatial distribution information of the data is usually of great importance
for discrimination [25], we additionally design graph constraints to steer the training procedure.
In summary, this paper presents a graph constraint and CRC-steered discriminative projection learning
method (CRC-DP) and applies it to the early identification of cucumber diseases.

2. Materials and Methods

2.1. Acquiring the Hyperspectral Data

‘Lufeng’ cucumber is a widely cultivated cucumber variety because of its strong growth vigor
and resistance to diseases such as downy mildew, powdery mildew and fusarium wilt. Herein,
it was used for experiments. A total of 55 healthy cucumber plants were selected. Their age was
36 days. All the selected plants were of a similar growth condition and had three leaves. Among
these, 25 plants were randomly selected for inoculation against cucumber anthracnose; another
25 plants were inoculated against cucumber Corynespora cassiicola; and the above 50 plants formed
the inoculation group; the remaining 5 healthy plants formed the healthy control group. The strains
were purchased from the agricultural culture collection of China. Inoculation was conducted by
manually making a small cut on the leaf using a sharp knife and then covering the cut with a small
mycelia block. Two leaves were inoculated for each plant. After inoculation, plants of different
groups were put in different artificial climate boxes for cultivation. The artificial environment was
controlled with a relative humidity of 90% and temperatures of 28 ◦C and 24 ◦C respectively for day
and night. The illumination and darkness durations were set to 16 h and 8 h, respectively. LED
lights with illuminance of 22,000 lx were used to provide illumination at cultivation. About 24 h later,
hyperspectral images of 100 inoculated leaves in the inoculation group and two normal leaves of
each plant in healthy control group were acquired every 24 h using a push-broom HSI system named
GaiaSorter (Dualix spectral imaging, Chengdu, China). HSI images stopped being collected after
12 days. Hence, there were 1320 hyperspectral images with each image containing one leaf. The HSI
system comprised two hyperspectral imaging units (visible and near infrared), a horizontal motorized
translation stage (HSIA-T1000), image acquisition software (SpecView), and a uniform illumination
light source (HSIA-LS-T-H), which was composed of 8 halogen lamps with adjustable light intensity
and provided spectra of 350–2500 nm. In this paper, we only used the visible hyperspectral imaging
unit to collect raw hyperspectral images, which consisted of 256 spatially resolved reflectance profiles
with 1394 × 1024 pixels for the wavelengths of 391 to 1044 nm with a spectral resolution of 2.8 nm.
Leaves with lesions occupying less than 20% of the leaf area were selected for experiments.

Affected by the measurement environment, the status of experimental devices, the skill level
of operators and other factors, the collected hyperspectral images often contained some noise and
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disturbing information. To alleviate their adverse effects, a correction was performed using the
following formula:

I =
IO − ID

IW − ID
(1)

where, IO and I respectively represents the hyperspectral image before and after correction; ID is a dark
reflection image obtained when the halogen lights are turned off and the camera lens is completely
covered with its own non-reflective opaque black cap with 0% reflectance; IW is a white reflection
image obtained by capturing the hyperspectral image of a Teflon white board with 99% reflectance.
Afterwards, the spectral curves of pixels within disease lesions were extracted for further analysis.

2.2. Proposed CRC-DP Method

As stated in the introduction, identifying different diseases directly in the original hyperspectral
data space is difficult. Thus, we aimed to locate a low-dimensional space in which the projected
spectral curves of different diseases can be well separated. Here, for narrative convenience, we take
each vectorized spectral curve as a sample and refer to ‘cucumber anthracnose disease’, ‘cucumber
Corynespora cassiicola disease’ and ‘normal plant’ as the first, second and third class of disease,
respectively. The CRC-DP method consists of two sequential procedures, which are respectively
described in detail as follows.

