
sensors

Article

Temperature Gradient Method for Alleviating
Bonding-Induced Warpage in a High-Precision
Capacitive MEMS Accelerometer

Dandan Liu 1, Huafeng Liu 1 , Jinquan Liu 1, Fangjing Hu 1 , Ji Fan 1,2, Wenjie Wu 1,*
and Liangcheng Tu 1,2,*

1 MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physic,
Huazhong University of Science and Technology, Wuhan 430074, China; liudandan@hust.edu.cn (D.L.);
huafengliu@hust.edu.cn (H.L.); jinquanliu@hust.edu.cn (J.L.); fangjing_hu@hust.edu.cn (F.H.);
fanji@hust.edu.cn (J.F.)

2 Institute of Geophysics and PGMF, Huazhong University of Science and Technology, Wuhan 430074, China
* Correspondence: wjwu@hust.edu.cn (W.W.); tlc@hust.edu.cn (L.T.);

Tel.: +86-27-8754-3880 (W.W.); +86-27-8755-8394 (L.T.)

Received: 10 January 2020; Accepted: 19 February 2020; Published: 21 February 2020
����������
�������

Abstract: Capacitive MEMS accelerometers with area-variable periodic-electrode displacement
transducers found wide applications in disaster monitoring, resource exploration and inertial
navigation. The bonding-induced warpage, due to the difference in the coefficients of thermal
expansion of the bonded slices, has a negative influence on the precise control of the interelectrode
spacing that is essential to the sensitivity of accelerometers. In this work, we propose the theory,
simulation and experiment of a method that can alleviate both the stress and the warpage by applying
different bonding temperature on the bonded slices. A quasi-zero warpage is achieved experimentally,
proving the feasibility of the method. As a benefit of the flat surface, the spacing of the capacitive
displacement transducer can be precisely controlled, improving the self-noise of the accelerometer
to 6 ng/

√
Hz @0.07 Hz, which is about two times lower than that of the accelerometer using a

uniform-temperature bonding process.
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1. Introduction

Recently, high-precision MEMS accelerometers are emerging for applications in precision gravity
measurements [1], seismic monitoring [2], resource exploration [3] and inertial navigations [4], showing
advantages in terms of both the size and the cost [5]. Specially, MEMS accelerometers using an
area-variable periodic-electrode displacement transducer (APDT) are some of the most widely used
MEMS accelerometers, due to their good linearity, high sensitivity and mature back-end electronics [5–8].

The APDT is formed by two electrode arrays on a moveless glass top cap and a matching electrode
array on the movable silicon proof mass through a high-temperature bonding process [9]. Caused by
the difference in the coefficients of thermal expansion (CTE) of glass and silicon, the bonding-induced
stress and warpage are unavoidable. The uneven surfaces go against the precise control of the
interelectrode spacing of the APDT, which is essential to achieve a high sensitivity for the displacement
transducer, as demonstrated in our previous works [10,11]. In addition, the bonding-induced stress
may damage the device or affect the long-term stability due to slow-releasing of the stress [12–14].

Various approaches have been reported for reducing the bonding-induced stress and warpage.
The anchor was isolated from the spring-mass system by using a stress-isolation guard-ring structure
in Reference [15]. However, it not only made the structure complicated, but also enlarged the size
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of the devices. A circular disk located in the center of the device and eight L-shaped elastic beams
were used to isolate the bonding-induced stress in Reference [16]. However, it affect both the bonding
strength and the structural stability. The bonding-induced warpage was reduced by selecting materials
with similar CTE in References [17–19]. However, the method is not universal due to its limited choice
of materials.

In this paper, we propose the theory, simulation and experimental demonstration of a new bonding
strategy to alleviate the bonding-induced stress and warpage in a high-precision MEMS accelerometer.
By applying different bonding temperatures to the bonded slices to adjust their shrinkage, the bonding
induced warpage is reduced to quasi-zero. Being low-cost and convenient, the proposed bonding
technology shows great prospect in industrial applications.

