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Abstract: Temporally-spatially modulated Fourier transform imaging spectrometers (TSMFTISs)
provide high-throughout-type push-broom spectrometry with both temporal and spatial modulation
features. The system requires strict registration between the detector and the interferogram. However,
registration errors are unavoidable and directly change the corresponding optical path difference
values of the interferogram. As a result, the interferogram should be corrected before restoring the
spectrum. In order to obtain the correct optical path difference (OPD) values, an online registration
error correction method based on robust least-square linear fitting is presented. The model of the
registration error was constructed to analyze its effect on the reconstructed spectra. Fitting methods
were used to obtain correct optical path difference information. Simulations based on the proposed
method were performed to determine the influence of the registration error on the restored spectra and
the effectiveness of the proposed correction method. The simulation results prove that the accuracy
of the recovered spectrum can be improved after correcting the interferogram deviation caused by
the registration error. The experimental data were also corrected using the proposed methods.

Keywords: temporally–spatially-modulated Fourier transform imaging spectrometers (TSMFTISs);
robust least-square (RLS) linear fitting; registration error; interferogram

1. Introduction

Hyperspectral imaging is an important technology used for obtaining spatial and spectral
information of an object of interest. It has been widely applied in many areas, for instance, prospecting
and soil composition determination in geology [1,2], assessing water contamination in hydrology [3],
identifying different crop fields and monitor water in agriculture [4], vegetation classification in
biology [5], and intelligence acquisition in the military arena [6]. Temporally–spatially-modulated
Fourier transform imaging spectrometers (TSMFTIS) are a type of push-broom hyperspectral imaging
sensor based on the principle of lateral shearing interferometer [7]. The instantaneous field of view
of TSMFTIS is two-dimensional; one pixel of the scene is associated to only one pixel of the detector,
and all the available optical path differences (OPDs) of each pixel of the scene are obtained by a
perpendicular and full field push-broom over the scene. The spectrum of the scene points can be
recovered from the rebuilt interferogram. Thus, the TSMFTISs obtain three-dimensional information
(two-dimensional spatial information and one-dimensional spectrum information). TSMFTISs were
developed as airborne/spaceborne hyperspectral imagers for earth remote sensing because of its
high throughput advantage. Over a long period, the TSMFTISs developed include the large aperture
static imaging spectrometer (LASIS) [8,9], the high etendue imaging Fourier transform spectrometer
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(HEIFTS) [10,11], Caméra Hyperspectrale de Démonstration (CaHyD) [12], the aerospace leap-frog
imaging static interferometer for Earth observation (ALISEO) [13,14], the medium- and long-wave
infrared spectral imaging instrument SIELETERS [15,16], and so on.

The data obtained by TSMFTIS are interference datacubic and need to go through further
transformations before use. Because of the influence of various errors, the data processing of TSMFTIS
is more complicated. In practice, registration errors occur between the spatial direction of the image
of its imaging system and the pixel column of its detector. As a result, the OPDs correspond to
the interferogram changes, resulting in an inability to accurately recover the spectral information.
Zhang et al. [8] constructed a correction system with two theodolites, rotating table and parallel
optical tubes, calibrated the detector registration error, calculated the centroid position of the star
at the position of zero OPD of the spectral dimension, and obtained the registration error by fitting
the slope of the line with the least-squares line. The calibration method has complex operation,
high computational complexity, and no real-time ability. To our best knowledge, no study reported an
online real-time correction method for the error between the detector and interferogram of TSMFTIS.

In this paper, we introduce an online correction method for the registration error between the
detector and interferogram of TSMFTISs based on the robust least-squares method. Online means that
the correction method can calculate the registration error in real time from the obtained image of the
TSMFTIS without any other added measuring data and correct the registration error with high accuracy
and robustness. The paper is organized as follows: In Section 2, we briefly review the principles of
TSMFTISs and the theory of Fourier transform spectroscopy. In Section 3, the model of the registration
error between the detector and the interferogram of TSMFTIS is established, and the characteristics of
the influence of the registration error on imaging are analyzed. In Section 4, the proposed correction
method is introduced. In Section 5, the simulation demonstrates the effectiveness of the proposed
method. Then, the proposed method is implemented on actual interference-modulated images. Finally,
we draw our conclusions.

