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Abstract: Obesity has become a widespread health problem worldwide. The body mass index
(BMI) is a simple and reliable index based on weight and height that is commonly used to identify
and classify adults as underweight, normal, overweight (pre-obesity), or obese. In this paper, we
propose a hybrid deep neural network for predicting the BMI of smartphone users, based only
on the characteristics of body movement captured by the smartphone’s built-in motion sensors
without any other sensitive data. The proposed deep learning model consists of four major modules:
a transformation module for data preprocessing, a convolution module for extracting spatial features,
a long short-term memory (LSTM) module for exploring temporal dependency, and a fully connected
module for regression. We define motion entropy (MEn), which is a measure of the regularity
and complexity of the motion sensor, and propose a novel MEn-based filtering strategy to select
parts of sensor data that met certain thresholds for training the model. We evaluate this model
using two public datasets in comparison with baseline conventional feature-based methods using
leave-one-subject-out (LOSO) cross-validation. Experimental results show that the proposed model
with the MEn-based filtering strategy outperforms the baseline approaches significantly. The results
also show that jogging may be a more suitable activity of daily living (ADL) for BMI prediction than
walking and walking upstairs. We believe that the conclusions of this study will help to develop
a long-term remote health monitoring system.

Keywords: body mass index; prediction; motion sensors

1. Introduction

Obesity has become a widespread health problem worldwide, which may be related to
an increased risk of diseases such as cardiovascular disease, diabetes, and stroke. The body mass index
(BMI) is a simple and reliable index based on weight and height that is commonly used to identify and
classify adults as underweight, normal, overweight (pre-obesity), or obese and was developed in the
19th Century by the Belgian statistician and anthropometrist Adolphe Quetelet. It is computed by its
conventional definition that utilizes body height (cm) and mass (kg), BMI = Mass

Height2 . For adults, BMI
falls into one of the following categories by the World Health Organization, presented in Table 1.

The conventional method to obtain BMI is usually to measure both body weight and height
carefully; however, some patients who have a pre-obesity or obesity status may delay medical care
because of concerns about disparagement by physicians and health care staff or a fear of being
weighed [1]. Many users can use online applications on smart mobile terminals to obtain BMI.
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However, these applications require personal body data including height, weight, age, and sex, which
are usually very sensitive topics. The measurement process requires the active participation of subjects
to ensure the authenticity of the data, but improper usage of these personal body data easily leads to
significant privacy and security threats.

Table 1. Nutritional status.

BMI Nutritional Status

18.5 Underweight
18.5–24.9 Normal weight
25.0–29.9 Pre-obesity
30.0–34.9 Obesity Class I
35.0–39.9 Obesity Class II

40 Obesity Class III

Sensor-rich smartphones are popular worldwide. These built-in sensors, such as the camera,
microphone, touch screen, and motion sensors, initially used for a phone’s enhancement, are now
being used for a variety of sensing applications, and many aspects of human behavior and traits
can be inferred, so some studies have begun to develop automatic measuring methods of BMI for
long-term remote monitoring using smartphones on a large scale. Several existing studies have focused
on learning based on human facial [2–5] and speech signals [6–9]. However, on the one hand, there
are several potential risks to using these privacy-sensitive sensors such as cameras and microphones
to collect users’ private data. The sensors mentioned above are also environmentally sensitive, so
application scenarios are limited.

The human gait consists of the interaction between hundreds of muscles and joints in the body,
and motion sensors can capture these and translate them into the characteristic patterns linked to their
traits. In practice, it is more advantageous to obtain physical traits from motion sensors, due to the
following reasons:

(1) first and foremost, motion sensors are generally considered to be not highly privacy sensitive and
more acceptable for users;

(2) different from environmentally sensitive sensors, such as cameras and microphones, motion
sensors always alleviate the limitations of the environment;

(3) motion sensors are more popular than other sensors, not only in smartphones, but also in other
smart devices, such as smart bracelets.

