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Abstract: High-performance flexible strain sensors are playing an increasingly important role in
wearable electronics, such as human motion detection and health monitoring, with broad application
prospects. This study developed a flexible resistance strain sensor with a porous structure composed
of carbon black and multi-walled carbon nanotubes. A simple and low-cost spraying method for
the surface of a porous polydimethylsiloxane substrate was used to form a layer of synergized
conductive networks built by carbon black and multi-walled carbon nanotubes. By combining the
advantages of the synergetic effects of mixed carbon black and carbon nanotubes and their porous
polydimethylsiloxane structure, the performance of the sensor was improved. The results show
that the sensor has a high sensitivity (GF) (up to 61.82), a wide strain range (0%–130%), a good
linearity, and a high stability. Based on the excellent performance of the sensor, the flexible strain
designed sensor was installed successfully on different joints of the human body, allowing for the
monitoring of human movement and human respiratory changes. These results indicate that the
sensor has promising potential for applications in human motion monitoring and physiological
activity monitoring.

Keywords: flexible strain sensor; carbon black; multi-walled carbon nanotubes; human
motion detection

1. Introduction

In recent years, various flexible strain sensors which convert mechanically-dependent variables
(such as stretching [1], bending [2], and torsion [3]) into electrical signals have been developed.
Applications of such sensors include their use as wearable, soft sensor joints on the surface of the
skin, which can measure the biological and physiological activities of the user. These advantages
and developments have attracted growing attention and applications in artificial intelligence [4,5],
human motion detection [6–8], human facial expression recognition [9,10], intelligent robots [11,12],
and health monitoring [13,14], among others [15]. However, in view of the widespread application of
these sensors, several important requirements and considerations need to be met. In order to better
monitor the complex signal, the strain sensor should have an adequate flexibility, high sensitivity,
large measuring range, fast response ability, excellent durability, and small volume. As well as being
comfortable and convenient to wear, easy integration with an external circuit and a low production cost
are also key factors that need to be considered. At present, to satisfy the aforementioned characteristics,
researchers have designed strain sensors with different sensing mechanisms, among which the
resistance sensor has gradually become the mainstream design method of strain sensors due to its
simplicity and low cost. According to the response principle of resistance sensors, conductive carbon
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fillers and mental nanowires (such as carbon black [16,17], carbon nanotubes [18,19], graphene [20,21],
and Ag nanowires [22,23]) can be combined with flexible substrates (such as polydimethylsiloxane
(PDMS) [24,25], polyurethane (PU) [26,27], silicone rubber (SR) [28,29], elastic fabrics [30,31], and elastic
bands [32]) to make a flexible piezoresistive sensor with a high sensitivity and a large stretch range by
a certain preparation method. Therefore, these studies reveal that composites made of a conductive
material and polymer can meet the performance requirement of strain sensors. In addition, the
reasonable fabrication costs and the excellent performances obtained from sensors based on conductive
carbon filling materials have made carbon nanotubes and carbon black the best conductive materials
for many scholars [33,34].

Carbon black (CB) is a kind of zero-vinami material with a low aspect ratio and large surface
area. The conductive channel formed by the contact between carbon black particles can exhibit
great changes under low strain levels. However, under higher strain, the gap between carbon black
particles increases, which prevents the formation of an effective conductive channel and thus leads
to a reduced sensitivity at high levels of strain [35]. As a one-dimensional cylindrical nanostructure,
carbon nanotubes (MWNTS) have significant electrical and mechanical properties, and the contact
between them can form a close conductive network [36,37]. Due to the light connection between carbon
nanotubes, the conductive network formed by carbon nanotubes will not change significantly under
low strain, and its resistance only marginally changes. The resistance does not change appreciably
until a large strain is applied that destroys the conductive network. Therefore, by combining the
characteristics of carbon black and carbon nanotubes, a collaborative conductive network can be
established by mixing [34] or layering [38] the two conductive carbon fillers, which not only reduces
the production cost, but also significantly improves the electrical characteristics of nano-composite
materials. Zheng et al. prepared a strain sensor composed of CB-MWNTs-PDMS mixed in solution,
which had a stretching range of up to 300%. Although the sensor could detect human joint movement
reasonably well, the monitoring of micro-strain proved to be difficult. Additionally, the large volume of
the sensor caused notable discomfort to the user [33]. A layer-by-layer sensor assembly was proposed
by Zhang et al., which involved the addition of carbon black and carbon nanotubes to a yard. The
sensor was characterized by a simple operation, good linearity, and sensitivity (GF = 45.4), but the
conductive material was blocked by Polyvinyl alcohol (PVA) and the synergistic effects of carbon black
and carbon nanotubes were not well-exhibited [38].

