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Abstract: During human–robot collaborations (HRC), robot systems must accurately perceive
the actions and intentions of humans. The present study proposes the classification of standing
postures from standing-pressure images, by which a robot system can predict the intended actions
of human workers in an HRC environment. To this end, it explores deep learning based on
standing-posture recognition and a multi-recognition algorithm fusion method for HRC. To acquire
the pressure-distribution data, ten experimental participants stood on a pressure-sensing floor
embedded with thin-film pressure sensors. The pressure data of nine standing postures were obtained
from each participant. The human standing postures were discriminated by seven classification
algorithms. The results of the best three algorithms were fused using the Dempster–Shafer evidence
theory to improve the accuracy and robustness. In a cross-validation test, the best method achieved
an average accuracy of 99.96%. The convolutional neural network classifier and data-fusion algorithm
can feasibly classify the standing postures of human workers.

Keywords: standing-posture recognition; convolutional neural network; HRC; machine learning;
data fusion

1. Introduction

With the rapid development of robots and artificial intelligence technology, manufacturing has
increasingly relied on human–robot collaborations (HRCs). In future manufacturing industries, robots
and humans will collaborate in processing a product at the same workstation [1,2]. To improve the
flexibility, production efficiency, and quality of this collaboration, robots must perceive the environment
in real time and accordingly adapt to environmental changes [3]. HRC has been developed through
five main levels as described below (see also Figure 1):
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recognized by inertial measurement unit sensors worn on the person [15,16]. Some scholars have 
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manipulator can be flexibly controlled by installing force sensors at the end of the manipulator [17]. 
Intelligent sensors that detect forces beneath the skin have achieved flexible and safe HRCs [18,19]. 
Pressure sensors that recognize various human motion postures—sitting, standing, and lying—have 
been processed into pressure arrays and embedded in cushions, carpets, and mattresses [20–23]. 
Human-based assembly operations have also been monitored through machine learning [24]. 
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SPCS (Section 3) that actively perceives human postures in HRC, and provides more effective data 
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Figure 1. Development of human–robot cooperation.

(a) At the lowest level of collaboration, humans and machines are separated by a protective fence,
and work in their own workspaces.

(b) At the next level of collaboration, no guardrails are installed but inductive safety protection
is installed.

(c) At the middle level, humans and robots share part of the workspace, and are
unconsciously contacted.

(d) At the second-highest level, humans and robots share the same workspace and are consciously
contacted, but the robot is fixed.

(e) At the highest level of collaboration, people and robots share the same workspace, and the
robots can move and perceive human actions in real time [4–6].

HRC will become a key technology in future intelligent manufacturing. In an HRC system, humans
and robots will cooperate on the same tasks in the same workspace [7]. Therefore, the robots must
recognize human actions and understand human intentions, which poses a very challenging problem.

The robot in an HRC system must make different decisions. For example, in an assembly
scenario, the assembly parts should be correctly recognized and accurately installed at the target
location. The reliability of the robot’s decisions is degraded by limitations in the detection systems and
disturbances [8]. As human workers, robots, the environment, and other components of a particular
situation often change rapidly, modeling and planning collaboration tasks for humans and robots in
an unstructured environment is a challenging task. Michalos et al. [7] presented the implementation of
a robotic system for advanced human–robot collaboration assembly and discussed all the technological
approaches that have been implemented for facilitating the interaction and support of human operators.
Human postures by robots can be broadly perceived as contacting postures (requiring sensors for
touching the human body) and non-contacting postures (not requiring sensors that contact the human
body). In the non-contacting category, human postures are mainly perceived by sensors such as
Red–Green–Blue cameras [9], infrared, or laser sensors [10]. In one human–robot interaction and
cooperation system, human postures were acquired by a depth camera [11–13]. Wang et al. proposed
a novel methodology of real-time active collision avoidance in an augmented environment, in which
monitoring and collision detection was performed by virtual three-dimensional models of robots and
real camera images of operators [14]. Human actions can be recognized by inertial measurement unit
sensors worn on the person [15,16]. Some scholars have used contact-force perception in human–robot
interactions and collaborations. For example, a manipulator can be flexibly controlled by installing
force sensors at the end of the manipulator [17]. Intelligent sensors that detect forces beneath the skin
have achieved flexible and safe HRCs [18,19]. Pressure sensors that recognize various human motion
postures—sitting, standing, and lying—have been processed into pressure arrays and embedded
in cushions, carpets, and mattresses [20–23]. Human-based assembly operations have also been
monitored through machine learning [24].
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Currently, human footprints are detected and identified by a pressure-sensor matrix.
Human-posture recognition in HRC requires further development. To this end, the present article
attempts to recognize the standing postures of individual human workers in HRC scenes. The core
contributions of this paper are as follows:

Standing-posture classification system (SPCS): We propose a low-cost surface-pressure-based
SPCS (Section 3) that actively perceives human postures in HRC, and provides more effective data for
human–computer interactions and human security.

Classification method on human standing posture: We divide human standing postures into nine
categories and classify them by an optimized seven-layer convolutional neural network (CNN). To
improve the recognition rate, we fuse the outputs of the CNN classifier, support vector machine (SVM)
classifier, and k-nearest neighbor (KNN) classifier using the Dempster–Shafer (D–S) evidence theory
(CSK–DS method).

2. Related Work

This section briefly overviews previous studies on human-posture recognition based on
pressure-sensor matrices, then introduces CNN applications in pressure-image classification.

Human-posture perception based on pressure matrices has been rarely applied in daily life
scenarios and industrial environments. Human activities in daily life scenes have been detected by
an intelligent textile-based sensing surface [25] that perceives not only the human body, but also
various objects. Walking footsteps are detected by a low-cost intelligent carpet system. Seven gait
features have been extracted from the piezo-resistance change profile formed by humans walking
on the carpet [26]. A large-area pressure-sensitive floor recognizes footprints [26] and behaviors [27]
through target segmentation, target tracking, and target recognition.

Recent experiments have transferred the force of a two-dimensional pressure-sensor mat into
a pressure image. Pressure-image analysis by image-feature extraction and classification is a new trend
in current research [28,29]. The coordinates and pressure values at the maximum and central pressure
points in different areas of the plantar have been extracted as Laplace spectral features from barefoot
static-plantar pressure images, and used in access control and attendance systems [30]. The biological
characteristics of human footsteps have been identified by measuring instruments installed in a floor [9].
Video and floor pressure data have been fused into a multimodal gesture-recognition framework that
improves the recognition of visually ambiguous gestures [20].

In the last few years, deep learning methods have been shown to outperform previous
state-of-the-art machine learning techniques in several fields [31], including recognition of human
actions. CNN is more effective in applications than many traditional classification methods [32].
Recognizing that sitting on a chair in an awkward posture or for long periods is a risk factor for
musculoskeletal disorders, Kim [33] proposed a monitoring system that classifies children’s sitting
postures by machine-learning algorithms. Costilla-Reyes et al. [34] proposed a model that learns spatial
footstep features and recognizes footsteps by a nonlinear SVM classifier. Zhou et al. [35] presented
a person-identification approach based on the morphing of footsteps measured by a fabric-based
pressure-mapping sensor system. Features extracted by transfer learning have also been applied in
person-identification tasks [28]. D–S evidence theory has been widely used in information fusion,
uncertain reasoning, and other fields. It has a solid mathematical foundation and obtains good fusion
results by a simple reasoning form without prior probability [36,37]. Despite these achievements,
human-posture recognition remains insufficient for industrial HRC systems. In particular, the flexibility
and stability of HRC systems require further study, and the safety of humans should be fully
guaranteed [7]. Therefore, the study of human motion and intention perception is far from complete.
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3. Methods

3.1. Selected Standing Postures

In an actual HRC environment, humans usually stand throughout the HRC process (see Figure 2A).
Moreover, different standing postures correspond to different actions in the workflow. Therefore, we
consider nine typical standing postures of the human body in an HRC scenario. The standing-action
states are divided into nine classes, each corresponding to one posture (Figure 2): (a) right-backward
standing (RBS); (b) back-incline standing (BIS); (c) left-backward standing (LBS); (d) right-leaning
standing (RLS); (e) upright standing (URS); (f) left-leaning standing (LLS); (g) right-forward standing
(RFS); (h) forward-leaning standing (FLS); and (i) left-forward standing (LFS).Sensors 2020, 20, x FOR PEER REVIEW 4 of 17 
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distribution over the sensor matrix, which is converted to a greyscale image by the data acquisition 
system of the SPCS (Figure 3c). The data acquisition system is mainly divided into two parts: the 