2. Principles of TSMFTIS

Figure 1a illustrates the optical layout of a TSMFTIS system [17], which includes fore-optics L1,
a collimator L2, a Sagnac interferometer, a Fourier lens L3, and a focal plane array (FPA) detector.
The incident light from the scene is first collimated by the lens L1 and L2 , and travels the interferometer
by means of a beam-splitter BS and two folding mirrors M1 and M2. The interferometer forms two
virtual images of the scene that match each other geometrically. Light emerging from the output port
of interferometer is then focused onto the FPA by the lens L3. Due to the existence of lateral shearing,
the optical path lengths of the two virtual images are different, so the image of the scene obtained by
the instrument is modulated with stationary interference fringes. A typical TSMFTIS image is shown
in Figure 1b. The image can be seen as a common image of the scene modulated with a stationary
interference pattern. The common image value can be seen as the (direct-current) DC component,
and the pattern can be seen as the fluctuant component. When the fluctuant component is much
smaller than the DC component, the pattern is not very obvious. This leads to the interference pattern,
which seems to only be present in some image regions. Ideally, the pixels in a column of the detector
should correspond to the same OPD, and the direction of the column is noted in the spatial dimension.
The pixels in a row have different OPDs, and the direction of the row is noted in the interference
direction. When the instrument is pushed through a scene in the direction vertical to the column,
a target in the scene is captured in a series of images by pixels in a row that have different OPDs.

A coordinate is defined as shown in Figure 1b. The x-axis represents the spatial dimension and
the y-axis represents the interference dimension. Ideally, the interference intensity at position P can be
expressed as:

I
(

xp, yp
)
=
∫ v2

v1

B(v) exp
(

2πv
d
f
(
yp − N1

)
j
)

dv (1)
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where d denotes the lateral shearing of the interferometer, f denotes the focus of the Fourier lens, (xp,
yp) denotes the spot position of the object P on FPA, N1 denotes the column axis of the zero OPD
position, j represents an imaginary unit, v represents the wavenumber, and B(v) is the spectral radiance
of the target corresponding to polychromatic light the spectral range from v1 to v2.

Figure 1. (a) Temporally–spatially-modulated Fourier transform imaging spectrometer (TSMFTIS)
system and (b) the interference image obtained by TSMFTIS.

Figure 2 shows the data collection and processing workflow of a TSMFTIS. According to principles
of TSMFTIS, the different image points on the FPA correspond to the different object points on the
virtual surface with a certain OPD. When the TSMFTIS pushes through the scene to obtain the complete
interference data of the targets, the target interference I can be obtained by extracting the intensity
of interference sequentially from images as shown in Figure 2. Based on Fourier transform theory,
the spectrum of the target can be reconstructed by inverse Fourier transform as follows:

B(v) =
∫ L

0
I(x, y) exp

[
−2πv

d
f
(y− N1) j

]
dy (2)

where (x,y) represents the position of the imaging point on the FPA and L denotes the distance to the
zero OPD position, which corresponds to the maximum OPD position.

Figure 2. Schematic of TSMFTIS data collection and processing.

3. Modeling and Analysis of the Registration Error

During manufacturing of the instrument, misalignment unavoidably occurs between the detector
and the designed interferogram line. Based on the imaging principle of TSMFTIS, the OPD of each
point on the interference image is a fixed value. For an ideal system, the positions corresponding to
zero OPD should be located in a straight line of pixels. The misalignment between the detector and
the interferogram destroys the desired one-to-one correspondence between the OPD positions of the
ground object and the pixel positions. However, the zero OPD positions of the interferogram image
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formed by the imaging optics are still a straight line, as shown in Figure 3. In the figure, the registration
error between the detector and the interferogram is associated with tilting angle θ and offset N2.
θ represents the angle between the pixel column of the detector array and the zero OPD line of the
interferograms. N2 represents the offset in the interference dimension.

Figure 3. Schematic diagram of the registration error between the detector and the interferogram.