In this study, in order to improve the sensitivity, reduce the size of the sensor, and increase the
wearability, we developed a strain sensor with a high sensitivity, good linear response, large stretch
range, and good reliability. Due to its water-soluble properties, granulated sugar was mixed with
PDMS to form a stretching matrix with a porous structure after immersion. The experimental data
show that the porous structure can significantly improve the stretching range of the sensor to up to
1.3 times its own length. Combined with the unique properties of conductive carbon fillers, such
as carbon black and multi-walled carbon nanotubes (MWNTs), a conductive network layer is can
be formed on the porous substrate surface through a simple and low-cost spraying method, which
improves the sensitivity of the sensor. The flexible strain sensor prepared by this method can monitor
the movement of facial muscles and joints, including fingers, wrists, elbows, and knees, as well as
other deformations of different magnitudes. In addition, the monitoring of human physiological
activities, such as breathing and other minor deformations, can be achieved. These results show
that the sensor is a simple, cost-effective solution suitable for large-scale production, with a broad
application prospect for wearable monitoring devices. A comparison of the sensor developed in this
paper and the characteristics of those proposed in [33] and [38] is shown in Table 1. The variations
show evident differences in sensor performance arising from varying methods of preparation.

The specific fabrication method and the process of the flexible strain sensor are discussed in
Section 2. Furthermore, Section 3 presents the various sensing characteristics of the flexible strain
sensor and analyzes the test results. Finally, a summary and conclusion for the present study are
presented in Section 4.
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Table 1. Comparisons of the performances of flexible strain sensing devices.

Reference Creation
Method

Conductive
Material Gauge Factor Linear Range Characteristics

[33] Solution
mixture

CB
MWNTS

0%–100%-0.91
100%–255%-3.25
255%–300%-13.1

0%–300% Insensitivity to small strain,
inadequate comfort

[38] Layer-by-layer
assembly

CB
MWNTS Maximum to 45.4 15%–150% Conduction synergy

inefficiency

This work Spraying CB
MWNTS

0%–40%-16.12
40%–130%-61.82 0%–130% Sensitivity to small strain,

high sensitivity

2. Design and Fabrication

2.1. Experimental Materials

In this experiment, high-purity multi-wall carbon nanotubes (MWNTs) were provided by Nanjing
XANANO Materials Tech Co., Ltd., Nanjing, Jiangsu Province, China. The purity of the MWNTs was
95%, with a diameter of 10–20nm, a length of 10–30µm, and a carboxyl content of 2.00 wt%. Carbon
black (CB) of the model BP2000 was purchased from Cabot Corporation, Boston, Massachusetts, USA.
Alcohol was used as the solvent of conductive carbon fillers, which can accelerate the evaporation of
the solvent. The mixture of CB/MWNTs was added to the alcohol for three hours of ultrasonic mixing,
and a CB/MWNT dispersion with a mass fraction of 2.00 wt% (1.00 wt% each for CB and MWNTs) was
obtained [33]. PDMS was used as the matrix material (Sylgard 184; Dow Corning Corp., Gales Ferry,
Connecticut, USA), and the prefabricated mixture was prepared using a 1:15 mass ratio of the curing
agent to the substrate, which was stirred for 10 min and set aside. Granulated sugar was ground in the
grinder for 30 min for later addition to the matrix.