Figure 2. (A) Some actual scenes of human–robot cooperation. (B) Standing postures in the experiment:
(a) right-backward standing (RBS); (b) back-incline standing (BIS); (c) left-backward standing (LBS);
(d) right-leaning standing (RLS); (e) upright standing (URS); (f) left-leaning standing (LLS); (g)
right-forward standing (RFS); (h) forward-leaning standing (FLS); (i) left-forward standing (LFS).

3.2. Standing Postures Classification System

Our proposed SPCS consists of two parts: a pressure-sensing floor, and a data collecting unit.
(1) Pressure-sensing floor. The pressure-sensing floor (Figure 3a) is composed of three layers:

a pressure buffer layer, a pressure-sensor array, and a supporting plate. The buffer layer is a 3 mm-thick
cushion with an elastic property, abrasion resistance, smooth surface, and the ability to regain its
original state after the pressure is canceled. With these characteristics, the cushion can effectively and
continuously transmit the pressure of the human body while protecting the pressure sensor, thereby
ensuring a uniform surface of the pressure-sensing matrix. The middle layer (i.e., the pressure-sensor
array) perceives the pressure transmitted by the buffer layer close to the upper surface of the supporting
floor. Meanwhile, the surface finish of the bottom support ensures uniform force detection by the film
pressure sensor. The pressure-sensor array has 32 rows and 32 columns distributed over a measuring
area of (500 × 500) mm2, as shown in Figure 3b. The sensitivity range of a single-point sensor was
selected as 0–25 kg, suitable for a 100-kg person standing on the pressure-sensing floor. The bottom
plate is composed of rigid support material with a smooth upper surface and sufficient hardness to
resist deformation under normal pressures of the human body.
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Figure 3. Standing-posture classification system (SPCS) framework: (a) structure of the pressure floor;
(b) sensor matrix; (c) data acquisition system.

(2) Data acquisition system. A human worker standing on the floor generates a foot-pressure
distribution over the sensor matrix, which is converted to a greyscale image by the data acquisition
system of the SPCS (Figure 3c). The data acquisition system is mainly divided into two parts:
the field-data processing unit for signal acquisition and amplification, and the host computer software.
The signal produced by the pressure floor is connected to an STM32 [38] family of a 32-bit microcontroller
unit (MCU, STM32F103ZET6). The MCU has 16 analog-to-digital converters (ADC) channels with
12-bit precision. Through a high-speed analog switch chip, 16 × 64 pressure-sensing data can be
collected by a cyclic scanning algorithm. The data acquisition frequency is 40 Hz.

3.3. Participants

The pressure data were collected from 10 experimental subjects (8 male and 2 female students
attending Beijing University of Technology, Beijing, China). The subjects’ weights ranged from 41 to
96 kg, roughly covering the weight range of human workers in China. The detailed information of
the participants is given in Table 1. We designed a data acquisition process and a set of predefined
standing postures. At least 100 samples of each posture were collected from each subject. Prior to data
acquisition, all subjects were trained to perform different actions under our instructions. During the
data collection, each simple human activity was performed within 5 s. We obtained a group of static
pressure images of the human body. After completing the posture data collection, the activity state
was assessed by the program.

Table 1. Body conditions of the participants in the experimental study.

