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Abstract: To further improve the precision and efficiency of structural health monitoring technology
and the theory of large-scale structures, full-field non-contact structural geometry morphology
monitoring is expected to be a breakthrough technology in structural safety state monitoring and
digital twins, owing to its economic, credible, high frequency, and holographic advantages. This study
validates a proposed holographic visual sensor and algorithms in a computer-vision-based full-field
non-contact displacement and vibration measurement. Using an automatic camera patrol experimental
device, original segmental dynamic and static video monitoring data of a model bridge under various
damage/activities were collected. According to the temporal and spatial characteristics of the series
data, the holographic geometric morphology tracking algorithm was introduced. Additionally,
the feature points set of the structural holography geometry and the holography feature contours
were established. Experimental results show that the holographic visual sensor and the proposed
algorithms can extract an accurate holographic full-field displacement signal, and factually and
sensitively accomplish vibration measurement, while accurately reflecting the real change in structural
properties under various damage/action conditions. The proposed method can serve as a foundation
for further research on digital twins for large-scale structures, structural condition assessment,
and intelligent damage identification.

Keywords: structural geometry monitoring; computer-vision-based measurement technology; bridge
safety; holographic visual sensor; dense full-field measurement; digital twins

1. Introduction

Bridge engineering is not only the basis for traffic and transportation systems, but also an
indispensable part of rapid progress in modern transportation. However, bridge structures suffer
different degrees of damages and deterioration far before their designed lifetime due to material
performance degradation and other influencing factors (e.g., environmental erosion, vehicle loads, wind
loads, earthquakes and fatigue) in their entire service life. This may further affect transportation safety
of bridge structures [1–5]. Concerning traditional structure management and maintenance detection
methods, some defects can be found, including a high manual inspection cost, high subjectivity, high
uncertainty, low efficiency, lack of scientifically quantified bases and failure in satisfying demands of
engineering practice. In recent years, fast growth of relevant fields, such as modern sensing technology,
control techniques, artificial intelligence, telecommunications, materials and data analysis, lays a
technical and theoretical foundation for implementing structural health monitoring (SHM) technology
in more direct and more cost-effective ways. Moreover, it is also thus more likely to scientifically
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quantify such technology; and, this has become a development trend of the total life-cycle SHM
technology in modern times [4–8]. A series of theoretical and experimental investigations has been
performed on structural damage identification, working status of structures, positions and degrees of
structural damages, health monitoring sensor systems, large-scale monitoring data analysis techniques
and computer vision measurement, etc., by scholars. As for relevant research findings, they have
been applied in various engineering sectors, such as speckle photography [9–13] global positioning
systems (GPS) [13], and laser doppler vibrometers [12,13]. However, the high costs of these non-contact
systems prevent their wider application. Owing to the wide availability of affordable high-quality
digital imaging sensors and high-performance computers, cheaper cameras with high resolutions have
found growing applications in several areas [12–17]. With these devices [5–11], what you see is what
you get, and movement information can be shown visually. On the basis of target points or physical
feature points, a discrete structural geometry morphology feature point set has been constructed in
most of the existing research by extracting displacement information of a single feature point on
the surface of a structure. No correlation is formed between points. On the contrary, a holographic
visual sensor is utilized in this paper to acquire structural geometric morphology and then build
a set of feature points by virtue of full-field structural geometry monitoring. In this way, full-field
measurement can be fulfilled. Compared with another method of using a discrete feature point set to
construct spatial geometric morphology, a set of feature points with strongly correlated information is
established on the basis of geometry morphology. Therefore, physical continuity conditions and spatial
contact information between points can be sufficiently reserved. Thus, the real change in structural
properties can be accurately reflected under various damage/action conditions. To summarize, contact
health monitoring sensors or non-contact sensors are primarily used in the existing literature about
SHM theories and methods to identify static or dynamic characteristic parameters of structures; and,
in combination with finite element analysis (FEA) and experimental analysis, structural damage
identification and working status estimation are performed based on measured responses of the
structure, so as to reveal whole-process static/dynamic behavior, mechanisms and evolutionary rules of
the structure under actions of complex loads and environmental coupling. Thanks to definite physical
meanings, these approaches have been employed in practical projects [18–29]. However, they remain
very vulnerable to limitations of corresponding technical conditions. Due to difficulties in conducting
anomaly detection of massive monitoring data, multiple degrees of freedom in structures, strong
correlations among components and a complicated relation between global and local attributes of the
structure, not only is it less likely to truly reflect structural damage characteristics by a small number of
sensors, but a difficult also lies in accurately presenting global or local damages by virtue of the overall
structural response. Moreover, in terms of errors, both big data analysis technology and damage
identification factors should be featured with certain robustness and sensitivity during the relevant
test that is subjected to noise interference and errors generated by signal transmission and analysis.
In other words, they should be able to identify global damages by truthfully revealing global attributes
of the structural behavior and also possess high sensitivity in local damage identification.

Regarding structural geometric deformation monitoring, it is both a key component of health
monitoring in the field of bridge engineering [20–29] and a critical index of structural behavior evaluation
for bridges. To a certain extent, anomalous changes in structural geometry give embodiments to
present safety status of bridges in a real sense; and, different degrees of structural damages or defects
in long-term service time are also embodied in such anomalous changes. As for structural geometric
deformation monitoring of long-span bridges [23–29] and in order to monitor mechanical parameters
of and environmental effects on bridges, a limited number of contact sensors should be arranged on
key monitoring points of the bridge structure to form a sensor array on one hand; and, on the other
hand, a health monitoring system should be established by integrating them with other monitoring
sensors. Alternatively, manual inspections are regularly carried out for control points of the bridge area
monitoring by a total station, a level gauge and a theodolite. Unfortunately, the utilized sensors should
be calibrated on a regular basis and control points for monitoring are also restricted by topographic
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conditions and types of the bridge structure. Consequently, these SHM approaches with poor economic
efficiency only produce a limited number of structural geometric deformations on discrete monitoring
points. It is much less likely to acquire holography geometric morphology which truthfully represents
global and local safety status of the bridge structure.

