
sensors

Article

Thermal Infrared Imagery Integrated with
Multi-Field Information for Characterization of
Pile-Reinforced Landslide Deformation

Chang Zhou , Chunye Ying, Xinli Hu *, Chu Xu * and Qiang Wang

Faculty of Engineering, China University of Geosciences, Wuhan 430074, China; zhouchang@cug.edu.cn (C.Z.);
cy.ying@cug.edu.cn (C.Y.); wangqiang@cug.edu.cn (Q.W.)
* Correspondence: huxinli@cug.edu.cn (X.H.); xc1994@cug.edu.cn (C.X.); Tel.: +86-139-0715-2610 (X.H. & C.X.)

Received: 18 January 2020; Accepted: 17 February 2020; Published: 20 February 2020
����������
�������

Abstract: Physical model testing can replicate the deformation process of landslide stabilizing piles
and analyze the pile-landslide interaction with multiple field information, thoroughly demonstrating
its deformation and failure mechanism. In this paper, an integrated monitoring system was introduced.
The instrumentation used included soil pressure cells, thermal infrared (TIR) imagery, 3D laser scanner,
and digital photography. In order to precisely perform field information analysis, an index was
proposed to analyze thermal infrared temperature captured by infrared thermography; the qualitative
relationship among stress state and deformation as well as thermal infrared temperature is analyzed.
The results indicate that the integrated monitoring system is expected to be useful for characterizing
the deformation process of a pile-reinforced landslide. Difference value of TIR temperature (TIRm)
is a useful indicator for landslide detection, and its anomalies can be selected as a precursor to
landslide deformation.

Keywords: landslide stabilizing piles; model test; thermal infrared imagery; deformation process;
multi-filed information

1. Introduction

Landslides have been widely reported all over the world, especially in the Three Gorges Reservoir
area in China [1–5]. Over 725 landslides have been stabilized with piles and other structures.
The pile-landslide interaction highlights landslide evolution, which is controlled by internal and
external factors and involves multi-field interaction parameters, such as stress, displacement, and
temperature [6,7]. The deformation characteristics are different at different evolution stages [8–10].
Therefore, it is essential to identify the evolutionary stage to understand the deformation and failure
process of a pile-reinforced landslide.

The physical model test is a practical and effective method [11–13] to reproduce the process of
landslide occurrence, characterize field information, and evaluate stability in an inherently natural
way [14–16]. Physical model tests for pile-reinforced landslide have been developed and discussed in
the literature [17–19]. For example, Li et al. [15] suggested that the percentage of hard bedrock has a
strong influence on the deformation and movement of the stabilizing pile embedded in bedrock with
a hard upper and weak lower layer. However, most studies have focused on the deformation and
stress of landslides and piles, analyzing its deformation and failure mechanism [20–24]; in addition,
the analyses of temperature evolution of landslide and piles were not deep and mature enough.

In fact, objects under load such as rock and soil, with temperatures higher than absolute zero, emit
infrared radiation (IRR) [25–31]. Luong [32] employed infrared thermography (IRT) and studied the
phenomenon of IRR in the process of rock and concrete rupture. Geng et al. [33] found the existence
of IRR abnormalities before rock fracturing in experiments and proposed the introduction of remote
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sensing into rock mechanics to form a new research field, Remote Sensing Rock Mechanics (RSRM).
Over the last 20 years, this technology has made significant progress, especially in rock mechanics and
unstable landslide identification [34–39]; some relatively mature approaches developed from RSRM
have greatly promoted the quantitative analysis of thermal infrared (TIR) temperature [40–44].

Considering the feasibility of TIR temperature analysis in RSRM, IRT was recently used in
landslide model tests, and some useful researches were carried out. Jin et al. [45] believed that IRT
provides a new means for analyzing the deformation and failure mechanism of landslides with piles in
terms of energy; Xia et al. [46] thought that IRR abnormalities could provide a reference for landslide
prediction based on the research of landslide failure process using IRT. However, it is clear that IRR
abnormalities and stress concentration are closely associated with geological materials under load, and
perhaps that is why TIR temperature researches are mainly based on materials with a stable structure,
such as rock and coal. Additionally, due to noise disturbances that inevitably exist in experimental
processes, the enormous impact of environmental radiation has not been fully considered in these
studies [47,48], and effective methods/indexes for TIR temperature analysis in a landslide model test
have yet to be established.