Participant Sex Height (cm) Weight (kg) Shoe Size (EU)

A male 168 60 43
B male 172 71 39
C male 181 80 42
D male 179 96 44
E male 178 75 41
F male 171 55 40
G male 166 50 39
H male 178 65 43
I female 165 45 37
J female 162 41 36
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3.4. Classification Model of Standing Posture

3.4.1. CNN Structure

The resolution of pressure image is 32 × 32, while that of the handwritten dataset in MNIST is 28 ×
28. Lenet-5 has achieved very high results in the field of handwriting recognition, therefore a network
structure similar to Lenet-5 was used to classify the human standing pressure images. Figure 4
shows the basic structure of CNN that recognizes the pressure images of human standing postures.
The network contains three convolutional layers (C1, C2, and C4), two pooling layers (S3 and S5), three
fully connected layers (F6, F7, and F8), and a classification layer. The first six layers perform the feature
extraction, and the final layer classifies the postures. Each convolutional layer is followed by a batch
normalization (BN) layer, an activation function layer, and a dropout layer. To optimize the network
performance, the batch size of each layer was set to 64. The activation function uses a rectified linear
unit (ReLU): f (x) = max(0, x). Considering the real-time classification of the system, the output uses
a Softmax regression classifier.Sensors 2020, 20, x FOR PEER REVIEW 6 of 17 
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In Equations (1) and (2), θ is model parameter, θ = [θ1,θ2, · · ·θk] ∈ Rn+1, k represents the
dataset with k classes, m represents the number of samples in each class, and θ represents the
model parameters. I

{
y(i) = j

}
denotes that when y(i) belongs to the class j,I

{
y(i) = j

}
= 1, otherwise

I
{
y(i) = j

}
= 0. The weights of the network are adjusted by the backpropagation (BP) algorithm.

The whole network trains approximately 7146 K parameters.
After convolution and pooling, a 64 × 64-pixel image is converted to 30 feature maps, each of

64 × 64 pixels. After conversion to one-dimensional vectors, the feature maps are connected in the
fully connected layer. The number of fully connected layer neurons is an important parameter in
a network structure. From a feature-extraction viewpoint, the output of the fully connected layer is the
high-level feature representation of the input image and is inserted as the input vector to the Softmax
regression layer. After many comparative experiments, the number of neurons in the connective layer
was decided to be 2048.
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3.4.2. Data Augmentation

Data augmentation [39] is a common technique for improving the original dataset. A deep
learning application requires sufficiently many data to avoid the over-fitting problem. If the dataset is
small, the positions in the image pixels can be changed by transforming the original image data without
changing their features. Some suitable transformations are translation, rotation, and scaling. Rotation
and translation simulate different orientations and floor locations of the human-body standing posture,
respectively, and scaling the pixel values simulate different body weights. To prevent the effective
pixels from moving out of the image boundary after a translation, we add eight zero-pixels to each
edge of each image, obtaining 64 × 64-pixel images. The blank area after a translation is filled with
pixels in the edge area. Finally, we obtained a dataset of 100 K pressure images.

3.5. Other Classifiers

To determine the best classification model in the proposed system, we applied the SVM, KNN,
random forest (RF), decision tree (DT), Naive Bayes (NB), and BP neural network classifiers to the
acquired dataset. SVM [40] is among the most popular and highest performing classifiers owing to its
high generalization performance. In this study, a radial basis function (RBF) kernel function was chosen
for the SVM. The RBF is the most widely used kernel function, delivering superior performance on both
large and small datasets with fewer parameters than the polynomial kernel function. During training,
the grid-search method was used to get the value of the super parameter: C = 0.3636, sigma = 0.7112.
The KNN [41] is popularly used in data mining and statistics owing to its simple implementation and
significant classification performance. In the KNN algorithm, the parameter k represents the number of
neighbors. If k is small, it will cause overfitting, otherwise, the target cannot be classified. During the
experiment, we choose 3, 5, 7, and 9 respectively. The test results show that when k = 5, the accuracy
is the highest. NB [42] is a simple but practical classifier with a wide range of applications in face
recognition, cancer diagnosis, and other fields. The DT algorithm is favored for its simplicity over
other machine-learning classification algorithms. In the DT method, we adjusted the minimum parent
size from 5 to 30 in 5-unit intervals. An RF [40] is a collection of decision trees learned on a random
subset of training data. When the RF method was used to adjust parameters, the grid-search method
was also used. We ascertained that the minimum number of trees delivering optimal performance is 30.
Finally, in a data training process by the BP algorithm [41], we choose a foot’s pressure image (5 * 10)
as the feature vector, so the input layer was 50, the output layer was 9, the number of hidden layers
was selected from 25 to 70 and was selected for each interval of 5. We found that when the number of
hidden layers was 55, the recognition rate was the highest.