2. Design

A typical MEMS accelerometer using an APDT consists of a glass top cap and a silicon spring-mass
system. Two columns of arrayed electrodes on the top cap and one column of arrayed electrodes on
the spring-mass system form the APDT via a bonding process at a temperature over 504 K, as shown
in Figure 1. A low-frequency acceleration variation (∆a) is translated to the displacement of the
proof-mass (∆x) by

∆x = −
1

(2π f0)
2 × ∆a, (1)

where f 0 is the resonant frequency of the spring-mass structure. Then the displacement is theoretically
sensed by the ADPT, given by

∆C =
2N × ε× l′

d
× ∆x (2)

where ∆C is the capacitance variation of the APDT, N is the number of electrodes in one array, l′ is the
length of the electrodes and d is the spacing between the opposite electrode arrays [10]. It should be
noted in Equation (2) that reducing the interelectrode spacing is essential for increasing the scale factor
of the displacement transducer (Gx−c). The capacitive changes can be detected using a lock-in amplifier
circuit or highly sensitive low-noise quartz methods [20–22]. As the noise of the circuit (Noiseelectronics)
is dominant in the self-noise of most MEMS accelerometers [11,23], increasing the scale factor of the
capacitive transducer will lower the self-noise of the accelerometer (Noiseaccelerometer), which is given by

Noiseacceleration =
Noiseelectronics

Ga−xGx−c
(3)

where Ga−x is the scale factor of the spring-mass system [11]. According to Equation (3), the noise
of the accelerometer can be effectively decreased by reducing the interelectrode spacing. Since the
warpage caused by the bonding process directly affects the interelectrode spacing, reducing the bonding
warpage can effectively reduce the noise of the accelerometer.

When the accelerometer was cooled down to room temperature after the bonding process,
the shrinkage of the top cap and the spring-mass system is respectively represented by

STop = CTEglass × (T − 23), (4)

and
Sspring = CTEsilicon × (T − 23), (5)

where CTEglass is the CTE of glass, T is the melting point of the solder and CTESilicon is the CTE of
Silicon. Because of the difference in CTE for glass and silicon, the deformation of the top cap is different
from the spring-mass system, which induces stress and surface warpage, as shown in Figure 2a. It is
clearly illustrated that the bonding-induced warpage limits the precise control of the interelectrode
spacing, which is of great importance to the sensitivity of the ADPT [10].



Sensors 2020, 20, 1186 3 of 11

Sensors 2020, 20, 1186 3 of 11 

 

 
Figure 1. Schematic of the MEMS accelerometer using an area-variable periodic-electrode 
displacement transducer (APDT); (a) three-dimensional model; (b) cross-section view. 
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( ) ( )23 23glass siliconCTE T T CTE T× − Δ − = × − . (6)

Figure 1. Schematic of the MEMS accelerometer using an area-variable periodic-electrode displacement
transducer (APDT); (a) three-dimensional model; (b) cross-section view.
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Figure 2. Schematic of bonding-induced warpage; (a) traditional bonding process with uniform high
temperature; (b) the proposed bonding process with different high temperatures applied on the top cap
and the spring-mass system.

In order to alleviate the bonding-induced warpage, we propose a new bonding strategy by
applying different high temperatures to the top cap and spring-mass system. The temperature
difference (∆T) is set based on the CTE difference of glass and silicon to provide the same shrinkage
between the two slices, given by:

CTEglass × (T − ∆T − 23) = CTEsilicon × (T − 23). (6)

According to Equation (6), the bonding-induced warpage and stress can be eliminated theoretically,
as shown in Figure 2b.

3. Experiment and Simulation

Five samples with various temperature differences applied to the top cap and the spring-mass
structure were bonded to validate the proposed method. The process flow started from a four-inch
n-type silicon wafer with a thickness of 500 µm. A 200-nm-thick SiO2 layer was deposited on the surface
(Figure 3). Firstly, the wafer was successively cleaned with acetone and isopropanol. Then, a patterned
under-bump metal (UBM) consistings of a 40-nm-thick titanium (Ti) and a 200-nm-thick gold (Au) was
deposited with electron beam evaporation followed by a lift-off process. Afterwards, a 100-nm-thick
aluminium (Al) seed layer was deposited as conducting layer for electroplating [24]. Afterwards, a
patterned Tin layer with a thickness of 20 µm was electroplated, followed by removing the Photoresist
and seed layer by wet etching. The four-inch glass wafer (Borofloat 33) was fabricated by a similar
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process, except that the electroplated metal was gold with a thickness of 2.5 µm. The processed glass
and silicon wafer were sawed into slices by a precision dicing machine (DS620). Finally, the glass slice
and the silicon slices were bonded together by reflow soldering.
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Figure 3. Process of the tested samples; (a) fabrication of the silicon slice; (b) fabrication of the glass
slice; (c) bonding process with different temperature applied to the silicon slice and the glass slice.