Assume that Li denotes the ideal distance between the target point P and the zero OPD, and Lr

denotes the actual distance between the target point P and the zero OPD due to the existence of
registration error. The OPD deviation of P is:

∆OPD =
d
f
(Lr − Li) . (3)

The ideal interference intensity of the target point P is expressed as:

I
(

xp, yp
)
=
∫ v2

u1

B(v) exp
(

2πv
d
f

Li j
)

dv. (4)

The actual interference intensity of the target point P is:

I′
(

xp, yp
)
=
∫ v2

v1

B(v) exp
(

2πv
d
f

Lr j
)

dv. (5)

Comparing Equations (4) and (5), the interference intensity of each position in the interferogram
output by the detector is changed. If the interferogram of the target is extracted, and using the ideal
OPD value to reconstruct the spectrum, the recovered spectrum deviates from the real spectrum of
target, as shown in Figure 4. In practice, the tilting, angle of the misalignment error between the
detector and the interferogram line of our instrument is approximately 0.82◦, which has a non-neglected
negative impact on the recovery spectrum. Therefore, it is necessary to correct the OPD values of the
raw data to eliminate the unfavorable effects caused by the registration error.

To model and calculate the registration error, the coordinates of the upper-left corner pixel of the
image are set to (1,1) as shown in Figure 3. The size of the detector is M× N. Therefore, the equation
of the straight line obtained by the ideal zero OPD positions located in the image is:

yi = N1 (6)
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Figure 4. The influence of registration error on the interferogram and the recovered spectrum.

Due to the misregistration, the equation of the straight line obtained by the actual zero OPD
positions can be expressed as:

yr = tan θ · x + N2 (7)

where x and y denote the positions of zero OPD in the coordinate, tan θ denotes the slope of the
line, and the N2 denotes the Y-intercept. For the target point P(xp, yp), the distant Li and Lr can be
calculated as follows: 

Li =
∣∣yp − N1

∣∣
Lr =

|tan θ·xp−yp+N2|√
tan2 θ+1

(8)

According to Equations (3) and (8), the OPD of the target is only related to the value of yp in the
ideal case; when misregistration occurs, the value of xp also affects the OPD. Since tan2 θ � 1 in this
case, the OPD deviation of P can be rewritten and simplified as:

∆OPD ≈ d
f
(∣∣tan θ · xp − yp + N2

∣∣− ∣∣yp − N1
∣∣) (9)

From Equation (9), when the TSMFTIS sweeps the entire field of view along the interference
dimension strictly, the deviation of the OPD is almost a nonzero fixed value all the time. When the
TSMFTIS sweeps the entire field of view nonstationarily, the deviation of OPD of the target point in the
multiframe push-broom image sequence changes nonlinearly, and the distortion of the interferogram
is serious. Therefore, the registration error must be corrected to match the OPDs and the intensities of
interferogram in the data processing of TSMFTIS.

4. Proposed Correction Method

Since the interferograms of the target on both sides of the zero OPD location are exactly
symmetrical, the interference information of the area with a uniform feature in the image is considered
to be symmetric near the zero OPD. The position of the zero OPD is the extreme position of the
interference curve. The extreme of each line appears as a straight and much brighter line in the image.
Therefore, we propose a two-step correction method for the correction of the registration error between
the detector and the interferogram. The first step employs the parabolic fitting method to find the zero
OPD positions and their interference values. The second step uses these zero OPD positions to solve
the registration error between the detector and the interferogram by employing linear fitting methods.
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4.1. Parabolic Fitting Method for the Zero OPD Position

The parabolic fitting method is a mature mathematical tool. The parabola equation in this case
can be expressed as:

I = ay2 + by + c (10)

When the coordinates y of three points in the line are known, the coefficients a, b, and c are
obtained by solving the system of ternary linear equations. The independent variable y denotes the
column position of the points, and the dependent variable I denotes the interference intensity value of
target at position y. The y-coordinate position of the parabola’s vertex is calculated as:

ym =
b
−2a

(11)

where ym is the position of the zero OPD column of the current row m, which is generally a non-integer
value here.