Motion sensor-based BMI prediction may be a great challenge. Firstly, the sensor data of the
human gait have a comparatively low signal-to-noise ratio, i.e., sources that have BMI-relevant
information affect signals less than sources that do not. Data from motion sensors are
also multi-dimensional with a special temporal-spatial structure for conventional feature-based
approaches [10,11]. Furthermore, the design of a specific feature extractor that transforms raw data into
feature vectors relies on heuristic hand-crafted feature engineering and considerable domain expertise.

In the past decade, deep learning (DL) has achieved great success in many areas. A deep
architecture with multiple layers is built up for automating feature design. Specifically, each layer
in a deep architecture performs a nonlinear transformation of the outputs of the previous layer [12],
so that DL can automatically make use of much more high-level and meaningful hidden features.
The convolutional neural network (CNN) is a well-known DL model with the ability to learn complex,
high-dimensional, nonlinear mappings from large collections of examples [13], and this makes
them obvious candidates for image classification [14], speech recognition [15], and other recognition
tasks related to time series [16–18]. Long short-term memory (LSTM) recurrent networks are also
widely adopted for general-purpose sequence modeling, and they have proven stable and sturdy for
long-range modeling dependencies in previous studies in such fields as audio analysis [19,20], video
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captioning [21,22], and sensor-based human activity recognition (HAR) [23]. Recently, the combination
of CNNs and LSTM in a unified stack framework has already offered state-of-the-art results in speech
recognition [24] and some motion sensor-based tasks [25].

The main contributions of the paper can be summarized as follows:

(1) To the best of our knowledge, we are the first to design a hybrid deep neural network with
a CNN-LSTM architecture to learn spatial features and temporal features from sensor data for
identifying salient patterns related to the BMI.

(2) We define motion entropy (MEn), which is a measure of the regularity and complexity of
the motion sensor, and propose a novel MEn-based filtering strategy to select parts of these
sub-sequences for training the prediction model.

(3) We evaluate the hybrid deep neural network model with the MEn-based filtering strategy using
two public datasets in comparison with baseline conventional feature-based approaches that have
been applied to infer simple human traits from gaits [10,11]. Experimental results show that the
proposed model significantly outperforms the baseline methods.

(4) We also investigate which type of activities of daily living (ADLs) is more suitable for online
BMI prediction.

The remainder of this paper is structured as follows: Section 2 reviews some related literature.
We give a brief overview of the state of related works. In Section 3, we present the proposed hybrid
deep neural network model and the corresponding MEn-based filtering strategy. Experimental results
from the evaluation of two public datasets are presented in Section 4. Conclusions and a discussion
are in Section 5.

2. Related Work

This section reviews closely related work in BMI prediction based on human facial and
speech signals, inferring human traits from gaits and DL models based on CNNs, LSTM, and
their combination.

2.1. BMI Prediction and Classification From Human Facial and Speech Signals

Recent studies have found that face images and speech signals have relations to BMI.
Wen et al. [2] developed a computational method to predict BMI from face images automatically.

A promising result was obtained, which demonstrated the feasibility of developing a computational
system for BMI prediction based on face images on a large scale. Kocabey et al. [3,4] used
a state-of-the-art computer vision system to infer a person’s BMI from their social media profile
photos. Polania et al. [5] employed a noisy binary search algorithm based on pairwise comparisons to
exploit the ordinal relationship among BMI categories using facial images.

Lee et al. [6] suggested a novel method for BMI classification using speech signals and showed
the possibility of predicting a normal status or an overweight status on the basis of voice and machine
learning. Berkai et al. [7] reported the estimation of BMI status via speech signals using short-term
cepstral speech feature extraction methods. A new method to predict BMI via speech signals (normal,
obese, and overweight) using wavelet packet transform (WPT) and nonlinear entropy features was
proposed by Berkai et al. [8]. Lim et al. [9] extracted energy and entropy features of speech, and both a
k-nearest neighbour (kNN) and a probabilistic neural network (PNN) were used to measure the BMI
of an individual.