2.2.1. Offline Training Stage

Suppose each class has enough training samples spanning a subspace and any sample from
this class lie on this subspace. Let X = [x1, · · · , xk] ∈ Rn×k represent all the training samples in the
high-dimensional input space, where xi is the ith training sample and k is the number of training
samples. {xi}

k
i=1 are linearly converted to new ones in low-dimensional space by yi = PTxi(i = 1, · · · , k),

where P ∈ Rn×m is the desired discriminative projection matrix. According to a modified collaborative
representation model, each training sample in the low-dimensional space is encoded as a linear
combination of the rest training samples by Equation (2):

argmin
w′i

‖yi −
(
w′i,1y1 + w′i,2y2 + · · ·+ w′i,kyk

)
‖

2

2
= argmin

w′i

‖yi −Yw′i‖
2
2

s.t.
 1Tw′i = 1

w′i,i = 0

(2)

where Y = PTX = [y1, · · · , yk]; the collaborative representation coefficient vector w′i =
[
w′i,1, · · · , w′i,k

]T

is a k-dimensional column vector whose ith element is forced to zero; 1 ∈ Rk×1 is a column vector
consisting of all ones. Obviously, Equation (2) can be considered as a least-square problem and thus
has an analytical solution. Since the negative coefficients in w′i have no practical significance, they are
further updated using Equation (3):

wi, j =

 0, if w′i, j ≤ 0

w′i, j, if w′i, j > 0
(3)

By doing this, a new coefficient vector wi =
[
wi,1, · · · , wi,k

]T
can be obtained.

Based on the decision rule of CRC, each sample from the cth class should be well represented by
the training samples from the cth class. To this end, a same-class reconstruction residual is defined as:

1
k

k∑
i=1

‖yi −Yδc(wi)‖
2
2 = tr

(
PTRsP

)
(4)
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where Rs = (1/k)
k∑

i=1
(xi −Xδc(wi))(xi −Xδc(wi))

T and δc(wi) is a column vector obtained by preserving

the entries of wi associated with the cth class and setting the rest to zeros. Beyond that, training samples
from the sth(s , c and s ∈ {1, 2, · · · , M}) class should not be able to well represent this sample. To this
end, we define a different-class reconstruction residual as:

1
k(M− 1)

k∑
i=1

M∑
s,c,s=1

‖yi −Yδs(wi)‖
2
2 = tr

(
PTRdP

)
(5)

where Rd = (1/k(M− 1))
k∑

i=1

M∑
s,c,s=1

(xi −Xδs(wi))(xi −Xδs(wi))
T and M is the number of classes.

The above two reconstruction residuals are named as discriminative reconstruction fidelity terms.
To meet the decision rule of CRC, the same-class reconstruction residual is imposed to be as small
as possible while the different-class reconstruction residual is imposed to be as large as possible.
The discriminative fidelity terms are powerful for both representation and classification but fail to take
into consideration the spatial distribution and label information of the training samples, which are of
great importance for classification.

To solve the above problem, we introduce two novel graph constraints to associate the class labels
with the spatial distributions of training samples. First of all, a same-class graph and a different-class
graph G are respectively constructed as follows:

Hi, j =

{
1, i f l(i) = l( j)
0, otherwise

(6)

Gi, j =

{
1, i f l(i) , l( j)
0, otherwise

(7)

where l(i) denotes the class label of xi with i = 1, 2, · · · , k. reflects the relation of samples belonging
to the same class while G reflects the relation of samples belonging to different classes. To ensure
samples from different classes can be well separated, the CRC-DP method encourages that in the
low-dimensional space, if two training samples are from the same class, they should reside close to
each other, and if two training samples are from different classes, they should be far away from each
other. To this end, a same-class graph constraint and a different-class graph constraint are, respectively,
mathematically formulated as:

k∑
i=1

k∑
j=1

‖yi − y j‖
2
2Hi, j = tr

(
PTXLXTP

)
(8)

k∑
i=1

k∑
j=1

‖yi − y j‖
2
2Gi, j = tr

(
PTXZXTP

)
(9)

where L = D−H and D is a diagonal matrix with entry Di,i the summation of the ith row of . Z = Q−G
and Q is a diagonal matrix with Qi,i entry the summation of the ith row of G. Differing from the
local-graph constraint proposed by Zheng et al. [26] which preserves the local (neighborhood) structure
of data, the graph constraints force the training samples from the same class more concentrated and
avoids parameter selection. To enhance the discrimination, we need to minimize the same-class graph
constraint and maximize the different-class graph constraint.