The bonding process was carried out in a FINEPLACER @ sigma which can directly show the
real-time temperature of the silicon slice and glass slice. The temperature applied to the silicon slice
was 504 K, which is the melting point of Tin. The temperature applied to the glass slice was different
for the five samples, as shown in Table 1.

Table 1. Temperature applied to the silicon slice and glass slice.

No. 1 2 3 4 5

Si 504 K 504 K 504 K 504 K 504 K
Glass 475 K 486 K 493 K 506 K 511 K

∆T (TSi–Tglass) −29 K −18 K −11 K +2 K +7 K

In order to verify the proposed bonding strategy, the bonding process was simulated by finite
element analysis (FEA) using COMSOL Multiphysics. The three-dimensional geometry and the
constraints were identical to the experimental model. The simulation consisted of two steps: Firstly,
a thermal analysis was simulated by applying different temperatures on the surface of the glass and
silicon based on the experiment. Secondly, the results of the thermal analysis were used as inputs for
statics analysis, which obtains the bonding warpage. It should be noted that only elastic deformation
was considered in the calculation and simulation for simplification.

4. Results

A fabricated sample was shown in Figure 4. The warpage of the samples was measured using
a white light scanning profiler (Zygo NewViewTM7100). The surface topography of the samples
was highly relevant to the temperature difference of the two bonded slices, as shown in Figure 5.
The topography of the top caps had a hump-up tendency when the temperature applied to the top
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cap increased. The quantitative warpage was shown in Figure 6, which was defined by the height
in the center subtracting that on the corner of the top cap’s surface. In order to verify the testing
results, calculation results based on Equation (A3) of the Appendix A and the FEA results were used
for comparison. The experiment, calculation and simulation results showed the same tendency that the
warpage (positive when convex to the silicon and negative when convex to the glass) decreaseds with
the enlargement of the glass temperature when the silicon temperature remains unchanged. When the
temperature difference was −22 K, the warpage approached zero. The errors between the experimental,
calculation and simulation results were within 23%. The experimental warpage was less than that of
the calculation and simulation when the bonding warpage was large. The reason was probably the
plastic deformation, which was not considered in the calculation and simulation, which would have
released partial bonding stress.
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Figure 5. Topography of the glass slice in the tested samples with various temperature differences
applied to the glass slice and the silicon slice.

In order to verify the bonding strength of the proposed bonding process, all five samples were
tested using a multi-function push-pull tester (XYZTEC @Condor Sigma Lite). Figure 7 shows the
measured slice shear strength of the samples. Based on the MIL-STD-883E standards, the bonding
strength was required to be greater than 5.0 kgf as the bonding area was 0.07 square inches. Hence the
strength of all the samples using the proposed bonding process met the MLD-STD-883E standards.
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Figure 8 shows the bonded chip and the assembled accelerometer with the circuit. The low-warpage
bonding process was applied to the development of a high-precise MEMS accelerometer using an
APDT that has been discussed in our previous publications [11]. The design and fabrication were the
same as Reference [11], except for the bonding process. Beneficial from the flat surface by applying
a proper temperature difference to the glass cap and the spring-mass structure, the interelectrode
spacing was able to be controlled precisely. The accelerometer using the proposed bonding process
had an interelectrode spacing of 8 µm, which was approximately two-thirds of that in accelerometer
bonded with a uniform temperature. In order to calibrate the self-noise, the accelerometer bonded by
the proposed strategy and another accelerometer bonded by a traditional process were tested statically
in our cave laboratory with a quiet environment. A commercial seismometer (CMG-3EPS, GURALP)
was installed adjacent to our accelerometers as a reference, as shown in Figure 9a. The results shows
that the MEMS accelerometer bonded by the proposed strategy obtained an ultra-low self-noise of
6 ng/

√
Hz @ 0.07 Hz, which was two times lower than that of the accelerometer bonded using a uniform

temperature, as shown in Figure 9b. The MEMS accelerometer is one of the most sensitive MEMS
accelerometer in the world, as shown in Table 2. It is worth emphasizing that there is no need for
addition mechanical structures, metal films or process steps for the proposed bonding strategy, which
shows great prospect in industrial applications compared with those methods introduced in Section 1.
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reference. (b) The power spectral density (PSD) of the output of the MEMS accelerometers and the
commercial seismometer. The earth micro-tremor is dominant in the noise floor for the bandwidth
above 0.1 Hz. For the bandwidth below 0.05 Hz, the self-noise of the sensors is dominant.