We propose a method to automatically select the three points for parabolic fitting. The position of
the ideal zero OPD is assumed to be the N1 column on the detector. For the data in line m, a certain
number of pixels before and after N1 are employed. The information of these pixels can be expressed
as (yn,I(m,yn)), where yn = N1 + n and n = 0, 1, 2, . . . , Nn. In this paper, Nn = 8 is employed.
Then, the pixel with the largest grey value among these integer points is selected, and its position
is noted as yk. The pixels before and after this pixel are selected. These three pixels are denoted as
(yk − 1, I(m, yk − 1)), (yk, I(m, yk)), and (yk + 1, I(m, yk + 1)). Then, we put them into the parabolic
Equation (10) and solve the parameters a, b, and c. According to Equation (11), we obtain a dataset of
the zero OPD positions, which can be denoted as m, ym, m = 1, 2, . . . , M for linear fitting.

4.2. Linear Fitting Method for Registration Error

The linear fitting method is also a mature mathematical tool. The equation of the line to be fitted
in this case can be expressed as:

ym = km + t (12)

where k is the slope of the line, t is the y-intercept, and k and t are undetermined parameters.
The least-squares (LS) [18], total-least-squares (TLS) [19], and robust-least-squares (RLS) [20,21] linear
fitting methods are three well- developed fitting methods. the LS method is the most commonly used.
As errors might exist in the position coordinates of the zero OPD, the TLS method can be used to solve
this type of linear fitting problem. If the zero OPD of one row in the image is located at the junction of
different targets, the position of the zero OPD calculated by the parabola method is coarse and must
be an outlier. These rough errors or outliers in the data need to be eliminated to obtain the optimal
estimation of robust line parameters. The RLS method can be used in this kind of situation. The theory
of the above methods is outlined below.

4.2.1. Least Square Linear Fitting

The least-squares criterion of linear fitting is:

e2 =
M

∑
m=1
‖km + t− ym‖2 = min . (13)

Convert to the matrix form:
e2 = ‖PZ− L‖2

2 = min, (14)

where P =

[
1 2 · · · M
1 1 · · · 1

]T

, Z =
[

k t
]T

, L =
[

y1 y2 · · · yM

]T
.
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Calculate the least-squares solutions of the coefficients k and t:

ZLS =
(

PT P
)−1

PT L. (15)

4.2.2. Total-Least-Squares Linear Fitting

The equation of the TLS method is expressed as:

ym + eym = k (m + em) + t (16)

where em and eym are error terms. The total-least-squares criterion of linear fitting is:

e2
m + e2

ym = min. (17)

To solve this problem, construct the augmented matrix C:

C = [P, L] (18)

and conduct singular value decomposition for the augmented matrix C:

C = USVT (19)

where VT =

[
V11 V12

V21 V22

]
, V22 is scalar. The total-least-squares solution of the parameter is:

ZTLS = −V12V22. (20)

4.2.3. Robust-Least-Squares Linear Fitting

The specific process of the robust-least-squares method is as follows:
(1) Calculate the initial values of k and t by applying the LS method using all points;
(2) Calculate the distance dm from each point to the fitted line using the calculated k and t values:

dm =
|km− ym + t|√

k2 + 1
; (21)

(3) Set the threshold value of the abnormal point as T. If dm > T; this point is considered an
abnormal point and eliminated; otherwise, it is reserved;

(4) Recalculate k and t using all reserved coordinate points;
(5) Repeat steps (2) to (4) until all coordinate points meet the requirements; and
(6) For the remaining points, the LS method is used to calculate the coefficients k and t, which can

be seen as the optimal value.
In the above steps, LS can be replaced with TLS, which is another method called the

robust-total-least-squares (RTLS) method.
In this paper, the threshold in step (3) is the responsibility of the RLS method. An optimal

threshold T = 3σ is used in this paper, which was determined by trial and error. Here, σ is the standard
deviation of the distance d:

σ =

√(
dm − d̄

)2

M1 − 1
(22)

where d̄ = 1
M1

∑M1
m=1 dm, M1 is the number of points used for the linear fitting each time.
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Once the linear equation established by the coefficients k and t, the registration error of each
position between the detector and the interferogram can be calculated as follows:{

θ = arctan k
N2 = t.