Finally, we incorporate the fidelity terms with the graph constraints and formulate the objective
function as:

J(P) =
tr
(
PTRdP

)
+ tr

(
PTXZXTP

)
tr(PTRsP) + tr(PTXLXTP)

=
tr
(
PTUP

)
tr(PTTP)

(10)
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where U = Rd + XZXT and T = Rs + XLXT. The optimal projection matrix P can be determined by
maximizing the objective function (Equation (10)). We impose a constraint PTTP = I on the objective
function. By doing this, P can be formed by the generalized eigenvectors of Uϕ = γTϕ corresponding
to the largest m eigenvalues. However, {wi}i=1,··· ,k in Rd and Rs are unknown beforehand, so we solve P
and {wi}i=1,··· ,k in an iterative manner. P is initialized using a n×m random matrix and each iteration
mainly includes four steps: (a) project {xi}

k
i=1 to

{
yi
}k
i=1 using yi = PTxi(i = 1, · · · , k); (b) solve the

collaborative representation coefficients {wi}i=1,··· ,k using Equations (2) and (3); (c) compute Rd and Rs;
(d) obtain a new projection matrix P by maximizing the objective function (10). Repeat the above steps
until the difference of the objective function values between two iterations is smaller than a predefined
value ε.

2.2.2. Online Identification Stage

Given a query sample x whose identity (for disease identification, “identity” refers to the type
of disease that the query sample is infected with) is unknown beforehand, we determine it as
follows. Firstly, x is converted to a m× 1 vector by y = PTx. Then, we collaboratively represent y as
y = α1y1 + α2y2 + · · ·+ αkyk using all the training samples in the low-dimensional space. And the
coefficient vector α = [α1,α2, · · · ,αk]

T is obtained by solving a regularized least square problem:

argmin
α
‖y− (α1y1 + α2y2 + · · ·+ αkyk)‖

2
2 = argmin

α
‖y−Yα‖22 s.t. 1Tα = 1 (11)

The identity j∗ of x can be determined by evaluating which class of training samples leads to the
minimal reconstruction residual, as follows:

j∗ = argmin
j
‖y−Yδ j(α)‖

2
2 (12)

To show our method more concisely, the overall framework and detailed steps of CRC-DP method
is summarized as Algorithm 1 and a flowchart of CRC-DP method is plotted in Figure 1.

Algorithm 1. CRC-DP method.

Input: the query sample x, the training samples X = [x1, x2, · · · , xk] ∈ Rn×k, parameters ε and m.
Offline training stage:
1. Initialize P using a n×m random matrix.
If the values of objective function between two iterations is larger than ε, repeat steps 2–5.
2. Project X to the m-dimensional space by yi = PTxi(i = 1, 2, · · · , k).
3. Solve {wi}i=1,··· ,k using Equations (2) and (3).
4. Calculate Rd and Rs.
5. Update P using the generalized eigenvectors of Uϕ = γTϕ corresponding to the largest m eigenvalues.