2.2. Inferring Simple Human Traits from Gaits

Gait information captured by the smartphone’s built-in or wearable sensors can decode plenty
of useful information about human traits. Weiss et al. [10] collected the accelerometer data of
70 participants for sex, height, and weight prediction tasks using conventional feature-based
approaches. Sex prediction involved classifying a smartphone user as either male or female, while the
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height and weight prediction tasks included predicting the user’s height in inches and his/her weight
in pounds. Their results indicated that, on average, WEKA’s instance-based (IB3) learner performed
best and outperformed the straw man strategy of predicting height and weight. However, there was
certainly room for future improvement. Riaz et al. [11] recorded accelerations and angular velocities of
26 subjects using wearable motion sensors attached at four locations (chest, lower back, right wrist,
and left ankle) when performing standardized gait tasks. They then trained random forest classifiers
in order to estimate soft biometrics (gender, age, and height).

2.3. CNNs, LSTM, and their Combination

CNNs and LSTM have shown promising results in some applications of multivariate time
series, including, but not limited to, some works on motion sensors. CNNs have been applied
to sensor-based human activity recognition (HAR) [16–18], which is the most relevant research topic
of sensor-based gender recognition. LSTM has recently also shown promising results in a variety of
sensor applications when there are sequential dependencies in time series. Through substantial scale
experimentation in training [26], the procedures were analyzed for certain deep learning approaches
for HAR, including deep LSTM networks. Zhao et al. [23] proposed a deep network architecture using
residual bidirectional LSTM for human activity recognition (HAR), which showed improvements in
both temporal (using bidirectional cells) and spatial (residual connections stacked) dimensions.

Recently, some effort has been made to combine aspects of CNN and LSTM architectures.
Ordonez et al. [25] proposed a generic deep framework for HAR based on convolutional and LSTM
recurrent units using multimodal wearable sensors. Their results showed that the framework could be
applied to homogeneous sensor modalities, but multimodal sensors could also be fused to improve
performance. Zhu et al. [27] presented a multimodal gesture recognition method based on 3D CNNs
and LSTM networks, which firstly learned short-term features of gestures through a 3D convolutional
neural network and then learned long-term spatiotemporal features by convolutional LSTM networks
based on the extracted short-term spatiotemporal features.

2.4. To Quantify the “Complexity” of Physiological Signals

Quantifying the “complexity” of physiological signals in health has been the focus of considerable
attention. Presently, there are three commonly used entropy-based algorithms for biological data:
approximate entropy (ApEn) [28,29], sample entropy (SampEn) [30], and multiscale entropy (MSE) [31].
However, there is no simple entropy-based algorithm to tackle multiple types of motion sensor data at
the same time.

3. Methodology

This section describes the proposed methodology to predict the BMI of smartphone users. We
start with notations and definitions.

3.1. Notation and Definitions

3.1.1. Sequence

A sequence S is an ordered list of multi-dimensional time series that are typically recorded in
temporal order at fixed intervals. Given the mth subject, the sequence is Sm, and Tm is the total number
of intervals.

Sm = {d1
m, . . . , di

m, . . . , dTm
m } (1)

di
m denotes the m-th subject’s sensor recording (tri-axis accelerometer and tri-axis gyroscope) at the

i-th sampling point and i ∈ [1, Tm], as follows:
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di
m =



ai
m,x

ai
m,y

ai
m,z

gi
m,x

gi
m,y

gi
m,z


(2)

In this paper, the sequence Sm will be segmented into a series of sub-sequences by a sliding
windows strategy.

3.1.2. Sub-Sequence

The de-facto standard workflow for processing sensor data in ubiquitous computing treats
individual sub-sequences xk

m as statistically independent.
xk

m, k ∈ [1, L], is the kth sub-sequence of the sequence Sm:

Sm = {x1
m, . . . , xk

m, . . . , xL
m} (3)

L = bTm − w
θ

c, w is the length of each sub-sequence (in this paper, w = 90, nearly 1 s), and θ is
the step between the start intervals of two consecutive sub-sequences (θ = 45, half of the window size).
Concretely, xk

m has the sampling points from d(k−1)×θ
m to d(k−1)×θ +w

m .

xk
m = {d(k−1)×θ +1

m , . . . , d(k−1)×θ +w+1
m } (4)

3.1.3. Motion Entropy

For the sub-sequence xk
m with length w, MEn is an approximation of the negative mean natural

logarithm of the conditional probability under some constraint of similarity tolerance.