On account of the above research, philosophy of the full-field structural geometry monitoring is
combined with structural holographic technology. Structural holographic technology is derived from
holography and front-projected holographic displays. Based on computer-vision-based measurement
technology and non-contact geometric morphology monitoring technology, a visual sensor is
comprehensively adopted to acquire original segmental dynamic and static video monitoring data to
the largest possible extent. Such data contain all the structural information (i.e., geometric parameters,
mechanical behavior responses, structural performance parameters, structural state parameters, load
effects, and environmental activity) that is available to digital twins. In these data, information (i.e.,
optical information and phase information) of various points on the structural surface are truthfully
and accurately recorded. In principle, three-dimensional space images of the original structure can
be dynamically reproduced without mutual interference. Hence, dynamic interaction between the
real structure and the virtual digital model is realized. In this way, a holographic visual sensor is
proposed based on morphological monitoring data and series data of holographic images. Moreover,
these data and images are generated by laboratory loading tests on a scale model of a super-span
self-anchored suspension (SAS) bridge with a multi-damage working condition. Then, the holographic
visual sensor is adopted to carry out holography geometric morphology monitoring for the bridge
structure, which truthfully reflects actual structural deformations under the load. In comparison with
a contact sensor-based health monitoring system, the non-contact holographic visual sensor has the
potential to acquire structural holographic deformations which are more sensitive to local damages.
Furthermore, the proposed method also overcomes the problem of response data discretization on
observation points caused by restrictions over the quantity of sensors. Besides, information about
global and local damages of the structure can be presented truthfully and continuously by the proposed
holographic visual sensor.

This study aims at the lack of sufficient data supporting structure health monitoring, structural
damage identification and digital twins for large-scale structures, which is a general issue in traditional
single-point measurement method. A novel holographic visual sensor and algorithms have been
proposed for full-field non-contact displacement and vibration measurement based on computer-vision
technology, with improved efficiency and reduced cost. The sensor and algorithms can be applied
in the full-field geometry monitoring of engineering structures. The paper is organized as follows:
Section 2 covers the theoretical background of holographic visual sensor, and the holographic geometric
morphology tracking algorithm is proposed, including the feature points set of structural holography
geometry and the holography feature contours. Section 3 analysis with the theoretical model,
and validates the proposed sensor and algorithms in full-field non-contact displacement and vibration
measurement. All of the results are summarized in Section 4.

2. Theoretical Fundamentals

2.1. Holographic Visual Sensor

Based on modern panoramic vision sensor technology, pattern recognition and computer
technology, the holographic visual sensor is composed of an active visual sensor, an Autocruise
remote control platform, an environmental monitoring element and a signal transmission and
communication unit. The active observation and measurement of the structure to be measured
is fulfilled by an active vision sensor (Canon 5Dsr camera and Sony AX700 high-definition camera) at
the front end. Environmental monitoring units refer to temperature and humidity sensors independent
of the active vision sensor. These units are used to collect environmental activity-related information
of the present structure to be measured. By contrast to conventional discrete-point displacement
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measurement, the holographic visual sensor has the capability to arrange dense and continuous
pixel-level/subpixel-level virtual measuring points on the surface of the tested object space; hence,
the actual physical characteristics of structural geometry and deformation can be obtained on the
whole, as shown in Figure 1.
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Figure 1. Holographic visual sensor: (a) main components of sensor; (b) holography geometric
morphology of the structure.

During holography geometric morphology monitoring for bridges, autocruise parameters (i.e.,
preset position, on-watch position, cruise time and sampling time) are set on a computer to realize
remote control over the active visual sensor, and the environmental monitoring sensor on site and
acquire dynamic and static image monitoring data of the bridge structure within the present field of
vision in a real-time way. In terms of full-field structural geometry monitoring, virtual measuring
point positions and color information are primarily selected as measurement features for digital
transformation of corresponding dynamic and static images, as presented in Figure 2. As for a static
image sequence or a single-frame dynamic image sequence, the original image function f (x,y) is
spatially discretely divided into several information zones denoted by f (i,j) (i,j=1, 2, . . . , N) in square
meshes, as expressed in Equation (1). Here, f (i,j) contains RGB information, illumination information
and spatial position information of the corresponding information zone. It truthfully represents all the
feature information of the original image function; subsequently, spatial registration of series data,
holographic feature probability edge detection and power spectral density analysis can be conducted
on the basis of the feature information.

f (x, y) = g(x, y)·h(x, y)·QL (1)

where, x and y refers to planar coordinates of the information zone f (i,j) after image function
discretization; g(·) is an incidence function that embodies the external features of an image, such as
illumination intensity and environmental factors; h(·) represents a reflection function, standing for
reflection characteristics on the structural surface and internal characteristics of the image; and, QL
is spatial position information contained in multi-time-history, multi-angle and multi-field-of-vision
series data of dynamic/static images.
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Figure 2. Matrix representation of pattern information digitalization.

Normalized cross correlation analysis [30,31] is made to figure out correlations among various
information zones f (i,j) in neighboring series data before and after the structure. Furthermore,
holography geometric morphology with significant differences is extracted from the structure under
the load or in a state of damage. Regarding the function f (x,y) of an MxN large original image to be
searched, the Normalized Cross Correlation coefficients can be described as Equation (2).

δ(i, j) =

M∑
i=1

N∑
j=1

∣∣∣ f x,y(i, j) − E(Si, j)
∣∣∣·∣∣∣ f T(i, j) − E( f T(i, j))

∣∣∣√
M∑

i=1

N∑
j=1

[
f x,y(i, j) − E(Si, j)

]2
·

M∑
i=1

N∑
j=1

[ f T(i, j) − E( f T(i, j))]2
(2)

where, δ(i, j) is the Normalized Cross Correlation coefficients, f x,y(i, j) is the source image, f T(i, j) is
the template, Si, j is the region under the template, E( f T(i, j)) is the mean of the template, E(Si, j) is the
mean of in the region under the template, (i,j) represents coordinates of the original image function
f (x,y) that denotes the information zone f (i,j).

As shown in Equation (2), a correlation matrix is calculated by shifting a given template fT

pixel-by-pixel across a source image fx,y, which provides the information on the degree of matching
between the template and the image. The maximum absolute value of the correlation matrix, whose
location describes the best matching of the template, is then sought. Figure 3 is a matching schematic
diagram between search image and template image; and, the region with significant differences that is
figured out by Normalized Cross Correlation analysis is where holography geometric morphology of
the structure changes.
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As can be observed from Figure 4, transition of RGB values and gray-scale values can be found
among edge contour lines extracted based on Normalized Cross Correlation computational analysis.
Consequently, edges of the structure fail to be a real contour line, but an edge pixel band point group.
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Figure 4. Schematic diagrams of edge pixel band point groups and probability edges: (a) pixel-level
edges; (b) holographic probability edges.