Online identification stage:
1. Transform x by y = PTx.
2. Represent y as y = α1y1 + α2y2 + · · ·+ αkyk and solve the coefficient vector α.
3. Determine the identity of x by Formula (12).
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2.3. Experiment Design and Setup

The proposed method consists of two parts: training a projection matrix to transform samples
into a low-dimensional space and then identifying disease using the modified CRC. The former,
if used as a dimension reduction (DR) operation, can be applied to classification problem (disease
identification is also a classification problem). As we know, DR should be beneficial for the subsequent
classification. In other words, the samples of different classes should have better separation trends after
DR. Thus, to verify whether DR using the CRC-DP method can lead to better separation trends than
using other DR methods, we first performed different DR methods on two types of easily accessible
unitless data (a manually created toy dataset and wine dataset from UCI [27]) to project them to
a low-dimensional space. Then, to evaluate our method’s capability in the early diagnosis of plant
disease, some experiments are performed using the hyperspectral data collected in the early infection
stage of cucumber anthracnose and cucumber Corynespora cassiicola. Herein, the training and testing
sets are prepared as follows unless otherwise stated: 1000 hyperspectral curves were extracted from
the lesions of each disease, among which, half were randomly selected for training and the rest were
used for testing. As for normal leaves, 500 hyperspectral curves were extracted for training and
testing, respectively. Each hyperspectral curve is vectorized by stacking the reflectance values of band
391–1045 nm. By doing this, each sample is a 256 × 1 column vector. After that, normalize it to have
the unit l2-norm and then take it as a sample. Thus, the training and testing sets respectively have three
classes of 1500 samples. Note that ‘normal’ was considered as the third type of disease for narrative
convenience. For comparison, we also assessed the performances of five other classifiers: support
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vector machines (SVM), K-nearest neighbor classifier (KNN), naive Bayes classifier (NB), random forest
classifier (RF) and discriminant analysis classifier (DA).

Here, we briefly introduce the principles of these five classifiers:

• SVM seeks hyperplanes to classify samples in high-dimensional space. The goal of SVM is
to maximize the margin between hyperplanes and support vectors, which can be solved by
transforming into a convex quadratic programming problem.

• The core idea of KNN classifier is that if the majority of the K most-similar samples of a query
sample belong to a certain category, then the query sample also belongs to this category. KNN
does not require training.

• The principle of NB is to calculate the posterior probability of the query sample using its prior
probability, and the query sample belongs to the class with the largest posterior probability.

• RF repeatedly randomly selects samples with placement from the original training set to generate
a new training set to train decision tree, then repeat the above steps to train multiple decision
trees to form a random forest. Given a query sample, each decision tree is used to make a decision
and finally determine which category it belongs to by voting.

• Distance-based DA calculates the distance between the query sample and the mean of all the
training samples of each class. Then, the query sample is classified into the class with the
minimal distance.

According to experimental experiences, unless otherwise specified, parameter ε in CRC-DP
method is set as 0.05; the number of neighbors in KNN and the number of decision trees in RF take
values between 1 and τ− 1 with intervals of 1 and 25 respectively, where τ represents the number of
training samples per class. We report their best results here. All the experiments are carried out on
a 2.1 GHz computer with 64 GB RAM.