MEn
(

xk
m, w, ¸, racc, rgyro

)
= − ln

[
Bξ+1 (racc, rgyro

)
Bξ
(
racc, rgyro

) ] (5)

The parameters w, ξ, racc, and rgyro must be fixed for each calculation. w is the length of
sub-sequence xk

m; ξ is the length of the MEn template to be compared; and racc and rgyro are the
similarity tolerance of the accelerometer and the gyroscope for matching.

We proceed as follows:
Acci and Gyroi are the vector magnitude of the tri-axis accelerometer and the gyroscope.

Acci =

√
ai

x,t
2
+ ai

y,t
2
+ ai

z,t
2, Gyroi =

√
gi

x,t
2
+ gi

y,t
2
+ gi

z,t
2 (6)

di
m denotes the mth subject’s sensor recording at the ith sampling point and i ∈ [1, Tm].

di
m =



ai
m,x

ai
m,y

ai
m,z

gi
m,x

gi
m,y

gi
m,z


≈
[

Acci
m

Gyroi
m

]
= n(i) (7)

We convert the sub-sequence of raw sensor data into a vector amplitude sub-sequence. Given
a sub-sequence xk

m, which is the kth sub-sequence of the sequence Sm, w is the length of the
sub-sequence, and θ is the step between the start intervals of two consecutive sub-sequences.
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xk
m = {d(k−1)×θ +1

m , . . . , d(k−1)×θ +w+1
m } (8)

xk
m ≈

[
Acc(k−1)×θ +1

m . . . Acc(k−1)×θ +w+1
m

Gyro(k−1)×θ +1
m . . . Gyro(k−1)×θ +w+1

m

]

=

[
Accµ

m . . . Accµ+w
m

Gyroµ
m . . . Gyroµ+w

m

]
, (µ = (k− 1)× θ + 1)

= {n(i) : µ ≤ i ≤ µ + w}

(9)

{n(i) : µ ≤ i ≤ µ + w} forms the w − ξ + 1 matrices Nξ(j) for {j|µ ≤ j ≤ w − ξ + µ}, where
Nξ(j) = {n(j+ k) : 0 ≤ k ≤ ξ− 1} is the matrix of ξ data vectors from n(j) to n(j+ ξ− 1). The distance
between two such matrices is defined as:

d[Nξ(i), Nξ(j)] = max{|n(i + k)− n(j + k)| : 0 ≤ k ≤ ξ − 1}

= max{|
[

Acci+k
m

Gyroi+k
m

]
−
[

Accj+k
m

Gyroj+k
m

]
| : 0 ≤ k ≤ ξ − 1}

≈
{

max{|Acci+k
m − Accj+k

m | : 0 ≤ k ≤ ξ − 1}
max{|Gyroi+k

m − Gyroj+k
m | : 0 ≤ k ≤ ξ − 1}

(10)

Since the motion sensor matrix consists of two different types of sensor data, we study the
maximum difference of their corresponding scalar components separately.

Let Bξ
i (racc, rgyro) be the number of matrices with the similarity tolerance max{|Acci+k

m −
Accj+k

m |} ≤ racc and max{|Gyroi+k
m − Gyroj+k

m |} ≤ rgyro of the accelerometer and the gyroscope.

Bξ
i (racc, rgyro) =

1
(w− ξ)× 2

num{max{|Acci+k
m − Accj+k

m |} ≤ racc

+ max{|Gyroi+k
m − Gyroj+k

m |} ≤ rgyro},
i = 1, 2, · · ·w− ξ + 1, i 6= j

(11)

We then average all Bξ
i (racc, rgyro) values of the parameter i, which is the probability of the

self-similarity of the vector magnitude series with the number ξ.

Bξ(racc, rgyro) =
1

w− ξ + 1

w−ξ+1

∑
i=1

Bξ
i (racc, rgyro) (12)

Bξ+1(racc, rgyro) can obtain the similarly, which is the probability of the self-similarity of the vector
magnitude series with the number ξ + 1.

In practice, Equation (5) can be abbreviated as:

MEn
(

xk
m, ψ× std

)
= − ln

[
Bξ+1 (ψ)

Bξ (ψ)

]
(13)

where std stands for the mean of the vector magnitude series’ standard deviation, which should
be taken over a related large dataset. Generally, we take the value of tolerance parameter
ψ = 0.01, 0.05, 0.1.