To quantify the acquired characteristic parameters of holography geometric morphology, a fuzzy
probability-based edge detection algorithm [32,33] is adopted to extract probability edges of the
structure in a complex illumination condition. Moreover, the probability edge can reflect holography
geometric morphology of the structure to a significant degree. Therefore, it can be used to fulfill the
experimental analysis in this study on the premise of satisfying measuring accuracy requirements.
Through spatial and temporal differential analysis on holographic probability edges of the pixel band
point group configuration [5], displacement of the holography geometric morphology function in
horizontal and vertical directions can be expressed in the following governing Equations (3) and (4).

∆x =
m∑

i=1

n∑
j=1

∣∣∣Hi j,h(x, y, z) −Hi j,h
′(x, y, z)

∣∣∣ (3)

∆y =
m∑

i=1

n∑
j=1

∣∣∣Hi j,v(x, y, z) −Hi j,v
′(x, y, z)

∣∣∣ (4)

where, m and n represent space serial numbers of the structure’s holographic probability edge
feature points; x, y and z are space coordinates of feature points; Hij(x,y,z) refers to the measured
horizontal/vertical structural responses in the holography geometric morphology in a field of vision at
a moment/period; and, Hij’(x,y,z) stands for the measured horizontal/vertical structural responses of
the holography geometric morphology function in a normal state.

The x and y coordinates of these locations represent the movements in the horizontal and vertical
directions. Notably, the movements obtained by applying this algorithm actually represent pixels.
The real displacement can be obtained when the distance a pixel represents is known [33]. As shown in
Equations (5), characteristic parameters of the holography geometric morphology are aligned between
pixel and world coordinate systems on an image plane, so that degrees of freedom (DoF) of diverse
pixels in the structure’s holography geometric morphology can be acquired along axes x and y, and
accordingly converted into actual displacement of the structure in the world coordinate system.
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where, s is a scale factor of image projection plane transformation; u0 and v0 are base points of the
pixel coordinate system; u and v represent a pixel coordinate system of the image projection plane; Xc

and Yc stand for a camera coordinate system; and, fc refers to an effective focal length, R to a 3 × 3
rotation matrix, and T to a translation matrix. Moreover, Xw, Yw and Zw form a world coordinate
system. Finally, αx = fc/dXc and αy = fc/dYc are both scale factors of u and v. Prior to holographic
testing, all internal and external parameters can be obtained by calibrating a standard chessboard with
black and white alternating [34–36].

Based on a feature space point set of structural holography geometric morphology and time series
information of structural displacement, modal features of the structure can be further analyzed to
simplify the trial bridge into a particle system connected with springs and damps. In this case, its
differential balance kinetic equation can be written as Equation (6):

M
..
u(t) + C

.
u(t) + Ku(t) = 0 (6)

where,
..
u(t),

.
u(t) and u(t), respectively, represent an acceleration vector, a velocity vector and a

displacement vector of various space points in the feature point set of structural holography geometric
morphology; and, M, C and K stand for a mass matrix, a viscous damping matrix and a stiffness
matrix respectively. According to Rayleigh’s hypothesis about damping [37], the damping matrix
of the structure is a combination of its mass matrix and stiffness matrix, that is, C = αM + βK.
Considering Kφi = ω2

i Mφi, a modal matrix Φ formed by φ1,φ2 . . . φi can be solved, as shown in
Equation (7) which diagonalizes the mass and stiffness matrices into modal masses mi and ki modal
stiffnesses. As for geometric displacement information obtained by holography geometric morphology
monitoring for the bridge structure, relevant geometric displacement coordinates can be transformed,
by means of mode shape coordinate transformation, into generalized coordinates that are expressed
in mode shapes. In a generalized coordinate system, an uncoupled single DoF Equation (10) can be
generated according to orthogonality of displacement mode shapes. In the course of actual testing,
the holography geometric morphology data are displacement sequences that contain S continuous
time-domain signal with an equal step length. If T is taken to represent sampling frequency of the
holographic visual sensor, then, t=ST.

Φ =
[
φ1 φ2 · · · φi

]
(7)

ΦTMΦ = diag(mi) (8)

ΦTKΦ = diag(ki) (9)

u[(Xw, Yw, Zw), ST] = u(t) =
n∑

i=1

φi(Xw, Yw, Zw)q(ST) (10)
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The matrix Φ defines modal coordinates q(t) where u(t) = Φq(t). In these modal coordinates,
the equations of motion are decoupled into single degree of freedom systems defined by modal masses
mi and modal stiffnesses ki, and damping ci = αmi + βki, giving the decoupled equation of motion for
each mode in Equation (11).

..
q(t) + 2ξiωi

.
q(t) +ω2q(t) = 0 (11)

where the undamped natural frequency is ωi =
√

ki
mi

, the modal damping factor is shown in
Equation (12).

ξi =
ci

2miωi
=

1
2

(
α
ωi

+ βωi

)
(12)

In unit impulse, ith mode of the structure can be figured out by solving the Equation (11).

hi(t) =
(

e−ξiωit

miωdi

)
sin(ωdit) (13)

where the damped natural frequency is ωdi = ωi

√
1− ξ2

i . Through Fourier transform of Equation (13),
a complex frequency response function of the structure is acquired in a condition of arbitrary impulse,
as shown in Equation (14).

Hi(ω) =

 1
miωdi

ξiωi

ξ2
i ω

2
i +ω2

 ∗ (δ(ω−ωdi) − δ(ω+ωdi)

i

)
(14)

Based on Equations (13) and (14), displacement response up(t) of the single DoF system can be
expressed in Equation (15):

up(t) = up[(Xw, Yw, Zw), ST] =
n∑

i=1

Aihi(t)φi(p) (15)

Equation (16) gives expression to a dynamic response function of the structure:

Up(ω) = Up[(Xw, Yw, Zw),ω] =
n∑

i=1

AiHi(ω)φi(p) (16)

where Ai is the amplitude of the impulse at the mode φi, φi(p) is the mode shape coefficient of the
degree of freedom p of the object for mode i. Here, a feature space point set of structural holography
geometric morphology and the time series information of structural displacement are acquired by
a holographic visual sensor. On this basis, spatial and temporal series data are analyzed to fulfill
holography geometric morphology monitoring and analyze modal features. In the process of analyzing,
each point in the space point set is constantly invoked to compute and analyze the corresponding
local geometric displacement information; in this way, a motion-associated signal spectrum, mode
shapes denoted by φi and frequency ωi, all required by the overall dynamic response parameter, can
be established. In test conditions of this study, test objects and material behavior remain basically
unchanged; by contrast, structural stiffness may alter in a working condition of being damaged.
In this context, the holographic visual sensor is utilized to monitor structural holography characteristic
variations. Therefore, a foundation can be laid for subsequent further research on structural behavior
evolution and intelligent damage identification based on holographic spatial and temporal series data.