2.2. Fabrication Process of the Porous Flexible Strain Sensor

The fabrication process of the porous flexible strain sensor is shown in Figure 1. First, as shown
in Figure 1a, the substrate of the porous flexible strain sensor was prepared by the blending method.
Mixtures with mass fraction ratios of m (sugar)/m (PDMS) = n (where n = 0%, 10%, 20%, 30%, 40% or
50%) were stirred magnetically for 2 h to obtain evenly dispersed sugar/PDMS mixtures. Then, the
excess bubbles were removed by vacuum treatment for 20 min, and the various mixtures with different
mass fraction ratios were poured into cylindrical molds with an inner diameter of 2.25 mm and cured
in an oven at 80 ◦C for 3h. The substrate of the cured sugar/PDMS mixture was then taken out and
placed in distilled water for 48 h of ultrasound treatment to dissolve the granulated sugar within
the cured sugar/PDMS mixture completely, and to obtain the porous PDMS substrate, as indicated
in Figure 1b. Mechanical tests were conducted on the porous substrate with different mass fraction
ratios and the substrate with the best tensile properties was selected (see Section 3.1 for details). The
selected substrate was then put into an ethanol solution for 10 min of ultrasonic cleaning to remove
any stains and dust on the surface in Figure 1c. After drying, the substrate was rinsed in an oxygen
plasma cleaner for 90 s, as shown in Figure 1d. The purpose of this was to improve the surface activity
of PDMS by making it hydrophilic and to increase the absorption of conductive nano-materials. Finally,
the conductive composite mixture was sprayed evenly on the porous substrate using a spray bottle,
and the porous flexible strain sensor was obtained after drying in the oven, as presented in Figure 1e.

2.3. Characterization and Electrical Measurements

The porous flexible strain sensor was characterized by scanning electron microscopy (SEM),
and the results are shown in Figure 2. The micrograph of Figure 2a shows evident irregular pores inside
the PDMS substrate, indicating that the porous effect was achieved and that a conductive network
layer was wrapped around the PDMS substrate. By further magnification of the conductive material
coating on the sensor surface, it was revealed that the close contacts of CB and MWNTS crisscross
together to form a cooperative conductive network, as exhibited in Figure 2b. The conductive channel
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was mainly formed by CB-CB, CB-MWNT, and MWNT-MWNT connections (indicated by the yellow
circle in Figure 2b), which suggests that the prepared material achieved the desired effect.
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Figure 2. Scanning electron microscopy (SEM) diagram of the flexible strain sensor: (a) SEM diagram
of the sensor, the porous structure inside the matrix, and the conductive layer on the surface of the
matrix and (b) SEM image of the conductive network on the sensor surface and the three conductive
connection channels (carbon black (CB)-CB, CB-carbon nanotubes (MWNTS), and MWNTS-MWNTS).

The experimental setup of the sensor testing process is detailed in Figure 3a,b. By setting the
tension gauge to apply strain in different directions, forces were applied to the sensor in both stretching
and compressing directions to test the performance parameters of the sensor. The tension gauge was
the ZQ-990A model from China Smart Instrument Co., Ltd., with a measuring range of 0~50 N and a
force resolution ratio of 0.01 N (Figure 3). The resistance parameter testing instrument was a desktop
LCR meter (TH2826) from Changzhou Tonghui Electronics Co., Ltd. As shown in Figure 3a, during the
testing of tensile properties, both ends of the strain sensor were fixed firmly to the fixture. During the
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testing of bending characteristics, the strain sensor was fixed on the PET substrate, which is shown in
Figure 3b. A temperature measuring instrument (303-0a, Shanghai kuntian laboratory instrument Co.,
Ltd.) was used to record the temperature of the sensor.
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3. Results and Discussion

3.1. Characteristics of the Flexible Strain Sensor

The mechanical properties of the six groups of flexible strain sensor samples with mass fraction
ratios of m(Sugar)/m(PDMS) = n (n = 0%, 10%, 20%, 30%, 40% or 50%) were evaluated by tensile and
compression tests. Figure 4 shows the stress-strain curve and mechanical properties of the six groups
of samples. The results of Figure 4a indicate that the porous structure created by sugar dissolution can
change the elastic modulus of the material and increase the tensile length of the matrix, thus improving
the tensile performance of the sensor. When the mass fraction ratio is 30 wt%, the sensor exhibits the
highest variation in tensile strain of up to approximately 130%. Detailed mechanical properties are
shown in Figure 4b, where it is evident that at a mass fraction ratio of 30 wt%, the corresponding
PDMS substrate has the highest tensile strength and elongation at the breaking point. Therefore, in the
subsequent experiments, the PDMS substrate with a mass fraction ratio of 30 wt% was selected as the
experimental sample.