(23)

5. Simulation Results

An airborne hyperspectral scanner data set was employed to model the interferogram
generated by a TSMFTIS. We assumed that the spectrum corresponds to 51 spectral bands within
13,405–22,222 cm−1. The equivalent focal length of the TSMFTIS is f1 = 150 mm, and the shear constant
of the TSMFTIS is a1 = 0.84 mm. The FPA size is 256 × 500 pixels, and the pixel size s = 30 µm.
The interference images generated with different registration errors are shown in Figure 5. To increase
the clarity of the images, the contrast and brightness of the images were enhanced by grey expanding.

Figure 5. Simulation interference images with different registration errors between detector and
interferogram: (a) k = 0, t = 38; (b) k = −0.01, t = 40.5; and (c) k = −0.02, t = 43.

Four linear fitting methods, LS, TLS, RLS, and RTLS, were applied to the simulation images to
calculate the registration error between the detector and the interferogram. The results of parameters
of the fitting line are shown in Table 1.

Table 1. The parameters of linear fitting of the registration error between the detector and
the interferogram.

Group 1 2 3

Parameter k t k t k t

Preset Value 0 38 −0.01 40.5 −0.02 43

(least− squares)LS −0.0020 38.0559 −0.0124 40.5949 −0.0122 40.2298
Fitting (robust− least− squares)RLS −1.7×10−6 38.0011 −0.0100 40.4825 −0.0200 43.0163

Method (total − least− squares)TLS −0.0020 38.2493 −0.0132 40.8506 −0.0130 40.4842
(robust− total − least− squares)RTLS −1.7×10−6 38.0011 −0.0100 40.4825 −0.0200 43.0163

The results in the table show that the accuracy of the TLS method is the worst, followed by that
of the LS method. The RLS and RTLS linear fitting methods have the same accuracy, and they are the
closest to the value of preset. Since the operation speed of the RLS method is 10 times faster than that
of the RTLS method in the actual calculation process, the RTLS method is not displayed in the rest of
the paper. To estimate the error of the fitting methods, we calculated the absolute error between the
ideal value and the fitting value of k,t, as shown in Figure 6. The figure shows that the RLS method
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produced robust and accurate results. Therefore, the RLS method was used as the optimal linear fitting
method in this study.

Figure 6. The error estimation of the fitting methods: (a) error of k; (b) error of t.

The error was also quantitatively evaluated from the perspective of the recovery spectrum.
The spectral angle (SA) [22,23] was employed to quantitative evaluate the spectral error of the
reconstructed spectrum. The formula is as follows:

SA
(

B, B′
)
= cos−1

NB

∑
i=1

BiB′i/(

√√√√NB

∑
i=1

B2
i

√√√√NB

∑
i=1

B′2i )

 (24)

where B is the ideal spectrum radiance, B′ is the reconstructed spectrum radiance, and NB is the
number of spectrum channels.

Two targets were selected, denoted by A1 and A2, as shown in Figure 5. For the registration
errors of different detectors, the interferograms of A1 and A2 before the registration error correction,
after the LS correction, and after the RLS correction were extracted. Then, the recovery spectra
were obtained based on the Fourier spectroscopy principle, as shown in Figures 7–9. In the figures,
BS represents the ideal spectral curve of the target, Be represents the directly recovered spectral curve,
BLS represents the recovered spectral curve after the registration error was corrected based on the LS
method, and BRLS represents the recovered spectral curve after the registration error was corrected
based on the RLS method.

Figure 7. Recovery spectra of targets in case 1 (k = 0, t = 38): (a) A1 and (b) A2.

The spectral angle of the recovered spectrum relative to the real spectrum was calculated, and the
results are summarized in Table 2. In the table, Error denotes the SA between the real spectrum of the
targets and the directly recovered spectrum based on the wrong OPD Li. LS and RLS denote the SA
between the real spectrum of the targets and the recovery spectra based on the OPD Lr corrected by
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the LS method and the RLS method, respectively. Table 2 shows a large error existed between the real
spectrum and the directly recovery spectrum when the registration errors. However, the LS method
cannot effectively correct the registration error. The recovered spectrum obtained by the RLS method
is much closer to the real spectrum.