3.1.4. MEn-Based Filtering

We propose a MEn-Based filtering algorithm to select parts of these sub-sequences adjusted by
threshold parameter θ and tolerance parameter ψ, for training the prediction model. The setting of
these two parameters (Algorithm 1) will be discussed in Section 4.5.2.
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Algorithm 1: MEn-based filtering algorithm.
Input: Sm: Sequence of motion sensors,

ψ: the tolerance parameter of the vector magnitude series,
std: the mean of the vector magnitude series’ standard deviation,
θ: the threshold percentile of the MEn arrays Mm,

Output: Xs
m: Selected sub-sequence sets for training the model

{x1
m, . . . , xL

m} = Sm;
Mm =

{
MEn(x1

m, ψ× std), . . . , MEn(xL
m, ψ× std)

}
;

ι = UpperThresholdPercentile(Mm, θ);
κ = LowerThresholdPercentile(Mm, θ);
foreach k ∈ [1, . . . , L] do

if MEn(xk
m, ψ× std) ≤ ι ∩MEn(xk

m, ψ× std) ≥ κ then
xk

m → Xs
m;

end
end
return Xs

m

3.2. The Proposed Hybrid Deep Neural Network Model

In this section, we introduce the proposed hybrid deep neural network for training the
BMI prediction model shown in Figure 1. The key components include four major modules:
a transformation module, a convolution module, an LSTM module, and a fully connected module.

Transformation Module Convolution Module Full-connected Module

ACC

Gyro

Sub-Sequence

LSTM Module

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

Sequence

w
ϴ

MEn-based
Sub-Sequence
Filtering

Sub-Sequence

Output

Figure 1. Overall architecture of the proposed hybrid deep neural network.

First, the sequence of the motion sensors was divided into many sub-sequences by sliding
windows, and every sub-sequence was labeled with a BMI value. Parts of the sub-sequences were then
selected by an MEn-based filtering strategy. Finally, the selected sub-sequences were used as the input
of the DL network for training a prediction model.
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3.2.1. The Transformation Module

The recordings of the motion sensor were a batch of multi-dimensional (a 6D, 3-axis accelerometer
and a 3-axis gyroscope) sequences, as shown in Section 3.1.1, which may have different properties
and correlations with respect to one another. The proposed pipeline was a popular way of using DL
models for multi-dimensional time series prediction purposes. This method consisted of modifying
the de-facto standard processing workflow in accordance with how it has been widely adopted by
the community of ubiquitous computing. The main difference is that we propose a novel MEn-based
filtering strategy to select sub-sequences that satisfy certain thresholds.

This module applied four steps to transform raw recordings into suitable data representations for
further processing. In what follows, we discuss each of them them.

Step 1: Resample and interpolate

Since different sensors may have different sampling rates, to guarantee that the data of
an accelerometer and a gyroscope can be processed simultaneously, the sampling rates of the two
sensors must be unique. Hence, we linearly resampled and interpolated all sensors’ recordings to the
sampling rate, which was the starting point for this module.

Step 2: Window Sliding

We used a fixed-size sliding window strategy to split the data, which was adapted to segment the
sequence of the time series into a collection of sub-sequences, as shown in Section 3.1.2.

Step 3: Normalization

The data in a given window were normalized to the range 0...1by the Z-score method. By
normalization, the data from different datasets were standardized without changing their distribution.

Step 4: Data Filtering

As mentioned above, in Section 4.5.2, we defined motion entropy (MEn), which was a measure of
the regularity and complexity of the motion sensor, and proposed an MEn-based filtering strategy to
select parts of these sub-sequences for training the model. By experiments, in Section 3.1.4, we showed
that only the data of motion sensors that were consistent with the balance of the signal’s regularity
and complexity were likely to obtain more physiological characteristics, including obesity.

3.2.2. The Convolution Module

In the convolution module, we applied an AlexNet-like [14] CNN structure on each branch
independently. The transformation module generated multivariate time series from motion sensors,
and 2-dimensional convolution and max pooling operations were shown to be desirable for capturing
local dependency between different channels, as well as local dependency between time steps [32].