Table 2. The self-noise comparison between the proposed MEMS accelerometer and typical
high-precision MEMS accelerometers.

Accelerometers University of
Glasgow [1]

Imperial
College [23]

Hewlett
Packard [3] This Work

Applications Gravimeter Seismic Sensor Seismic Sensor Acceleration Sensor
Self-noise (ng/

√
Hz) 10 2 10 6

5. Conclusions

A new bonding strategy for alleviating the bonding-induced warpage was proposed in this
paper, which effectively optimized a nano-g MEMS accelerometer. The effect of the bonding strategy
was validated by calculation, simulation and experiment with errors within 23%. The interelectrode
spacing of the proposed bonding process was 1.5 times better than the accelerometer bonded with a
uniform temperature, and the noise floor was 6 ng/

√
Hz @ 0.07 Hz, which is two times better than other

accelerometers. The strategy has no need for additional process steps and special materials, which
allows us to use low-cost materials for bonding. In addition to accelerometer applications, the bonding
technology also plays a key role in the semiconductor industry for forming multi-layer-structure devices
and providing mechanical supports, as well as for ambient-disturbance isolation and input-output
interfaces for MEMS devices or integrated circuits. The proposed strategy shows great prospect in
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industrial applications such as alleviating the bonding stress and warpage of MEMS-based sensors or
integrated circuits as it is cheap, convenient and compatible with the MEMS process.
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Appendix A

The shape of the intermediate solder layer is different from the shape of the top cap and spring-mass
system, which makes the model complicated (Figure A1a). In order to simplify the model, we used an
effective medium model to replace the intermediate solder layer with another material that covers
the whole surface and the thickness of solders were consistent, which has been widely used in the
calculation of warpage in multilayers [25,26], with an effective Young’s modulus of E2, Poisson’s ratio
of v2 and CTE of α2, as shown in Figure A1b.

The material properties of the intermediate equivalent solder layer are given as

Meq−solder =
2l
L
∗Msolder, (A1)

where Msolder represents the material properties of the intermediate solder layer. Hence, the structure
was transferred to a typical three-layer model.

The Stoney equation is widely used to calculate the thermal warpage for multilayer
structures [25–32]. When a sample’s warpage (w) is much smaller than its dimensions [31], the warpage
can be expressed as

w =
L2

2r
, (A2)

where L is half the length of the sample and r is the radius of curvature, which is given in Reference [31] as:

1
r
=

(A− B)α2(T2 − T0) −Aα1(T1 − T0) + Bα3(T3 − T0)

C + D
, (A3)

in which, 
A = 6E1t1

[
E2t2t1 + E2t2

2 + E3t3(t1 + 2t2 + t3)
]

B = 6E3t3
[
E2t2t3 + E2t2

2 + E1t1(t1 + 2t2 + t3)
]

C =
∑3

i=1 EitiEi+1ti+1
(
4t2

i + 4t2
i+1 + 6titi+1

)
+

∑3
i=1 E2

i t2
i

D = E1t1E3t3
(
4t2

1 + 4t2
3 + 6t1t3 + 12h2(t1 + t2 + t3)

) , (A4)

where Ei (i = 1, 2, and 3) represents the Young’s modulus, ti (i = 1, 2, and 3) represents the thickness, αi
(i = 1, 2, and 3) represents the CTE, Ti (i = 1, 2, and 3) represents the applied temperature and T0 is the
room temperature, where i = 1 refers to the top cap, i = 2 refers to the equivalent solder and i = 3 refers
to the spring-mass system.
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Specially, the Young’s modulus and CTE of silicon is related to the temperature [25,33], which is
respectively given as

E3 = 1.6806× 1011
− 8.2225× 106T − 5.9816× 103T2, (A5)

and,
α3 =

(
3.725×

(
1− e−5.88×10−3(T−124)

)
+ 5.548× 10−4T

)
× 10−6, (A6)

where T is the temperature of silicon.
The value of parameters used for calculation are listed in Table A1. With such model, the warpage

can be calculated.
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