2.2. The Spatial and Temporal Series Data

Raw data acquired by a holographic visual sensor have the following characteristics. First is
multi-time-history. Different holography geometric data that are collected in different fields of vision
have different time history in the entire testing process. The second characteristic is multi-field-of-vision.
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As far as technical and economic analyses are concerned, local holography geometric morphology takes
form in different fields of vision by utilizing a small number of devices to perform geometric monitoring
on structural local details in corresponding fields of vision. The third characteristic is known as being
multi-angle. When data acquisition is implemented at on-watch positions by the Autocruise remote
control platform, equivalent transformation of various angles should be performed during holography
geometric data processing. The last characteristic is embodied in a strong correlation between time
and space. In terms of time history and space information, the raw data are under random effects of
the entire bridge structure at the current moment or period; and, structural responses in a local field of
vision reflect the total structural behavior to diverse degrees. On this basis, the spatial and temporal
series data that are based on the holographic visual sensor are listed in Figure 5.
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Targeted at characteristics of a series data pool, time and space pointers are established for spatial
and temporal series data by virtue of Matlab cell array principles. To be specific, the time pointer (i.e.,
time dimension) serves as an information label of the current damaging working condition and field of
vision sequence; and, the space pointer, or space dimension, is deemed as an associated information
label of the current local structural region relative to the overall structural position. Respectively, labels
of time-history information, space field of vision, angle information and environmental information
are established for raw data to carry out data integration and storage. Hence, preparations are made
for further processing and analysis of subsequent data. In this way, label information of corresponding
elements in the Matlab cell array can be expressed in Equation (17) below.

Q {i, j}(m, n)={ QTime, QSpace, QAngle, QEnvironmentalAction, QGrayValue } (17)

where, Q represents a Matlab cell array for multi-time-history, multi-angle and multi-field-of-vision
series data of dynamic/static images; i is the serial number of damages working conditions of the
test bridge and it ranges from 1 to 12 in this experiment; j refers to label position information in
different damage working conditions, where 1 stands for Time, 2 for Space and 3 for Angle ...; m refers
to a parameter to invoke label information data values of QTime, QSpace, QAngle, QEnvironmentalAction, and
QGrayValue in a local field of vision; n is also the serial number of repeated measurements in the same
damage working condition, or can be referred to as time information of multiple measurements; QTime,
QSpace, QAngle and QEnvironmentalAction are information matrices of time, space, angle and environmental
labels; and, QGrayValue stands for RGB values and gray values of a dynamic/static image measured by
the holography geometric morphology monitoring system in a local field of vision.

To process dynamic/static image monitoring series data with strongly correlated spatial and
temporal information, a multi-task multi-agent action network is built based on spatial and temporal
series data. According to a schematic diagram of the local network structure (see Figure 6), holography
geometric morphology of the entire bridge structure can be intelligently perceived. In time dimension,
information of holography geometric morphology is extracted in the same field of vision, while overall
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holography geometric characteristics of the structure can be extracted from diverse fields of vision in a
space dimension.
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where, xt is input at time t, X=[x1,...,xt−1,xt+1,...xT] is an input sequence; st is a hidden state
at time t, multiple neurons are included and S=[s1,...,st-1,st+1,...sT]; h denotes output at time t,
H=[h1,...,ht−1,ht+1,...hT] is an output sequence; and, U stands for a weight parameter matrix of
the input sequence X, W for a weight parameter matrix of the hidden state S, and V for a weight
parameter matrix of the output sequence H. In this case, if a mathematical model of the current hidden
state st can be expressed as st=F(Wst-1,Uxt), where F(·) stands for an activation function of the hidden
state, then, the mathematical model of output is ht=G(Vst) (G(·) as an activation function of output).

3. Experimental Study

3.1. Experimental Setup and Procedure

With the help of the existing deep machine vision-based measuring technique available to the
research group [5,38], the holographic visual sensor is selected as the experimental facility to test
structural mechanical behavior of a scale test model of a super-span SAS bridge in the whole process
of variable load conditions and holography geometric morphology. In this way, full-field non-contact
measurement is investigated for holography geometric morphology of the test bridge in various working
conditions under complex uncertainties. Besides, a data pool can be also constructed for whole-process
holography geometric morphology monitoring information of the test model. A conventional contact
high-precision geometric deformation measuring instrument (i.e., dial gauge and accelerometer) is
utilized to validate the measured data of test model deformation in corresponding working conditions
and improve the proposed holography geometric morphology monitoring approach. Considering that
loading tests under variable loads should be carried out for the test model in different working
conditions, structural damages are rather sensitive to geometric morphology changes. Therefore,
the scale test model of super-span SAS bridge with a total longitudinal length of 24 m (see Figure 7)
is selected as the test object here, because its damaged structural members can be easily repaired,
the structure itself has abundant feature points and its performance and mechanical behavior [39–44]
have been also explored by the research group at the earlier phase.
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Figure 7. The construction diagram of test bridge (total length of bridge is 24 m, Units: mm).

As presented in Figure 8, an experimental holographic visual sensor is used to fulfill the site layout
for holography geometric morphology monitoring of the test bridge. Known controlled variables of the
experiment include environmental effects, vehicle load conditions and structural behavior. Subjected to
diverse test working conditions in which the holographic visual sensor is used to monitor holographic
morphology of the test bridge, ambient parameters of the laboratory, such as temperature, illuminance
and humidity, all exert certain influence on test results. For the purpose of maintaining comparatively
stable raw series data under diverse loads, a test measurement was conducted in comparatively
constant and ideal indoor environmental conditions at 9:00 A.M. from July to October 2019. To be
specific, these environmental conditions include good illuminance, an average temperature at about
28 ◦C and an average humidity of 70% approximately. For practical use, the measurement may be
conducted under circumstances in which illuminance, temperature, and humidity are comparatively
stable in different seasons, time, and weather conditions. Moreover, these conditions are used as label
information of the environment, to help note down relevant parameters.
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The test scheme is primarily divided into 2 parts. As for the arrangement of measuring points, it
is presented in Figure 9 below.
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Figure 9. Sensor layout: (a) measuring points of dial gauges; (b) measuring points of accelerometers;
(c) measuring position of holographic visual sensor (units: mm); (d) manual damages.