3. Results and Discussion

3.1. Effects of Different DR Methods

In classification problems, DR should be conducive to the subsequent classification. In other
words, samples among different classes should present good classification boundaries after DR, thus
they can be easily and well separated by several hyperplanes. In order to show that DR using the
CRC-DP method can lead to better separation trends than using other DR methods, two experiments are
conducted in this section. (1) Toy dataset: similarly to Qiao et al. [25], we produced two classes of data
points. As shown in Figure 2a, each bar denotes one class; 100 samples (points) were randomly selected
from each class and are contaminated with Gaussian white noise with standard deviation of 0.15 to
make them to appear in a 3-dimensional space (Figure 2b). Each sample has three features (the values
corresponding to three axes) with variances 0.3051, 0.2633 and 8.3375 respectively. Apparently, the
sample distribution mainly depends on the third feature due to its largest variance. Sparsity preserving
projection (SPP) [25], principal component analysis (PCA) [28], neighborhood preserving embedding
(NPE) [29], locality preserving projection (LPP) [30] and CRC-DP methods were respectively utilized
to project the points shown in Figure 1b to a 1-dimensional space. The results are shown in Figure 2c.
(2) Wine dataset from UCI: There are three classes of wine with 178 samples. And each sample has 13
features. The variances of 13 features are plotted in Figure 3, and it can be observed that the 13th feature
has the largest variance. We apply SPP, PCA, NPE, LPP, and CRC-DP methods respectively to project
the wine data to a 2-dimensional space. The results are shown in Figure 4. From Figures 2c and 4, it
can be seen that CRC-DP method outperforms other three-dimensional reduction methods and it not
only separates samples of different classes well, but also constrains samples of the same class in a more
concentrated manner in the low-dimensional space. The reason may be that CRC-DP method adopts
graph constraints to steer the training of the projection, ensuring the projected samples of the same
class are as close as possible while that of the different classes are as far away as possible. As a result,
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the projected samples in low-dimensional space present obvious classification boundaries. For NPE
and LPP, the projected samples from different classes are mixed together because the Euclidean distance
and the neighbor size fail to identify the real local structure they supposed [25]. As for PCA, it also
fails to separate the samples. The reason is that PCA is aimed to maximize the variance of samples in
the low-dimensional space. As analyzed earlier, the third feature of the toy data and the 13th feature of
the wine data have the largest variances, thus they affect PCA the most. For SPP, there is also a number
of projected samples aliasing. Both the above two experiments validate that CRC-DP method can
lead to better separation trends than all the compared DR methods, which is beneficial for separation.
In addition, the results suggest that one should seriously take the data distribution into consideration
when selecting a DR method, otherwise an inappropriate DR method is not necessarily positive for
good separation trends among different classes.
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3.2. Early Identification of Cucumber Leaf Diseases

In this section, we first analyze the characteristics of spectral curves of different diseases to show
that it is difficult to directly distinguish different diseases in the original hyperspectral space. Then,
experiments are conducted to classify three types of cucumber diseases (anthracnose, Corynespora
cassiicola and normal) to verify the feasibility and capability of the CRC-DP method in disease early
diagnosis. Figure 5 compares the coverage areas of spectral curves corresponding to different diseases,
in which, the spectrum of cucumber anthracnose lesions, Corynespora cassiicola, lesions and normal
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blades are respectively within the area between the two blue lines, red lines and black lines. It can
be seen that the spectrum of cucumber Corynespora cassiicola lesions is mostly covered by that of the
cucumber anthracnose lesions; and the appearances of spectral curves of different diseases are very
similar; the spectrum of wavelength bands 50–125 nm can be used to distinguish cucumber leaves’
infection by Corynespora cassiicola or anthracnose from normal ones since there is no overlap at all.
The above phenomenon implies that it is difficult to directly distinguish cucumber anthracnose and
Corynespora cassiicola in the original hyperspectral data space. To alleviate this problem as well as to
reduce the computation and time costs, DR is conducted before classification. The CRC-DP method
directly uses its discriminative projection matrix while other classifiers use PCA to reduce the sample
dimension to m. All the following experiments implement three-class classification (‘anthracnose’,
‘Corynespora cassiicola’ and ‘normal’ correspond to the ‘first’, ‘second’ and ‘third’ class respectively).
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We initially conducted an experiment to measure the performances of different methods for
three-class classification. Here, m is fixed as 10. Table 1 shows the classification accuracies and the
number of incorrectly diagnosed samples of different methods. From Table 1, it can be seen that the
CRC-DP method achieves higher classification accuracies than all the compared methods. After that,
an experiment is carried out to assess the influence of the reduced sample dimension m and the
results are plotted in Figure 6. From which, we can see that the CRC-DP method provides the highest
classification accuracies in all cases and even in the case of extremely low dimension values such as
m = 2, it can still obtain high classification accuracy of 98.2%. The results validate that the CRC-DP
method is robust to the reduced features dimension m to some extent. In practical applications,
real-time diagnosis is especially important. Thus, an experiment was conducted to assess the mean
online identification time of each query sample and the results are listed in Table 2. Here, the number of
neighbors in the KNN classifier is set as 9 and the number of decision trees for random forest classifier
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is set as 200. Table 2 shows that except for random forest classifier, all other methods have online
identification time less than one millisecond, which can meet the requirements of real-time applications.
The results shown in Tables 1 and 2 and Figure 6 validate that the CRC-DP method runs fast and
achieves high identification accuracy even without conducting preprocessing and effective wavebands
selection before diagnosis. Figure 7a shows the collaborative representation coefficients of a query
sample from the first class (anthracnose), and the horizontal axis corresponds to the 1500 training
samples from three classes. Figure 7b shows the reconstruction residuals corresponding to the three
classes. It can be noted that the first class has the minimal reconstruction residual, thus the query
sample is judged to the first class, which is consistent with the ground-truth.