Figure 8. Recovery spectra of targets in case 2 (k = −0.01, t = 40.5): (a) A1 and (b) A2.

Figure 9. Recovery spectra of targets in case 3 (k = −0.02, t = 43): (a) A1 and (b) A2.

Table 2. Spectral angle (SA) caused by the registration error between the detector and the interferogram.

Target A1 A2

Case 1 2 3 1 2 3

Error 0 0.0736 0.1470 0 0.2746 0.2094
LS 0.2197 0.2644 0.3814 0.3168 0.2861 0.3057

RLS 0.0007 0.0205 0.0033 0.0005 0.0235 0.0099

6. Experimental Results

Next, we applied the proposed correction method to the interference-modulated image datasets
obtained from an airborne TSMFTIS experiment to verify the effectiveness of this method. The TSMFTIS
was mounted on an unstabilized airborne platform and collected 60 spectral bands within 900–2500 nm.
The equivalent focal length of the TSMFTIS f1 was 130 mm, and the shear constant of the TSMFTIS a1

was 0.84 mm. The FPA size was 256 × 500 pixels, and the pixel size p1 was 30 µm.
A frame of an experimental image obtained by the airborne TSMFTIS is shown in Figure 10.

A registration error is visible between the detector and the interference pattern. The LS and RLS
methods were used to calculate the parameters of the fitted line for the registration error, and the
results are shown in Table 3.

In Table 3, error denotes the design values of the parameters. The OPD of the interference image
was corrected by the calculated registration error, the interferogram of the target point P was extracted
from the image sequence, and its spectrum was restored. The recovered spectrum of the target P is



Sensors 2020, 20, 1195 11 of 13

shown in Figure 11, where the ideal spectrum was measured synchronously by an analytical spectra
device (ASD) on the ground. In the figure, the red solid line represents the ASD spectrum and labeled
with BS, the blue dashed line represents the error spectrum labeled with Be, the green dotted line
represents the spectrum corrected by the LS method and labeled using the symbol BLS, and the cyan
dot-dashed line represents the spectrum correctedby the RLS method and labeled with the symbol
BRLS. The figure shows that the positions of the peaks in the curve of BRLS are nearer to BS than the
others, and the variation trends of the spectral shape of BRLS are the closest to BS, especially near
the wave numbers 6000 and 8000 cm−1. The evaluation factor SA is provided in Table 3. From the
table, the SA of the RLS method is the lowest. However, the recovered spectrum still does not match
the ASD spectrum very well because other errors of the extracted interferogram are present, such as
positioning errors of the homonymic point locations in the image series due to unstable platform
movement and the interpolation errors of interference information.

Figure 10. An experiment frame of an image obtained by the TSMFTIS.

Table 3. The fitting parameters and SA of different correction methods for the registration error.

Parameter Name Error LS RLS

Linear Fitting k 0 −0.0125 −0.0143
Parameters t 38 39.0844 39.3588

Evaluate Factor SA 0.3306 0.3415 0.3031

Figure 11. The spectrum of the target P.

7. Conclusions

In this study, we analyzed the importance of the correction of the registration error between the
detector and the interferogram based on the TSMFTIS imaging principle, and we proposed a two-step
correction method for the registration error. The method automatically selects points for parabolic
fitting to obtain the zero OPD positions in the interference-modulated image and then calculates the
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threshold value for the RLS method to obtain an accurate and robust corrected value of the registration
error. The effectiveness of the proposed method was verified by simulation. Finally, the correction
method was applied to an experimental image sequence, demonstrating that the method provides
improved spectral recovery accuracy.
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The following abbreviations are used in this manuscript:
TSMFTIS temporally-spatially modulated Fourier transform imaging spectrometer
OPD optical path differences
LASIS large-aperture static imaging spectrometer
HEIFTS high etendue imaging Fourier transform spectrometer
CaHyD Caméra Hyperspectrale de Démonstration
ALISEO aerospace leap-frog imaging static interferometer for Earth observation
FPA focal plane array
LS least-squares
TLS total-least-squares
RLS robust-least-squares
RTLS robust-total-least-squares
SA spectral angle
ASD analytical spectra device
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