In this paper, a physical model test for pile-landslide and an integrated monitoring system is
constructed. According to the theoretical bases of IRR detection and particularity of soil mass, an index
of TIR temperature analysis is put forward. The deformation characteristics of reinforced landslide are
quantified by TIR temperature, soil pressure, and displacement. This paper provides a new method for
the study of the deformation and failure mechanism of a landslide with piles.

2. Materials and Methods

2.1. Theoretical Bases of TIR Temperature Analysis

Thermal radiation, including visible light emission and IRR, is the emission of electromagnetic
waves from all matter with a temperature greater than absolute zero [49]. Generally, infrared waves
could be easily absorbed and scattered by the atmosphere with much attenuation, while IRT commonly
operates in the infrared atmospheric window wavelengths of 3–5 µm and 8–14 µm, which offers more
accuracy and reliability of temperature determination. In fact, based on thermal radiation theory, IRT is
a well-established technique, and has been extensively used in temperature measurement and defect
detection of various materials.

Kirchhoff law, one of the most popular heat radiation theories, believes that the ability of an object
to absorb radiation is as strong as its ability to emit it. Geotechnical materials have high absorptivity
and emissivity as non-metallic materials. In this paper, the TIR temperature visualized temperature
changes over the model surface. When the driving force was applied, IRT was employed to observe
and capture the IRR variation. In the IRR detection process, thermograms can be obtained, and the
relationship between surface temperature and radiation established by calibration so that the TIR
temperature reflects the radiant energy emitted from the object. Stefan-Boltzmann law demonstrates
this relationship as follows [50]:

M = εσT4 (1)

where M is the radiant exitance, Wm−2 ; ε is the emissivity of the object, 0 < ε < 1; σ is the
Stefan–Boltzmann constant, Jm−2K−4 ; and T is the absolute temperature of the object, K.

The Stefan-Boltzmann law states that the radiation emitted from an object is proportional to its
absolute temperature to the fourth power. Precise IRR intensity for different areas is measured in this
paper. Soil is non-metallic, and its radiation (over 75%) is concentrated in an infrared atmospheric
window wavelength of 8–14 µm. Thus, TIR temperature is an important indicator that can reflect on
the heat state and IRR variation on the surface.

According to the theoretical bases of RSRM and soil mechanics, IRT temperature variation can
be induced by the thermal exchange between soil and environment, and frictional and thermoelastic
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effects caused by loading, respectively [27,37,50]. Here, it was assumed that IRR is divided into
environment radiation (ER) and spontaneous radiation (SR).

2.2. The Effective Index of TIR of Landslide Stabilizing Piles

Ma et al. [51] introduced the average value of temperature changes (∆TIR) to characteristic the
failure of a landslide model. However, in a landslide stabilizing pile model, temperature variability is
large because of the pile and soil; the monitoring results also indicate that the TIR could not descript
the deformation process of a pile-reinforced landslide. Therefore, the maximum and minimum values
of temperature changes (TIRmax, TIRmin) for the region of interest are introduced. The TIRmax, TIRmin,
and TIR are named as 3M index. Thus, denote a pixel matrix

{
T(x, y)

}
at certain timing, where:

Tx,y
∣∣∣
t = TER

x,y

∣∣∣
t
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t

(2)

∆TIRmax for each pixel matrix
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}
at certain timing represents the temperature characteristics

of the vast majority of pixels in each region, and is calculated by
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While stress in the model increases, SR caused by the frictional effects is enhanced, so that TIRmax

at a pixel (x1, y1) occurs and can be obtained by:

TIRmax|t = Max
{
Tx,y

}
= TER

x1,y1
+ TSR

x1, y1

∣∣∣
t

(4)

While incompatible deformation or cracks develop on the model surface, the thermal exchange
between soil and environment is hindered and ER weakens, which results in TIRmin at certain other
pixels (x2, y2) that can be obtained by:

TIRmin|t = Min
{
Tx,y

}
= (T − ∆T)ER

x2,y2

∣∣∣∣
t

(5)

Actually, there is no positive connection between the two, which describes the distinct information
about model evolution. In addition, TER is contained in all of the 3M indexes, and its impact on the TIR
temperature should be eliminated. Suppose

{
TER

x,y

}
is equal in each region, and denotes the maximum

range of
{
T(x, y)

}
as difference value of TIR temperature (TIRm), where:

TIRm|t = TIRmax − TIRmin|t = TER
x1,y1

+ TSR
x1, y1

− (T − ∆T)ER
x2,y2

∣∣∣∣
t
= TSR

x1, y1
+ ∆TER

x2,y2

∣∣∣
t

(6)

In the regions without crack, TIRm degenerates to:

TIRm|t = TSR
x1, y1

∣∣∣
t

(7)

TIRm indicator could manifest IRR abnormalities resulting from SR, and also indicate the degree
of deformation of slope surface. Thus, within a certain time and space, TIRmax and TIRmin can
feature high or low TIR temperature abnormities caused by the stress field and displacement field.
Namely, as satisfied information integration that is almost free from ER, this index has a relatively
definite meaning.

According to the thermo-mechanical coupling theory [52], infrared radiation temperature T
consists of three parts:

T = T1 + T2 + T3 (8)

where T1 is infrared radiation temperature caused by the thermal-elastic effect; T2 is caused by newly
produced cracks of a model; T3 is caused by friction heat.
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2.3. Landslide Stabilizing Piles Model

The landslide stabilizing piles model test was described by Hu et al. (2019) [53]. The model
was constructed on a rigid steel frame, which is 2.7 m long, 1.0 m wide, and 1.5 m high (Figure 1).
The model includes three parts: loading system, monitoring system, and landslide stabilizing piles
model (Figure 1a). The landslide stabilizing piles model consists of a sliding mass, sliding zone, and
six flexible piles. The geometry of the landslide model was designed by taking a typical colluvial
landslide located in the Three Georges as the prototype. The sliding zone dips 9◦ and then changes to
15◦ at an elevation of 51 cm. The average thickness of the sliding mass and sliding zone is 0.35 m and
4cm, respectively. The material of the model was developed by hundreds of proportioning tests [54].
The geometry parameters of the model and the properties of the material are shown in Table 1.
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Figure 1. Landslide stabilizing piles model testing system from (a) front view and (b) side view.

Table 1. Main features of the landslide stabilizing piles model.

Object Parameters of Materials Geometric Parameters

Sliding zone
Cohesion(kPa): 5.5 to 6.0

Friction angle (◦): 17.9 to 18.2
Density (kN/m3): 17.1

Thickness: 4 cm

Sliding mass
Cohesion(kPa): 3.5 to 4.2

Friction angle (◦): 23.6 to 24.1
Density (kN/m3): 22.1

Thickness: 35 ± 1 cm Width: 100 cm
Length of the upstream of piles: 80 cm

Length on the downstream of piles: 139 cm
Length of sliding mass: 226 cm

Pile Elastic modulus (GPa): 0.03

Pile cross section: 5 × 7.5 cm
Cantilever length: 37 ± 1 cm

Embedded Length: 19 ± 1 cm
Horizontal spacing: 15 cm

Amount: 6
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A consistent load force and displacement are applied to the model to simulate the evolution
progress of pile-reinforced landslide. The load is parallel to the sliding zone inclination. Stepwise
loading is designed to ensure that the load was wholly transmitted into the model. It is also useful for
analyzing the deformation of the model under each step. In this paper, during each step, the load was
steadily increased by 500 N over 30 min and then maintained for another 30 min.