Table 1. The identification accuracies and the number of incorrectly diagnosed samples of different
methods (for each disease, the quantitative results from top to bottom are the classification accuracy
and the number of samples that were wrongly judged, respectively).

Disease
Methods

KNN RF NB DA SVM CRC-DP

Corynespora
Cassiicola

95% 96.4% 92.20 95.00% 95.60% 96.80%

25 18 39 25 22 16

Cucumber
Anthracnose

93.20% 94.6% 95% 94.20% 94.00% 97.80%

34 27 25 29 30 11

Total
96.07% 97.00% 95.73% 96.40% 96.53% 98.20%

59 45 64 54 52 27
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Table 2. Mean online identification time of each query sample for three-class classification.

Methods KNN RF NB DA SVM CRC-DP

Time (ms) 0.4454 3.700 0.3463 0.2290 0.0012 0.6537

There are some other factors that may affect the performance of CRC-DP method to varying
degrees, such as the graph constraints and the number of training samples per class. Therefore, let us
further examine their influences using the following experiments, in which, the reduced dimension
m of each sample is fixed as 10. As shown in Equation (10), the objective function of the CRC-DP
method includes two graph constraints which restrict the spatial distribution of samples by Euclidean
distance. Here, we verify their effectiveness by executing the CRC-DP method with only fidelity terms
and no graph constraints. The comparison results are plotted in Figure 8a, which indicates that the
same-class and different-class graph constraints are beneficial for promoting classification accuracy,
especially in the case of small sample dimension (m ≤ 6). Limited to the excessive costs of labor and
time, it is hard to collect sufficient agricultural data. Therefore, there is usually not enough training
data for each kind of disease in practical agriculture production. Here, we conduct an experiment
to evaluate the influence of enrollment size (the number of training samples per class) which may
seriously affect the performance of the CRC-DP method. In this experiment, τ training samples from
each class were randomly selected for training, where τ varies from 100 to 500 with an interval of 50.
The testing set is the same as the original testing set described at the beginning of Section 3.2. In total,
there are 3τ training samples and 1500 testing samples. The classification accuracies of each method
versus different enrollment size are shown in Figure 8b. Note that the identification accuracy is higher
than 95% when τ is larger than 175. However, the identification accuracy of the CRC-DP method
decreases heavily when the enrollment size is very small (when τ is less than 150, the identification
accuracy is smaller than 90%). The reason is that too few training samples per class cannot satisfy
CRC’s assumption that the training samples of each class span a subspace and any sample from this
class lie on this subspace.
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4. Conclusions

A HSI-based early identification method for cucumber leaf diseases is presented and verified
through experiments. It builds reconstruction fidelity terms according to the decision rule of CRC
and designs a graph constraint based on the label and distribution information. These are fused to
steer the offline training procedure of the discriminative projection. Obviously, the method links DR to
classification—seeking a low-dimensional space, in which CRC achieves higher identification accuracy
and becomes more efficient. Illustrative examples on toy data and wine dataset validate that the
offline trained projection is beneficial for the subsequent classification. The experimental results on
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the hyperspectral data of three cucumber diseases indicate that the CRC-DP method is feasible and
effective, which achieves superior identification performance.
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