The sensitivity (GF) formula of the strain sensor is as follows:

GF = (∆R/R0)/ε (1)

where ∆R is the resistance variation under strain (∆R = R − R0), R0 is the initial resistance without
strain, and ε is the relative variation in the length of the sensor under strain.
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Figure 4. The stress-strain curve and mechanical properties of the sensors with different mass fraction
ratios: (a) the stress-strain curve of the sensor; (b) the mechanical performance diagram of the sensor.

The changes in sensor resistance during the strain process are shown in Figure 5. When the sensor
is not stretched, no cracks appear on the substrate surface, and there is a close connection between
CB-CB, CB-MWNTS, and MWNTS-MWNTS, which forms a large number of conductive pathways
(the red curves show conductive pathways in Figure 5). Subsequently, when the sensor is subjected
to a small tension force, the substrate exhibits inconspicuous surface cracks, which can be described
as larger gaps between carbon black particles in the microscopic structure. Although the separation
between CB particles (the yellow circles in Figure 5) reduces the conductive pathways, the connections
between CB-MWNTS and MWNTS-MWNTS are affected minimally, and the variation in resistance is
thus small. Furthermore, at larger tension forces, obvious cracks appear on the surface of the substrate
and the gaps have been widened, resulting in a large number of fractures within the conductive
pathways between CB and MWNTS, and between MWNTS (the blue circles in Figure 5). As such,
the change in resistance of the sensor increases significantly.
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Figure 5. Schematic diagram of the conductive network path of the flexible strain sensor and evolution
of the conductive network path under stretching.

The relationship between the variation in resistance ∆R/R0 and tensile elongation (0%–130%) of
the sample is shown in Figure 6a. The variation in resistance ∆R/R0 of the strain sensor demonstrates
evident monotonous increases as the tensile length is varied. According to the trends of the curve, the
GF of the sensor can be divided into two stages: at tensile strains ranging from 0% to 40%, the GF is
16.12, while higher levels of tensile strain between 40% and 130% are characterized by a GF of 61.82.
These values show that the strain sensor can be adapted to the different tension ranges. In order to
verify the dynamic characteristics of the strain sensor, the sensor was stretched by 2%, 25%, 50% and
75% of its own length, and 10 stretch cycles were performed. The results shown in Figure 6b reveal that
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the ∆R/R0 changes with the periodic changes in tension force and the sensor has a good regularity and
stability. The sensor was held under tensile strain for 70 s in order to verify the stability of the sensor
under a prolonged state of tension. Furthermore, Figure 6c shows that the ∆R/R0 tends to be stable
after an overshoot peak (overshoot recovery time: 2 s, 5 s, 10 s, 14 s and 17 s), suggesting that the sensor
recovers quickly and is able to perform reliably following the overshoot. This overshoot may be due to
the acceleration caused by the tension meter as the sensor is stretched. At the same time, the influence
of the tensile rate on the strain sensor was also investigated and the results are presented in Figure 6d.
The test results show that at a tensile strain of 30%, as the tensile rate increases incrementally from
10mm/min to 100mm/min, the tensile rate has no obvious effect on the ∆R/R0 of the strain sensor.
This indicates that under external stresses at different frequencies, the sensor remains stable and can
meet the needs of motion detection. The tests were repeated 100 times by loading and unloading the
tension variation on the sensor, which was 2% and 50%, to study the robustness and reliability of the
sensor under continuous strain. The ∆R/R0 of the sensor under repeated loading at two different
levels of tension is shown in Figure 6e,f. The changes observed for the resistance wave form are similar
to those of cyclic loading. At the end of the test, the waveform did not show obvious attenuation,
which suggests that the sensor maintained an excellent reliability under the action of a repeated strain
force. Figure 6g shows that the sensor resistance increases with increasing temperature and decreases
as the temperature is reduced. This is due to the thermal expansion of the conductive composite layer
with the increase of temperature, and the distance between the conductive fillers increases, resulting in
the increase of resistance. In contrast, when the temperature decreases, the conductive composite layer
shrinks and the distance between the conductive fillers decreases, resulting in a reduction in resistance.
As the temperature increases from 22 to 51 ◦C, the ∆R/R0 does not exceed 10%, which basically meets
the needs of high-temperature conditions.