3.6. D–S Evidence Theory and the Multi-Classifier Fusion Algorithm

3.6.1. D–S Evidence Theory

This subsection introduces some basic concepts of the D–S evidence theory [36]. Let Θ =

{θ1,θ2, · · · ,θn} be the set of all possible answers to the problem of human standing recognition. An
object θi is a conclusion reached by the system. The important functions in D–S theory are the basic
probability-assignment function, the belief function (BEL), and the likelihood function (PLS). These
three functions are respectively defined as follows:

BPA :
∑
A∈Θ

m(A) = 1, m(φ) = 0 (3)

BEL : 2Θ
→ [0, 1], Bel(A) =

∑
B∈A

m(B) (4)

PLS : 2Θ
→ [0, 1], Pl(A) = 1− Bel(A) =

∑
A∩B,φ

m(B) (5)
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In Equation (3), A is a hypothesis in the recognition framework A ⊆ Θ and m(A) is a basic
probability-assignment function. In Equation (4), Bel(A) is the sum of the basic distribution probability
functions of all subsets of A, and Pl(A) is the sum of the basic probability distributions of all subsets that
intersect A. As the BELs are independent on the same recognition framework, they can be combined
into a common agreement on a subset of 2Θ

→ [0, 1] , and any conflicts can be quantified by Dempster’s
combination rule. For all A ⊆ Θ and given n masses m1, m2, · · ·mn, Dempster’s rule is calculated by
Equations (6) and (7):

m1 ⊕m2 ⊕ · · · ⊕mn(A) =
1
K

∑
A1∩A2∩···∩An

m1(A1)·m2(A2)· · · · ·mn(An) (6)

K = 1−
∑

A1∩A2∩···∩An=φ

m1(A1)·m2(A2)· · · · ·mn(An) (7)

here, K represents the conflict measure of the belief functions.

3.6.2. The Multi-Classifier Fusion Algorithm

To improve the recognition results, the proposed classification algorithm fuses multi-type classifiers
based on D–S evidence theory. By virtue of their high classification effect in this paper, SVM, KNN,
and CNN were selected for verification. Figure 5 shows the framework of the algorithm. First,
the three classifiers were trained to obtain the classifier models. The outputs with high recognition
rates from the three classifiers were then fused by information-fusion technology based on the D–S
evidence theory. Finally, the standing posture was selected from among the fused target information
by Dempster’s combination rule.
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4. Results

4.1. Dataset

Figure 6 displays a part of the raw dataset. Nine standing postures were collected from the
10 participants, so the dataset was divided into nine categories. Each posture corresponded to
two images: the original image (1) and the filtered image (2). In the original image, only the grayscale
image formed by the floor force can be seen, along with some clutter interference. After passing
through a Gaussian filter, the interference pixels were removed from the original image and the sole
outlines the visible. We collected two datasets: a threshold-filtered dataset and a Gaussian-filtered
dataset. Eight times in total, we randomly selected 80% of the dataset for training, and retained 20% as
the test set.
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4.2. Experimental Results of CNN

The structure of the neural network used in this experiment is shown in Figure 4. As mentioned
in the previous subsection, the dataset was randomly divided into training and test sets at a ratio
of 0.8:0.2. The learning rate was set to 0.0001. After each training, the training and test sets were
reselected at random until eight training-test dataset pairs had been formed. Our human standing-
posture-recognition model was trained with four optimization algorithms (stochastic gradient descent
(SGD), Momentum, RMSprop, and Adaptive Moment Estimation (Adam)). Panels (a) and (b)
of Figure 7 present the loss functions of the training set and the recognition rates, respectively,
obtained by the optimization algorithms. The evaluations were performed by fivefold cross-validation.
The loss functions and accuracies in the cross-validation test are displayed in panels (c) and (d)
of Figure 7, respectively.

As evidenced in Figure 6a,b, the Adam algorithm was more effective than the other optimization
methods. Referring to the literature [43], the recognition rate of Adam tends to stabilize after
approximately 10 epochs. The recognition rate on the test set was 96.16%.