The first part is a single-point excitation. An impact hammer was used to complete single-point
excitation for the test bridge with different impact forces, monitor automatic cruise situations of the
system, continuously collect holography geometric morphologies in diverse working conditions of
the test scheme in a segmented manner, and acquire holographic deformation and dynamic response
curves in the respective working conditions of the test bridge. The second part of this scheme is running
vehicle excitation. A test loading vehicle with a load of 25 kg/50 kg/100 kg moves on the bridge at
0.5 m/s, in which case, the monitoring system begins to cruise automatically and continuously acquire
holography geometric morphologies in various test conditions; thus, holographic deformation and
dynamic response curves of the test bridge are generated for different working conditions. According to
this scheme, two measurement modes were adopted. One is traditional, and the other is holographic
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visual measuring. As for the former, the midspan measuring points of the test bridge include the
L/8, L/4, 3L/8, L/2, 5L/8, 3L/4 and 7L/8 key cross-sections, while those of its side span only consist of
the L/2 key cross-section; in addition, a displacement sensor and an accelerometer are respectively
provided on the abutments at both ends to acquire structural responses. As far as the latter is concerned,
a holographic visual sensor is used as an experimental facility to fulfill measurement, as shown in
Figure 10.
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Figure 10. The device of experiments.

Test content: Subjected to different modes of excitation and manual damages on different positions
of the sling, holography geometric morphology monitoring series data of dynamic/static images are
firstly tested for the test bridge. Secondly, in different conditions, measured deformations on measuring
points are tested by a conventional contact displacement sensor and an accelerometer in corresponding
working conditions. As for the test conditions and content of this paper, they have been presented in
Table 1. Regarding manual damages, beam anchorage device of the catenary wire is manually adjusted,
and different values of the cable force represent varying damage degrees. Once the anchorage device
is entirely released, the corresponding failure probability reaches 100%. Here, the failure probability is
50%, as shown in Figure 9d.



Sensors 2020, 20, 1187 14 of 24

Table 1. Test conditions and content.

Test Conditions
Serial No. of

Working
Conditions

Test Variables

Test Load (kg) Test Velocity (m/s)
Damage Conditions
(Suspender Failure
Probability = 50%)

Damage
Conditions

A1 100 0.5 /
A2 100 0.5 26
A3 100 0.5 26 + 27
A4 100 0.5 26 + 27 + 28
A5 100 0.5 26 + 27 + 28 + 29
A6 100 0.5 26 + 27 + 28 + 29 + 30

Single-Point
Excitation

B1 30 / /
B2 60 / /

Running Vehicle
Excitation

C1 25 0.5 /
C2 50 0.5 /

3.2. Holographic Visual Sensor Based Characterization Parameters of Morphology Results

Each frame of the test bridge’s spatial and temporal series data in various test conditions were
separately extracted to successively construct time-history information label, space field of vision
label, angle information label and environmental information label, so that pixel resolution could be
figured out. Moreover, noise signal filtration was performed by a denoising and anti-disturbance
element, a Euler motion amplification element and a motion information extraction element [45]. As a
result, a structural holographic morphology which is formed by feature point sets of the structural
space was achieved, as shown in Figure 11. In space, all holographic feature points roughly form 4
space fitting surfaces which are denoted as HVS_H1, HVS_H2, HVS_V1 and HVS_V2. They truthfully,
continuously and sensitively reflect changes in structural holography morphology in the whole process
of test. By configuring space constraint conditions and physical continuity conditions at junctions of
the space fitting surfaces for the test bridge in a holographic morphology [5], the holography feature
contours that contain structural geometric displacement information were solved. This is deemed as
a testing basis for structural morphology monitoring that is implemented by a holographic visual
sensor. On account of this, pixel-level or subpixel-level virtual measuring points may be densely and
continuously distributed on surface of the test object space. As a result, not only are actual geometric
morphology and deformation shape characteristics of the structure acquired on the whole, but also
time–history curves of structural displacement can be extracted, and the modal analysis fulfilled.
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Using holographic visual sensor, the results of structural geometry monitoring are shown in
Figure 12 and Table 2.
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Figure 12. Comparison of displacement responses obtained from test results: (a) time history of 
displacement in B1 condition; (b) time history of displacement in B2 condition; (c) time history of 
displacement in C1 condition; (d) time history of displacement in C2 condition. 

Through comparative analysis on Figure 12 and Table 2, the following summaries are 
demonstrated by test results obtained by the proposed holographic visual sensor and the 
conventional contact sensor. In B condition of single-point excitation and C condition of running 
vehicle excitation firstly, their dynamic displacement response curves present a basically identical 
variation tendency on the whole for the L/2 test cross-section in midspan of the test bridge; in other 
words, coincidence between them is rather high and corresponding data are stable and highly 
reliable. This proves accuracy and feasibility of the proposed approach. Secondly, the proposed 
method can be used to represent all actual dynamic displacement responses of feature point sets for 
the structural surface space during holographic morphology monitoring; and, it can provide more 
abundant, more complete and more comprehensive information about the structural mechanical 
performance if compared with conventional displacement sensors in discrete point arrangement. 
Thirdly, several points are chosen to compare, and the error rate is within 5%, RMSE is less than 0.5; 
clearly, such accuracy meets the demand of engineering practice. 
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Figure 12. Comparison of displacement responses obtained from test results: (a) time history of
displacement in B1 condition; (b) time history of displacement in B2 condition; (c) time history of
displacement in C1 condition; (d) time history of displacement in C2 condition.

Table 2. Test results comparison of holographic visual sensor (HVS) and dial gauges.

Test
Conditions Test Methods

Maximum Displacement Responses at Measuring Points/mm

L/8 L/4 3L/8 L/2 5L/8 3L/4 7L/8

B1

HVS/ R1 0.41 0.51 0.66 0.90 0.70 0.53 0.43
Dial Gauges/ R2 0.40 0.49 0.68 0.87 0.69 0.51 0.41
Error/ |R1-R2|/R2 2.5% 4.08% 2.94% 3.45% 1.45% 3.92% 4.87%

RMSE 0.416 0.428 0.457 0.449 0.435 0.424 0.487

B2

HVS/ R1 0.67 0.88 1.14 1.47 1.18 0.99 0.68
Dial Gauges/ R2 0.69 0.91 1.12 1.43 1.15 0.96 0.71
Error/ |R1-R2|/R2 2.89% 3.30% 1.79% 2.80% 2.61% 3.13% 4.22%