2.4. Monitoring System

2.4.1. Thermal Infrared Temperature Monitoring

H-2630 IRT is a device that converts energy into electrical signals (Table 2). It has an accuracy of
±2% of reading, temperature resolution of 0.04 ◦C, and infrared image resolution of 640 × 480 pixels,
and adopts environment temperature compensation. The emissivity value and reflectivity of sliding
mass soil are 0.90–0.98, 0.1–0.2, respectively [55]. The emissivity of the pile is 0.855 [56]. The scene
was captured from a distance of approximately 1 m. In order to reduce the effect of changing cloud
shadowing and wind, the testing was done indoors, and ambient temperature and relative humidity
were recorded. Besides, to compensate for inaccuracy due to the distance of the observed objects,
ambient temperature, and relative humidity, we developed an index named difference value of IRT
temperature (∆TIRm) to accurately describe the change of the thermal infrared temperature in the
model. The parameters of the IRT are shown in Table 2. The IRT was equipped at the upper side of the
model to monitor the temperature of the model surface around piles (Figure 1).

Table 2. Main features of the instrumentation monitoring units.

Instrumentation Specifications Photograph

NEC-H2630

Measuring range (◦C): −40 to 500
Resolution (◦C): 0.04 ◦C or better (at 30 ◦C,∑

16
Accuracy: ±2% of reading

Spectral range (µm): 8 to 13
Focusing range: 30 cm to infinity

Thermal image pixels: 640 (H) × 480 (V)
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Table 2. Cont.

Instrumentation Specifications Photograph

Giga View

Resolution: 1280 × 1024
Frame-rates (fps): 50 to 17,000

Shutter: 1/50–1/100,000
Sensor: 10-bit mono or 24-bit color
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2.4.2. Surface Deformation

The deformation of the model surface was recorded using two video cameras and a 3D laser
scanner. The white spherical pushpin (10 mm diam) served as monitoring points, and they were
installed into the model surface and pile heads at equal intervals of horizontal distance. The particle
image velocimetry (PIV) (Baba and Peth, 2012) was used to measure the location of the monitoring
points. The changes in monitoring locations were analyzed to obtain movement of the model surface.
The RIEGL VZ-400 3D laser scanner used in this paper has a precision of 2 mm and was placed at
approximately 1 m in front of the testing frame (Figure 1). The scanner operated every five minutes.

2.4.3. Earth Pressure

In this paper, 34 earth pressure cells were used. The cells had a vertical spacing of 50 mm in the
same section. Nineteen earth pressure cells were instrumented along the center axis of the landslide
model (Figure 1a). In the reinforced landslide, 15 of these were symmetrically set in the uphill and
downhill sides of pile 4 and pile 3 (Figure 1b). The results of the monitoring help understand the
pile-landslide interaction.

3. Results

3.1. Deformation Characteristics of Landslide Stabilizing Piles

During the tests, the surface deformation of the model was recorded using video cameras.
Photographs were also taken to visualize the deformation characteristics of the model at different times
(Figure 2).

During the initial stage of loading from 0 to 6 h, the landslide surface had no obvious deformation,
except for the soil near the thrust plate, which was progressively mobilized. As the loading increased
from 6 to 12 h, surface deformation occurred throughout the model. Several cracks were generated at
the uphill side of the piles (Figure 2b). During the eleventh loading cycle (t = 710 min), the sliding mass
at the uphill side of the piles was uplifted about 2 cm, and piles had notable deformation (Figure 2c).
As the load further increased, the cracks at the downhill side of the piles gradually expanded in length,
and the sliding mass was uplifted (Figure 2d).
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The TIR monitoring results are shown in Figure 3. It was found that the TIR was obviously affected
by environment radiation (ER). The TIR in the pile heads was more extensive than that in the soil.
Before the test, the TIR in the model surface had no obvious change (Figure 3a). As the load increased,
energy accumulate caused increase of the TIR in the upslope. When t = 6.5 h, ambient temperature (TA)
was 23.3 ◦C, and the average value of the soil was about 21.7 ◦C (Figure 3b). The difference value of
the pile-soil was 1.6 ◦C which is larger than that before testing. It was inferred that the TIR gradually
changed. As the loading increased, the anomaly of the TIR showed zonal distribution around the
piles (Figure 3c) at the location of the cracks (Figure 2c). Moreover, when part of the sliding mass
slipped over the pile heads (Figure 2d), the TIR behind the piles was smaller than that of the other
parts (Figure 3d).
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Figure 3. TIR of the model and landslide (a) 0.0 h, (b) 6.5 h, (c) 10.5 h, (d) 12 h. TA is ambient temperature.