Finally, the bending performance of the strain sensor was investigated by attaching the sensor to
a PET substrate, which was when installed on the fixture of the bending test instrument in Figure 7.
The cyclic compression test was conducted by setting the procedure loop shown in Figure 6h, with
the angle of bending set to 30◦ for 45◦ repetitions. From the test results below, it can be seen that the
resistance of the strain sensor increases during bending, and is restored to its original value after it is
released. This illustrates the resilience of the sensor under repeated bending and can meet the needs of
bending measurements.
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for step strain; (e) relative resistance variation curve of the sensor for 100 consecutive cycles at a strain 
of 2%; (f) relative resistance variation curve of the sensor for 100 consecutive cycles at a strain of 50%; 
(g) relative resistance variation of the sensor at varying temperatures; (h) the relative change in 
resistance in a cyclic bending test. 
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Figure 6. Performance tests of the flexible strain sensor: (a) changes in resistance with variations in
strain; (b) multi-cycle testing of the sensor at different strain levels (2%, 25%, 50% and 75%); (c) sensing
performance of the sensor at different strain rates at a strain of 30%; (d) relative resistance variation for
step strain; (e) relative resistance variation curve of the sensor for 100 consecutive cycles at a strain
of 2%; (f) relative resistance variation curve of the sensor for 100 consecutive cycles at a strain of
50%; (g) relative resistance variation of the sensor at varying temperatures; (h) the relative change in
resistance in a cyclic bending test.
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3.2. Application of Strain Sensors as Wearable Strain Sensors for Human Motion Detection

At present, wearable strain sensors have broad potential for applications in human body
information detection due to their ability to respond to external mechanical stimulation. To verify
that the sensor presented in this study can indeed be used as a wearable strain sensor, the sensor
was attached to different parts of the body for testing. First, the sensors were attached to different
joints of the body, and monitored the joint movements of the body in real time, according to the
resistance variation. Figure 8a shows a flexible strain sensor on the index finger joint. As the finger
joint periodically bends and extends at angles of 45◦ and 90◦, similar periodic changes in ∆R/R0 can
be detected. When the finger joint is bent, the strain sensor is in the tensile state, and the ∆R/R0

increases. Similarly, when the finger joint returns to its initial state, the sensor reverts to its original
position, and the ∆R/R0 subsequently decreases. Generally, the greater the degree of bending, the
greater the deformation of the sensor and the greater the ∆R/R0. As is shown in Figure 8b,c, the strain
sensor was also attached to the wrist and elbow joints of the body. It can be observed that when the
wrist joint (Figure 8b) and elbow joints bend at angles of 45◦ and 90◦ (Figure 8c), the sensor reacts
quickly, demonstrating that the strain sensor is sensitive to apparent strain and has a stable repeatability.
Furthermore, the sensor was then attached to the knee to provide feedback on human movement
monitoring. As shown in Figure 8d, the greater the bending degree, the greater the deformation of
the sensor and the greater the ∆R/R0 increases with the bending angle of the knee when the knee is
repeatedly flexed at 45◦ and 90◦. Additionally, Figure 8e shows repeated changes in ∆R/R0 during
multiple half squats and full squats. The results of knee joint movement detection recorded while
volunteers were walking and running are presented in Figure 8f,g. Figure 8g’s results show that the
∆R/R0 changes with the cycle of walking steps, and the frequency of the waveform changes in line
with human walking habits. Figure 8h shows the change trend of the ∆R/R0 during the jogging and
fast running of volunteers. We can see that the frequency of waveform change during fast running is
significantly higher than that during jogging, which is consistent with the actual running situation.
This indicates that the sensor can detect the running state. The experimental findings above suggest
that the sensor can detect the state of running and can be used to monitor human joint movement.
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4. Conclusion 
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designed and developed in this study. The experimental results provide evidence which suggests 
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successfully verified the feasibility of the sensor in terms of motion detection through various 
experiments. The experimental results show that the stress sensor designed using this kind of 
method not only performs desirably in terms of movement detection by deformation (such as the 
movement of fingers, wrists, elbows, knee joints, etc.), but is also capable of detecting the 
physiological activities of the body (such as the respiration intensity and frequency). Additionally, 
the simplicity, low cost, manufacturability, and easy integration of the sensor, prove that this design 
can provide a new feasible approach for motion detection in the field of wearable devices. 