RMSE 0.409 0.431 0.402 0.451 0.448 0.427 0.438

C1

HVS/ R1 0.86 1.12 1.49 2.07 1.61 1.16 0.89
Dial Gauges/ R2 0.89 1.09 1.52 2.03 1.57 1.13 0.91
Error/ |R1-R2|/R2 3.37% 2.75% 1.97% 1.97% 2.55% 2.65% 2.20%

RMSE 0.429 0.447 0.435 0.461 0.463 0.436 0.447

C2

HVS/ R1 1.19 1.52 1.94 2.51 2.05 1.56 1.22
Dial Gauges/ R2 1.23 1.49 1.97 2.46 1.99 1.52 1.25
Error/ |R1-R2|/R2 3.25% 2.01% 1.52% 2.03% 3.01% 2.63% 2.45%

RMSE 0.443 0.442 0.438 0.455 0.487 0.440 0.439

Notes: RMSE(X, h) =

√
1
N

N∑
i=1

(hi − xi)
2, where X stands for test values of the proposed method, h for measured

values of other sensors, and N for data dimensions.

Through comparative analysis on Figure 12 and Table 2, the following summaries are demonstrated
by test results obtained by the proposed holographic visual sensor and the conventional contact sensor.
In B condition of single-point excitation and C condition of running vehicle excitation firstly, their
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dynamic displacement response curves present a basically identical variation tendency on the whole
for the L/2 test cross-section in midspan of the test bridge; in other words, coincidence between them is
rather high and corresponding data are stable and highly reliable. This proves accuracy and feasibility
of the proposed approach. Secondly, the proposed method can be used to represent all actual dynamic
displacement responses of feature point sets for the structural surface space during holographic
morphology monitoring; and, it can provide more abundant, more complete and more comprehensive
information about the structural mechanical performance if compared with conventional displacement
sensors in discrete point arrangement. Thirdly, several points are chosen to compare, and the error rate
is within 5%, RMSE is less than 0.5; clearly, such accuracy meets the demand of engineering practice.

As presented in Figure 13, dynamic displacement response curves are generated from holographic
morphology monitoring on the midspan of the test bridge. Good synchronization is found between
these curves and data produced by 7 displacement sensors that are arranged on the corresponding
test cross-section. This further signifies the superiority of the holographic visual sensor in monitoring
whole performance of the bridge structure. In addition, it is also demonstrated that the proposed
sensor has the capability to effectively solve the defects which are incurred from the disadvantages
(e.g., limited number, limited arrangement space, regular calibration required and discrete-point
measurement) of conventional measuring instruments.
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Figure 13. Results of all dial gauges measuring points by holographic visual sensor: (a) C test condition;
(b) B test condition.

Regarding bridge performance and safety evaluation, the proposed holographic visual sensor
together with the corresponding structural morphology monitoring method can be deemed as an
efficient, continuous and convenient preliminary holographic displacement monitoring technique.
Spectral analysis can be thus made on dynamic displacement signals that are acquired through
holography morphology monitoring to further achieve modal parameters of the test bridge. Without a
doubt, these parameters are beneficial for more comprehensive evaluation on bridge performance.
As given in Figures 14–17, specific to the L/2 test cross-section in midspan of test bridge, Power Spectral
Density (PSD) functions are obtained in various test conditions based on holographic morphology
displacement response curves, acceleration signal curves and spectral analysis on them.



Sensors 2020, 20, 1187 17 of 24Sensors 2020, 20, 1187 17 of 25 

 

0 5 10 15 20 25 30 35 40 45

-2

-1

0

1

2

3

D
isl

ac
em

en
t (

m
m

)

Time (Sec)  

(a) 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
0.0

2.0x10-7

4.0x10-7

6.0x10-7

8.0x10-7

1.0x10-6

1.2x10-6

f1=2.129

PS
D

 a
m

pl
itu

de
(W

/H
z)

Frequency (Hz)  

(b) 

0 5 10 15 20 25 30 35 40 45
-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0

A
cc

el
er

at
io

n 
(m

/s2 )

Time (Sec)  

(c) 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
0.0

2.0x10-7

4.0x10-7

6.0x10-7

8.0x10-7

1.0x10-6

1.2x10-6

f3=5.029

f2=3.784

f1=2.173

PS
D

 a
m

pl
itu

de
(W

/H
z)

Frequency (Hz)  

(d) 

Figure 14. Comparison between measured frequencies for B1 test condition: (a) displacement 
response measured by holographic visual sensor (HVS); (b) the power spectral density (PSD) of 
displacement response measured by HVS; (c) acceleration signal measured by accelerometer; (d) the 
PSD of acceleration signal measured by accelerometer. 
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Figure 15. Comparison between measured frequencies for B2 test condition: (a) displacement 
response measured by HVS; (b) the PSD of displacement response measured by HVS; (c) acceleration 
signal measured by accelerometer; (d) the PSD of acceleration signal measured by accelerometer. 

Figure 14. Comparison between measured frequencies for B1 test condition: (a) displacement response
measured by holographic visual sensor (HVS); (b) the power spectral density (PSD) of displacement
response measured by HVS; (c) acceleration signal measured by accelerometer; (d) the PSD of
acceleration signal measured by accelerometer.

Sensors 2020, 20, 1187 17 of 25 

 

0 5 10 15 20 25 30 35 40 45

-2

-1

0

1

2

3
D

isl
ac

em
en

t (
m

m
)

Time (Sec)  

(a) 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
0.0

2.0x10-7

4.0x10-7

6.0x10-7

8.0x10-7

1.0x10-6

1.2x10-6

f1=2.129

PS
D

 a
m

pl
itu

de
(W

/H
z)

Frequency (Hz)  

(b) 

0 5 10 15 20 25 30 35 40 45
-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0

A
cc

el
er

at
io

n 
(m

/s2 )

Time (Sec)  

(c) 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
0.0

2.0x10-7

4.0x10-7

6.0x10-7

8.0x10-7

1.0x10-6

1.2x10-6

f3=5.029

f2=3.784

f1=2.173

PS
D

 a
m

pl
itu

de
(W

/H
z)

Frequency (Hz)  

(d) 

Figure 14. Comparison between measured frequencies for B1 test condition: (a) displacement 
response measured by holographic visual sensor (HVS); (b) the power spectral density (PSD) of 
displacement response measured by HVS; (c) acceleration signal measured by accelerometer; (d) the 
PSD of acceleration signal measured by accelerometer. 
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Figure 15. Comparison between measured frequencies for B2 test condition: (a) displacement 
response measured by HVS; (b) the PSD of displacement response measured by HVS; (c) acceleration 
signal measured by accelerometer; (d) the PSD of acceleration signal measured by accelerometer. 