3.2. Characteristics of TIR around Piles

In order to analyze the deformation characteristics of a landslide with piles during the evolution
process, the model surface around pile 1 and pile 2 was selected as the study zone, which was divided
into five parts: piles, B1 and B2 located behind the piles, F1 and F2 situated in front of the piles
(Figure 4). The maximum, minimum, and average values (3M indicators) of the TIR in those five parts
were counted.
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Figure 4. Study zone of the model. The zone is divided into five areas: B1, B2 are located upstream
of the pile, F1 and F2 are located downstream of the pile. Pile 2 is selected to study the temperature
characteristics of piles.

3M indicators in the B2 and ambient temperature are shown in Figure 5. During 0–300 min,
the ambient temperature gradually increased, and then decreased from 400–800 min. The same
change in 3M indicators was observed during the testing. TIR gradually increased during 0–400 min
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and then decreased, which is similar to the ambient temperature change. Therefore, 3M indicators
are correlated with ambient temperature; thus, those indicators could not be used to analyze the
deformation characteristics of the landslide.
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Based on the monitoring results, multi-field data are compared (Figure 6). During 0–360 min, the
load applied in the model was less than 3274 N, and only small displacements (<3 mm) were induced
in the model (Figure 6c). The displacements accelerated in a step-like manner, consistent with the
loading stages on the thrust plate during 360–780 min. The displacement of the pile head was similar
to the MP2, but after 610 min, the difference of the displacement between pile and MP2 gradually
increased. Moreover, MP1, located in the downstream side of the piles also had a noticeable change.
Therefore, it was inferred that the piles were progressively separated from the upslope, and the stress
was transferred into the downslope. Soil pressure also had a similar change. The average value of soil
pressure in each section was calculated (Figure 6a). It also raised an inconspicuous step-like manner
consistent with the loading stages on the thrust plate. The soil pressure cell closest to the thrust plate at
E1 was the first to respond to the thrust loading. The soil pressure cell at the uphill (EB) and downhill
(EF) side of the piles responded at 370 min. The soil pressure around the piles (E2, EB, EF) rapidly
increased after 400 min, when the piles and the model had obvious deformation. Besides, soil pressure
at E2 is larger than that at E1, which could be caused by soil arching. Only small soil pressure (<0.5 kPa)
was induced in the lower part of the landslide model (E3).

The TIRm in the reign of interest began to increase at 130 min. During 285–301 min, the TIRm in
B1 rapidly grew from 0.2 ◦C to 1.4 ◦C, but the displacement had small changes. Thus, we thought the
increase of TIRm was mainly caused by T3 and T1, because ∆T2 was negative, and the soil pressures
increased by 0.4 kPa, which means that ∆T1 was positive, but small. Then, TIRm decreased to
0.1 ◦C within 12 min, and the displacement of MP2 had an apparent increase; thus, we thought
some fractures were generated before the landslide movement, which caused the decrease of TIRm.
During 313–475 min, it had large fluctuation and then kept stable at around 0.1 ◦C during 530
min–560 min. When the difference of the displacement between pile and MP2 rapidly increased, the
TIRm in B1 increased again after 560 min and reached a maximum value at 725 min. The TIRm in B2
had a similar change with B1 during 0–500 min. Then, the average value stayed stable. At 635 min
and 685 min, when the displacement rapidly increased, the TIRm in B2 also rapidly increased, because
the movement of the model induced friction heat (∆T3) and the soil pressures increased (∆T1). TIRm
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in the pile head also had similar changes as that in B1, but smaller. After 440 min, when the piles
had obvious displacement and soil pressure around the piles rapidly increased, the TIRm in the pile
head rapidly increased by 1.2 ◦C within 6 min. It was inferred that the force acting on piles rapidly
increased; thus, the increase of TIRm could have been caused by ∆T1. Therefore, anomalies of TIRm

in the model surface occurred when the soil pressure rapidly increased, caused by the acceleration
of displacement. In conclusion, stress, displacement, and TIR had good correlation, validating the
effectiveness of the TIRm indicator.
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Figure 6. Time-series of load (black line), soil pressures (dashed line) (a), displacement (solid line), and
TIRm (solid line with symbol) (b,c) is the displacement of the model during 0–400 min, showing detailed
deformation characteristics. The vertical black dashed lines identify rapid change in displacement and
soil pressure curves.