To optimize the classification results, we adopted a new optimization method that combines
Adam optimization with SGD optimization. First, the Adam optimization method adaptively adjusts
the learning rate until the network converges quickly. Next, the trained model with the minimal
learning rate is fine-tuned by SGD. The SGD method re-optimizes convolution layer C4 and the fully
connected layers (F6, F7, and F8) in Figure 4, but maintains the parameters from the input layer to pool
layer S3. The initial recognition rate was set to 0.0001. The recognition rate of the final model on the
test set was 96.412%.

The effects of data augmentation, BN, and step-by-step training on the network recognition rate
and training time were experimentally evaluated without data augmentation, with an optimization
method, and without BN, respectively. The experimental results are shown in Table 2.
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Table 2. Recognition rates and training times of different methods.

Recognition Method Recognition Rate (%) Training Time (s)

Without data augmentation 92.548 235
Without BN 94.448 6849
Adam + BN 96.126 1233
SGD + BN 96.605 1154

Adam + SGD + BN 96.412 1161

4.3. Comparison with Other Classifiers

The performance of the proposed method was evaluated in comparison studies of several common
classifiers using six common classification methods: SVM, KNN, RF, DT, NB, and BP. All classifiers
were trained on the nine standing postures in the training dataset, and their accuracies were determined
on the same test data. Table 3 lists the classification rate of each classifier on the test data with threshold
filtering. The average classification accuracy ranged from 83.28% (in the BP network) to 99.96% (in
CNN). The classification rate of CNN ranged from 96.04% to 96.86. The accuracy of SVM using the RBF
kernel ranged from 92.55% to 97.72%. The DT and NB classifiers were closest in accuracy to the SVM
and BP classifiers, respectively. Meanwhile, the accuracies of the KNN and RF classifiers were only
slightly different. Using CNN, SVM, and KNN, we finally constructed the basic probability-assignment
function for the initial recognition results of the target and fused these results with Dempster’s
combination rule at the decision level. The fusion-recognition method proved effective and robust,
achieving a recognition rate of 99.96%.
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Table 3. Classification rates of test data with the threshold filter.

Classifier CNN SVM KNN RF DT NB BP CSK–DS

1 0.9610 0.9524 0.9212 0.9285 0.9089 0.8458 0.856 1.0000
2 0.9612 0.9576 0.9054 0.9293 0.8908 0.8165 0.825 0.9988
3 0.9604 0.9255 0.9155 0.9192 0.8968 0.8228 0.8266 1.0000
4 0.9636 0.9351 0.9069 0.9086 0.8854 0.8462 0.824 1.0000
5 0.9622 0.9298 0.9124 0.9198 0.8862 0.8431 0.8166 1.0000
6 0.9686 0.9466 0.9026 0.9254 0.8788 0.8196 0.834 1.0000
7 0.9642 0.9522 0.9266 0.9171 0.9092 0.8347 0.8514 0.9999
8 0.9618 0.9772 0.9198 0.9254 0.8826 0.8412 0.8289 0.9982

Average 0.9628 0.9445 0.9138 0.9216 0.8923 0.8337 0.8328 0.9996

Table 4 shows the classification rate of each classifier on the test data with Gaussian filtering.
The recognition rates were lower than in Table 3, with average classification accuracies ranging from
75.08% (in NB) to 90.47% (in CNN). Furthermore, Tables 3 and 4 show that the classification rate was
highest in the CNN classifier and lowest in the NB classifier.

Table 4. Classification rates of test data with the Gaussian filter.

Classifier CNN SVM KNN RF DT NB BP CSK–DS

1 0.9044 0.8657 0.8246 0.8274 0.7903 0.7397 0.7443 0.9975
2 0.9032 0.8546 0.8341 0.8183 0.7842 0.7596 0.7564 0.9975
3 0.9065 0.8498 0.8167 0.8195 0.7605 0.7483 0.7345 0.9978
4 0.9047 0.8812 0.8054 0.7941 0.7862 0.7455 0.7697 0.9979
5 0.9021 0.8368 0.8132 0.8129 0.7917 0.7631 0.7487 0.9978
6 0.9066 0.8439 0.8055 0.8217 0.7791 0.7368 0.7661 0.9981
7 0.9005 0.8567 0.8371 0.8153 0.7849 0.7459 0.7546 0.9983
8 0.9091 0.8633 0.8174 0.8044 0.7924 0.7682 0.7468 0.9983