Figure 15. Comparison between measured frequencies for B2 test condition: (a) displacement response
measured by HVS; (b) the PSD of displacement response measured by HVS; (c) acceleration signal
measured by accelerometer; (d) the PSD of acceleration signal measured by accelerometer.
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Figure 16. Comparison between measured frequencies for C1 test condition: (a) displacement 
response measured by HVS; (b) the PSD of displacement response measured by HVS; (c) acceleration 
signal measured by accelerometer; (d) the PSD of acceleration signal measured by accelerometer. 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
-2.00
-1.75
-1.50
-1.25
-1.00
-0.75
-0.50
-0.25
0.00
0.25
0.50

D
isl

ac
em

en
t (

m
m

)

Time (Sec)  

(a) 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
0.0

1.0x10-6

2.0x10-6

3.0x10-6

4.0x10-6

5.0x10-6

6.0x10-6

7.0x10-6

8.0x10-6

f3=4.700

f2=3.735

f1=2.112

PS
D

 a
m

pl
itu

de
(W

/H
z)

Frequency (Hz)  

(b) 

Figure 16. Comparison between measured frequencies for C1 test condition: (a) displacement response
measured by HVS; (b) the PSD of displacement response measured by HVS; (c) acceleration signal
measured by accelerometer; (d) the PSD of acceleration signal measured by accelerometer.
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Figure 16. Comparison between measured frequencies for C1 test condition: (a) displacement 
response measured by HVS; (b) the PSD of displacement response measured by HVS; (c) acceleration 
signal measured by accelerometer; (d) the PSD of acceleration signal measured by accelerometer. 
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Figure 17. Comparison between measured frequencies for C2 test condition: (a) displacement 
response measured by HVS; (b) the PSD of displacement response measured by HVS; (c) acceleration 
signal measured by accelerometer; (d) the PSD of acceleration signal measured by accelerometer. 

In test condition C of the running vehicle excitation specific to the L/2 test cross-section in the 
midspan of the test bridge (see Figures 16 and 17, Table 3), the following can be observed from the 
holographic morphology displacement response curves, acceleration signal curves and spectral 
analysis on them: First, the holographic visual sensor applied here is able to generate frequency of 
structure through testing in easier ways. In addition to a rather high goodness of fit, the data are 
stable and highly reliable, which validates the accuracy and feasibility of the proposed method. 
Second, the load effects of the test bridge in actual service are principally simulated in such a test 
condition; and, the test signal data block includes the forced vibration of the bridge. To acquire the 
natural frequency of the test bridge, residual vibration signals are intercepted by extending the test 
time when the test vehicle moves away. Through analysis, it turns out that its error rate is within 
3% and the RMSE is less than 0.6. Third, under the influence of external excitation signals, the 
power spectral density function peaks in diverse modes are significantly different from each other; 
however, frequencies at all modes are accurately collected based on displacement response and 
acceleration signals of the holographic visual sensor. Moreover, the corresponding analytical results 
are in good coincidence. At last, temporal dependency is indicated by the frequency responses of 
the test signal. In the course of time-frequency analysis, a proper analytical method (e.g., the Fourier 
transform, Welch’s method) should be selected in line with signal stationarity. 

The holographic visual sensor-based bridge morphology monitoring cannot be separated from 
an active-pixel visual sensor and the utilization of visual measurement techniques to acquire 
holographic morphology features. Although the instrumental errors of the active-pixel visual 
sensor may affect the accuracy of original static/dynamic series data to a certain extent, they can be 
almost completely erased by using differential analysis on the edge contour lines and 
morphological feature points of the bridge structure. Incidentally, the differential analysis is also 
applied in acquiring structural displacement information in the context of holographic morphology 
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In test condition B of single-point excitation (see Figures 14 and 15, Table 3), the following facts
have been demonstrated by holographic morphology displacement response curves, acceleration signal



Sensors 2020, 20, 1187 19 of 24

curves and spectral analysis on them specific to the L/2 test cross-section in midspan of the test bridge.
First, the holographic visual sensor applied in this study is able to generate the natural frequency of
the structure through testing in easier ways. Second, regarding the natural frequency of the power
spectral density function between the displacement response and acceleration signal, its error rate is
within 2.5% and the RMSE is less than 0.5 in the first mode. Third, the influence of environmental noise
and illumination, etc., results in a certain loss of displacement response signal during the test; power
spectral density function in second mode greatly differs from that in third mode; however, it is still
likely to acquire natural frequencies of the test bridge in second and third modes (second mode: 3.6 Hz,
third mode: 5.1 Hz) and they basically coincide with situations of the acceleration signal (second mode:
3.78 Hz, third mode: 5.03 Hz). If the influence of external factors such as environmental noise and
illumination can be further eliminated, integrity of displacement response signals can be effectively
enhanced so that more abundant structural performance information is retained.

Table 3. Data comparison of HVS and the sensor in dynamic vibration.

Test Conditions Sensor Type Modal Frequency/Hz

1st 2nd 3rd 4th

B1
Holographic Visual Sensor 2.129 - - -

Accelerometer 2.173 3.784 5.029 -

B2
Holographic Visual Sensor 2.291 - - -

Accelerometer 2.329 3.442 5.029 -

C1
Holographic Visual Sensor 2.173 3.784 4.907

Accelerometer 2.197 3.857 4.883 6.348

C2
Holographic Visual Sensor 2.112 3.735 4.700 -

Accelerometer 2.100 3.650 4.822 6.274

In test condition C of the running vehicle excitation specific to the L/2 test cross-section in the
midspan of the test bridge (see Figures 16 and 17, Table 3), the following can be observed from
the holographic morphology displacement response curves, acceleration signal curves and spectral
analysis on them: First, the holographic visual sensor applied here is able to generate frequency of
structure through testing in easier ways. In addition to a rather high goodness of fit, the data are stable
and highly reliable, which validates the accuracy and feasibility of the proposed method. Second,
the load effects of the test bridge in actual service are principally simulated in such a test condition; and,
the test signal data block includes the forced vibration of the bridge. To acquire the natural frequency
of the test bridge, residual vibration signals are intercepted by extending the test time when the test
vehicle moves away. Through analysis, it turns out that its error rate is within 3% and the RMSE is less
than 0.6. Third, under the influence of external excitation signals, the power spectral density function
peaks in diverse modes are significantly different from each other; however, frequencies at all modes
are accurately collected based on displacement response and acceleration signals of the holographic
visual sensor. Moreover, the corresponding analytical results are in good coincidence. At last, temporal
dependency is indicated by the frequency responses of the test signal. In the course of time-frequency
analysis, a proper analytical method (e.g., the Fourier transform, Welch’s method) should be selected
in line with signal stationarity.