Author Contributions: conceptualization, L.H., P.Z. and Y.L.; methodology, P.Z.; software, J.Z.; validation, 
P.Z., Y.C. and Y.Z.; formal analysis, P.Z.; investigation, Y.Z.; resources, L.H.; data curation, P.Z.; 
writing—original draft preparation, P.Z.; writing—review and editing, P.Z.; visualization, J.Z.; supervision, 
L.H.; project administration, L.H. All authors have read and agreed to the published version of the manuscript. 

Funding: The study was supported by the “Major research program of national natural science foundation of 
China (Grant No. 91848206)”; the “Major scientific and technological innovation project of Shandong Province, 
China (Grant No. 2017CXGC0901)”; and the “Major basic research project of Shandong natural science 
foundation, China (Grant No. ZR2018ZC0436)”. 

Conflicts of Interest: The authors declare no conflicts of interest. 

References 

1. Gilshteyn, E.P.; Romanov, S.A.; Kopylova, D.S.; Savostyanov, G.V.; Anisimov, A.S.; Glukhova, O.E.; 
Nasibulin, A.G. Mechanically Tunable Single-Walled Carbon Nanotube Films as a Universal Material for 
Transparent and Stretchable Electronics. ACS Appl. Mater. Interfaces 2019, 11, 27327–27334. 

2. Zheng, X.; Wang, Q.; Luan, J.J.; Li, Y.; Wang, N. Patterned Metal/Polymer Strain Sensor with Good 
Flexibility, Mechanical Stability and Repeatability for Human Motion Detection. Micromachines 2019, 10, 
472. 

3. Yu, H.; Lian, Y.L.; Sun, T.; Yang, X.N.; Wang, Y.; Xie, G.Z.; Du, X.S.; Gou, J.; Li, W.Z.; Tai, H.L.; Two-Sided 
Topological Architecture on a Monolithic Flexible Substrate for Ultrasensitive Strain Sensors. ACS Appl. 
Mater. Interfaces 2019, 11, 43543–43552. 

Figure 8. Monitoring of human motions using flexible strain sensors: the responses to human motions
of (a) finger bending, (b) wrist bending, (c) elbow bending, (d) knee bending, (e) squatting, (f) walking,
and (g) running, and (h) the responses to breathing.



Sensors 2020, 20, 1154 11 of 13

In addition, sensors were attached to the volunteers’ chests to monitor the ∆R/R0 changes
corresponding to shallow, deep, and rapid breathing. As shown in Figure 8h, the ∆R/R0 varies with
the respiratory rate as the volunteer breathes. The graph indicates that the ∆R/R0 can change with
the rate of respiration when the volunteer is breathing. Compared to shallow breathing, when the
human body exhibits deep breathing, the ∆R/R0 displays a greater change. This is because deep
breathing increases the strength of the body’s breathing and the expansion of the chest, leading to
an increase in strain sensor responses. The ∆R/R0 changes more frequently when the body breathes
rapidly compared to normal breathing. At this time, the respiratory rate becomes stronger, causing the
strain frequency of the strain sensor to increase. The test result is consistent with the actual situation,
which also provides evidence for the abilities of the sensor to detect the physiological activities of the
human body in the future.

4. Conclusions

In summary, by combining the conductive properties of CB and MWNTS with the high tensile
properties of the porous structure of the PDMS substrate, a strain sensor with a unique structure was
designed and developed in this study. The experimental results provide evidence which suggests
that the porous structure can improve the tensile properties of the sensor, allowing the substrate to be
stretched by up to 130%. As CB and MWNTS combine to form a unique nano-composite conductive
network structure, the sensor exhibits excellent characteristics, such as a high sensitivity, good linear
response, and wide tensile range, as well as good reliability and repeatability. We successfully verified
the feasibility of the sensor in terms of motion detection through various experiments. The experimental
results show that the stress sensor designed using this kind of method not only performs desirably
in terms of movement detection by deformation (such as the movement of fingers, wrists, elbows,
knee joints, etc.), but is also capable of detecting the physiological activities of the body (such as the
respiration intensity and frequency). Additionally, the simplicity, low cost, manufacturability, and
easy integration of the sensor, prove that this design can provide a new feasible approach for motion
detection in the field of wearable devices.
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