Average 0.9047 0.8565 0.8195 0.8142 0.7836 0.7508 0.7526 0.9979

Figure 8 shows the confusion matrix of each classification rate in the case of participant F, which
was well-classified by all classifiers. Whereas most classes categorized by the CNN were labeled as
“true”, the classification rates were obviously lower for BIS and FLS than for the other standing postures.
BIS was frequently classified as FLS and vice versa. The same situation appeared in multiple classifiers.
Furthermore, RBS was occasionally misclassified as RLS or RFS, and LBS was occasionally misclassified
as LLS or LFS. The classification rate of URS was the highest in all classifiers. The theory of evidence
fusion improved the recognition rates, especially those of BIS and FLS. The average recognition rate
over all attitudes exceeded 99.8%.
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5. Discussion

The objective of this paper was to classify the standing postures in an HRC system using the CNN
algorithm and a data fusion method. Comparing the SPCS results with actual actions confirmed the
significant benefits of the SPCS application. In particular, the SPCS recognized the standing positions
of human workers in standing-only situations and provided the precise coordinates of the human body
relative to the operating platform. Moreover, the standing-posture recognition of SPCS was valid at
40 Hz. The SPCS avoids the instability caused by occlusion of the camera sensors in camera-based
pose recognition. It also avoids privacy violations of images, which sometimes draw complaints.
The following discussion covers the two components of the proposed system.

5.1. SPCS

Our proposed system classifies standing postures through a thin-film pressure-sensor matrix. In
contrast, the existing SPCS studies are based on textile or other force-sensor matrices. Our experiments
confirmed that the SPCS can detect very small pressure differences, for example, gentle changes of body
postures. The pressure detected by a single sensor in the floor depends not only on the overall weight
and contact area, but also on the shape, softness, and roughness of the contact surface. The pressure
matrix covers a large range of measurements expected in typical HRC systems, and is sufficiently
sensitive to detect the active states of most human standing postures.

The signal generated by the pressure floor is expressed by the pressure matrix, which gives the
surface-pressure distribution at any given time. Analogously to a charge-coupled device camera, we
obtain a data stream of pressure images. The data form of the pressure-perception matrix is similar to
that of images, but the signal processing of pressure images differs from that of “normal” images as
described below.

(1) The pressure-matrix data obtained from the floor reflect the changes in resistance values of the
thin-film sensors. Under relative pressure, a single-point sensor in the pressure floor registers a change
of resistance, which is related to a pixel in the pressure image. Due to the structure of the pressure-film
sensor, the impedance between adjacent sensors can reach dozens of MΩ. Therefore, when a sensor is
pressed, the nearby sensors are unaffected, so any change in a single-pixel value will not change the
adjacent pixel values. This characteristic has been improved by referring to the literature [25].

(2) The image information produced by the pressure floor maps the data of the pressure-sensor
matrix to the gray-image information, which differs from the usual computer-vision application. During
data acquisition, the key data information usually changes at a fast rate (here, the refresh rate was 40
Hz) to capture the real-time movements of a human body when standing. Because the acquisition
controller uses a 12-bit ADC, the pressure-image data rapidly responds to slight pressure changes.

5.2. Standing-Posture Classification Method

Using a CNN classifier, our proposed method recognizes standing postures from the pressure
distributions captured by the pressure-sensing floor. As shown in Table 5, most studies on posture
classification used many more sensors than our proposed system. For example, Cheng et al. embedded
multiple sensors in a textile-sensor mat to classify various sitting postures [25], but their classification
accuracy was not significantly higher than ours. The method of Costilla-Reyes et al. uses a CNN
for learning spatial footstep features and a nonlinear SVM model for footstep recognition [34].
Zhou et al. presented a person-identification approach based on the morphing of footsteps measured
by a fabric-based pressure-mapping sensor system [35]. The proposed method classified nine typical
postures of subjects standing on the perception floor.
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Table 5. Comparison between the reported studies and proposed methods.