The holographic visual sensor-based bridge morphology monitoring cannot be separated from an
active-pixel visual sensor and the utilization of visual measurement techniques to acquire holographic
morphology features. Although the instrumental errors of the active-pixel visual sensor may affect
the accuracy of original static/dynamic series data to a certain extent, they can be almost completely
erased by using differential analysis on the edge contour lines and morphological feature points
of the bridge structure. Incidentally, the differential analysis is also applied in acquiring structural
displacement information in the context of holographic morphology feature analysis. For the purpose
of attaining major reasons why the edge detection algorithm that is used to collect structural holography
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morphology gives rise to errors incurred in the test, probability edges of the structure are constructed
by processing and analyzing pixel band point groups under circumstances that, instead of acquiring
actual edge contour lines of the test bridge, pixel band point groups are obtained for the structural edge
in most cases. The probability edges that can be used for experimental analysis here, not only reveal
structural holography morphology to a great extent, but also satisfy requirements for measurement
accuracy. In spite of this, differences between probability edges and the actual edge contour lines of the
structure bring about major errors of bridge morphology monitoring test. Additionally, experimental
measurement results are vulnerable to noise interference of the system, drastic changes in ambient light
and insufficiency of illumination intensity as experimental scenarios of this study are comparatively
complicated. Consequently, edge detection operators fail to detect probability edges in the most
effective ways. For this reason, the existing edge detection algorithm—that is, an obscure edge
pixel point group—is replaced with an optimal edge line, and can be modified and optimized in
subsequent research to reduce errors and improve measurement accuracy and algorithm stability [46,47].
Concerned with environmental interference and noise influence, noise reduction anti-disturbance
autoencoders (i.e., denoising AE (DAE) and contractive AE (CAE)) are introduced into this paper with
the goal of lowering relevant errors and improving measurement accuracy and algorithm stability.
For random noise signals, the corresponding elimination effect is poor. Based on the assumptions
of active noise reduction, an environmental noise signal acquisition sensor may be arranged at the
monitoring site in practice on one hand; on the other hand, a noise database can also be constructed.
In this way, random environmental noise removal efficiency is improved [5,48–53].

3.3. Structural Geometry Monitoring Analysis Using the Spatial and Temporal Series Data

Figure 18 presents bridge morphology monitoring test results based on the holographic visual
sensor, measurement results based on conventional contact sensors, and calculation results based
on the full-bridge finite element analysis by Midas. Here, only concrete situations about 1/2 of the
midspan are listed for explanations.
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As can be seen from Figure 18, the curve shapes and variation tendencies of testing results
generated by the proposed method, by the sensors and by theoretical calculations are basically
consistent with each other, respectively. The proposed method here performs well in both identification
and displacement information extraction. Then, noise signals at different levels can be found in
measured curves based on the displacement sensors and the proposed algorithm, due to the gray value
input of ambient noise information during the laboratory test; moreover, noise signals produced by
the displacement sensor are far greater than those of the proposed algorithm. In comparison with
conventional contact displacement sensors, holographic visual sensor-based morphology monitoring
overcomes a problem of local deformation information loss in fitted curves of limited measuring
points as relevant damages cause deformation. In various damage working conditions, obvious
differences in curves can be observed. This can be used as the basis for effective identification of
test bridge damage degrees and positions. Finally, displacement time-history curves and maximum
displacement at 1/2 midspan present different variation tendencies in respective damage/operating
conditions. It manifests that holography geometric morphology monitoring on the bridge structure
has the potential to reveal actual changes in structural behavior truthfully, continuously, sensitively
and rather accurately. However, this study is merely aimed at a multi-damage working condition
where the suspender failure probability is equal to 50%, which plays an insignificant role in structural
behavior variations that are caused by structural damages of bridges in practical services. Therefore,
how to quantify minor differences in curves and amplify damage features by virtue of a microscopic
theory [54–56] for structural micro-variation characteristics should be further investigated by the
research group.

4. Conclusions

An emerging holographic visual sensor and algorithms have been proposed for full-field
non-contact displacement and vibration measurements based on computer-vision technology, with
improved efficiency and reduced cost. Targeted at a test model of a super-span self-anchored suspension
(SAS) bridge, holography geometric morphology monitoring tests are successively performed in
multi-damage/operating conditions. The observations of this study can be summarized as follows:

(1) Laboratory experiments on 24 m-span self-anchored suspension bridge demonstrate that
holographic full-field displacement and vibration signal can be accurately, sensitively and
simultaneously measured in multi-damage/operating conditions using holographic visual sensor,
and the identified full-field displacements and natural frequencies by the holographic visual
sensor match well with those by using dial gauges and accelerometers.

(2) The holographic visual sensor can arrange dense and continuous pixel-level/subpixel-level
virtual measuring points on the surface of the tested object space, and the denser full-field
displacement and smoother mode shapes can be further extracted, which makes it possible to
dynamically update a model of digital twins, structural condition assessment, and intelligent
damage identification methods.

(3) As raised in this study, a holographic visual sensor is utilized to monitor holography geometric
morphology of the bridge structure dependent on series data of structural holography images.
In terms of normal deformations free of damages and abnormal deformations with damages,
holography geometric morphology monitoring shows a strong capability in identifying their
features, and accurately reflecting the real change in structural properties under various
damage/action conditions.

(4) It is much more likely for the test results here to suffer the influence of system noise interference
and dramatic ambient light changes. Moreover, different illumination intensities cause certain
structural response signal differences and losses. Concerned with environmental interference
and noise influence, a microscopic theory and noise reduction anti-disturbance autoencoders (i.e.,
denoising AE (DAE) and contractive AE (CAE)) are recommended in this study, with the goal
of lowering relevant errors and improving holographic visual sensor accuracy and algorithm
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stability. Once actions of noise and illuminance, etc., are further eliminated, not only can the
integrity of response signals be effectively improved, but more abundant structural performance
information can be retained.

In summary, the holographic visual sensor shows significant potentials as a credible, high
frequency, low-cost alternative to conventional displacement and acceleration sensors for SHM,
especially for structures whose displacement responses are causing concerns which are difficult or
expensive to obtain using conventional sensors, e.g., long-span bridges, high-rise buildings, wind
turbine blades, etc.
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