4. Discussion

In order to verify the non-randomness of TIRm, the rescaled range method was used to analyze
the dual nature of regularity and randomness, and calculate the long-term correlation of this time
series [57]; thus, its Hurst exponent (H) was obtained by the method proposed by Xu et al. [58].
The value of Hurst exponent (H) varies between 0 and 1. When 0 < H < 0.5, it means a completely
uncorrelated series. When H > 0.5, it means that the regularity of the series is stronger. The calculated
results of the Hurst exponent of B1, B2, and Pile is 0.847, 0.813, 0.750, respectively. This demonstrates
that its long-term positive correlation is quantitatively pretty dramatic, or, relative to its randomness,
TIRm has more regularity.

Landslides caused the friction and collisions of soil particles, which induce energy change.
The greater the deformation rate, the greater the change in stress, and the energy in landslide changes.
However, differing from landslide deformation, the change of energy includes two stages of energy
accumulation and release, and it is a slow process. Therefore, the TIRm required a longer time to
rapidly increase versus the model displacement. In summary, during the first stage, the TIR gradually
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increased caused by the increase of stress (T1) and friction heart (T3), and the TIRm rapidly decreased
in the model caused by T2, the generation of cracks [51]. In the second stage, the TIRm change was
caused by T1, T2 and T3. The sudden large displacement caused the change of friction heart and
generation of cracks. Moreover, the increase of soil pressure caused the T1 to increase. Therefore,
when a sudden large displacement occurred, TIRm had a large change, which could be selected as a
precursor of landslide with piles deformation.

Compared with B1, TIRm in B2 gradually increased after the model had visible deformation, and
accelerated in a step-like manner consistent with the rapid displacement increase. It could be because
the soil arching effect exists around piles, causing stress concentration around the piles. As a result,
soil pressure behind the piles is more significant than that in the upper part of the model. Due to soil
arching, the stress mainly concentrates on the soil behind the piles [59], causing temperature difference
(TIRm) for B2 to be larger than that for B1, where stress is more uniform. Therefore, the TIRm for B2,
closer to the piles, had an obvious response compared to that for B1. Therefore, the TIRm could be
used to analyze the pile-soil interaction.

Landslide evolution is a complex multi-fields dynamic process that involves the interaction of
seepage, stress, deformation, and temperature fields [6]. The results of model tests show that TIR had
good coordination with stress and displacement. A higher resolution of IRT and an advanced index
for the TIR temperature analysis may be included in further study.

5. Conclusions

To understand the deformation process of landslides with piles and quantify the thermal
characteristics, an integrated monitoring system was constructed, including TIR imagery, 3D laser
scanner, high-speed cameras, soil pressure cell, and other instrumentation to obtain multi-field
information for the pile-reinforced landslide deformation process. The value of difference between
maximum and minimum TIR temperature (TIRm) for the region of interest was utilized to appreciate
the temperature characteristics and identify the anomalies associated with the deformation and stress
of the landslide. The results show that TIRm was able to decrease the effect of atmospheric attenuation
and is promising for deformation characterization of the landslide with piles. TIR temperature
anomalies, such as cracks and heaved area of the sliding mass, occurred in the landslide deformation
area. The TIRm in the upstream side of the piles had an obvious response to anomalies in the
displacements and soil pressures, especially near the piles. During the landslide deformation, energy
was gradually accumulated in the piles, and when the piles had obvious deformation, the TIRm rapidly
decreased, caused by energy dissipation. TIRm can be a useful indicator of the temperature field of
landslide stabilizing piles. The rapid increase in TIRm can be selected as a precursor for landslides
with pile deformation.
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