Author The Sensor Type
and Number

Sensor
Position

Number
of

Subjects

Classification
Method

Number
of

Postures

Refresh
Rate Accuracy

Cheng et al.
[25]

textile
pressure-sensing

matrix 80 × 80
On floor 11 KNN 7 40 Hz 78.7%

Costilla-Reyes
et al. [44]

piezoelectric
sensors 88 × 88 On floor 127 CNN + SVM 3 1.6 kHz 90.60%

Zhou et al.
[35]

fabric sensor mat �
120 × 54 On floor 13

RNN
(Recurrent

Neural
Network)

person
identification 25 Hz 76.9%

Zhang et al.
[45]

Force Sensing
Resistors: 504 × 384 On floor 2 Mean-Shift

Clustering 7 44 Hz 95.59%

Proposed
method

Pressure Thin Film
Sensor � 32 × 32 On floor 10 Improved

CNN 9 40 Hz 96.41%

D–S fusion CNN–SVM–KNN 10 D-S theory 9 40 Hz 99.96%

The standing postures on the sensing floor were distinguished by seven classifiers (CNN, SVM,
KNN, RF, DT, NB, and BP neural network). Among these classifiers, CNN most effectively classified
standing postures from the patterns of a sensor matrix exclusively positioned on the floor plate, with
an average classification rate of 96.41%. Furthermore, the CNN results were statistically different from
the average results of the other classifiers. On the Gaussian-filtered dataset (Table 4), the average
accuracies of the classification results were lower than when the dataset was filtered only by the threshold.
Unlike image processing of the MNIST dataset (a database of handwritten digits), the classification of
human-posture pressure images must obtain not only the image shape (as in handwriting recognition),
but also the specific pressure distribution. After Gaussian filtering, the recognition rate was degraded
by loss of important information which was retained in the threshold-filtered dataset. As revealed
in the confusion matrices, certain standing postures (such as URS) were accurately detected whereas
others (such as BIS and FLS) were sometimes misclassified. The images of BIS and FLS were similar,
especially after Gaussian filtering (c.f. panels (b) and (h) in Figure 6). To exploit the unique advantages
of the above classifiers, we fused different methods based on evidence theory. The experimental results
showed that the D–S fusion algorithm further improved the classification accuracy. After fusion,
the recognition rate of several postures reached 100%, and even postures with low recognition rate
(i.e., with high feature similarity) were recognized with 99.8% accuracy. According to these results,
the data fusion method fully utilizes the advantages of each classifier and further improves the certainty
and robustness of the posture classification.

Although the above methods have achieved some results, however, the above methods still have
their limitations. These include that all the data and tests are based on the static pressure data of the
human body standing on the pressure floor. During the CNN experiment, we randomly assigned three
data sets (training/test/validation sets) after data augmentation. In theory, the deformed image may
appear in the test set and the final test result may be higher. The challenge of our method is that the
human body is in a state of continuous activity in the actual interactive scene. Some exceptions, such
as single foot support and the squat position have not been considered.

6. Conclusions

This paper applied deep learning to a human–robot collaboration (HRC) system.
The standing-posture classification system (SPCS) recognizes typical poses in HRC by thin-film
pressure sensing, a novel sensing modality. We developed the general hardware architecture of SPCS
and a CNN classification method. We also demonstrated the feasibility of SPCS in seven representative
classification methods and a fusion method. In an experimental case study, the SPCS achieved
standing-posture recognition accuracy of >96% in the CNN classification, and 99.96% in the fusion
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method. Based on the recognition probability of the three classifiers (CNN, SVM, KNN), the CSK–DS
algorithm achieved a higher recognition rate without reducing the output frequency (40 Hz). At the
same time, the robustness of the SPCS was further improved. The human standing postures were
detected while the subjects wore their shoes, which better reflects the real situation than posture
prediction without shoes (as done in previous studies). Moreover, predicting human-body postures
from the pressure distributions on the pressure floor does not invade the privacy of workers. This work
will provide the basis of a high-performance HRC system. In this study, we confined our technique to
static images of human standing. Future studies will dynamically test our system on humans working
with a robot system in real-world settings.
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