The 2-dimensional convolution layer l operation was performed by calculating a feature map cl,M
i,j :

cl,m
i,j = ϕ

(
M′

∑
m′=1

X

∑
x=1

Y

∑
y=1

wl−1,k
x,y,m′z

l−1,M′
i+x−1,j+y−1 + bl−1,m

)
(14)

where X and Y are the size of the 2D convolution kernel running over space and time, respectively, M′

is the number of feature maps in the convolutional layer (l − 1), wl−1,m′ ∈ RX ×Y×M′ is a local filter
weight tensor, and bl−1,k ∈ R is a bias.

The max pooling operation produces:

cl,k
i,j = max

(i−1)S+1≤i′≤iS,(i−1)T+1≤i′≤iT
cl−1,k

i′ ,j′ (15)

where S and T are the size of the pooling kernel running over space and time, respectively.
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We designed three 2D convolutional layers and used a series of rectangle convolution kernels,
which are different from square convolution kernels usually used in image recognition [14,33].

The number of feature maps and the size of convolution kernel could be adjusted, depending on
the datasets. In our case, the settings mentioned above worked well, so we used them here. For each
convolutional layer, a rectifying linear unit (ReLU) was added as the activation function with batch
normalization (momentum = 0.99, epsilon = 0.001) and was often followed by a max-pooling layer to
increase the robustness of the extracted features [34].

The output of the 2D convolution and max pooling layer was a 3D tensor of shape (space,
time, and channel). The space and time dimensions tended to shrink as one went deeper into the
network. The number of channels was controlled by the argument passed to the 2D convolution layers.
The current output was a 3D tensor, whereas the input of the following LSTM module was a 1D vector,
so the 3D outputs of each branch had to be flattened to 1D and merged.

3.2.3. The LSTM Module

As part of the hybrid network, the convolution module was designed to extract spatial features,
and the LSTM module was expected to learn long-term dependencies.

The major innovation of LSTM was its memory cell, which could be stored in, written to, or read
from neurons in the network and acted much like a computer’s memory. The updating of an LSTM
unit at every time step t is described as follows, from Equations (16)–(19).

At time t, whether data are written to the LSTM cell depends on input gate it; whether data are
erased from the LSTM cell depends on input gate ft; and how much of an LSTM cell is revealed depends
on input gate ot. These gates protect and control the LSTM cell state Ct. σ is the component-wise
logistic sigmoid function; bx are the bias vectors; and Wx represents the weight matrices. xt is the input
of the layer; ht is the layer output; and Ct is the cell output state.

it = σ (Wi · [ht−1, xt] + bi) (16)

ft = σ
(

W f · [ht−1, xt] + b f

)
(17)

ot = σ (Wo [ht−1, xt] + bo) (18)

Ct = ft ∗ Ct−1 + it ∗ C̃t (19)

C̃t = tanh (Wc · [ht−1, xt] + bc) (20)

Multiple LSTMs were designed to be stacked and temporally concatenated to form more
complex structures.

3.2.4. The Fully Connected Module

We passed the output of the LSTM module to the fully connected module. As shown in Figure 1,
this layer was the same as a standard multilayer perceptron neural network that mapped the latent
features into the output classes we wanted to discriminate. With the fully connected layers, we
combined these features together to create a regression model. The activation function of the output
layer was a linear function because we wanted to obtain a continuous BMI value. Finally, we compiled
the network with the mean squared error (MSE) loss function, which is a widely used loss function for
regression problems.
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4. Experiments

4.1. Dataset Description

In the experiments, we considered two public datasets, MobiAct [35] and Motion-Sense [36]. We
proposed a deep learning model with other traditional feature-based approaches to check them.

In the following, we provide an introduction of MobiAct and Motion-Sense. Unlike other public
datasets that require the smartphone to be rigidly placed on the human body and with a specific
orientation, the datasets we selected were from devices that were freely located in pants pockets in
a random orientation. These data corresponded to daily life, which also distinguished them from other
data that were acquired from one or more wearable sensors banded on certain sensitive parts of the
human body.

4.1.1. MobiAct

The MobiAct dataset consisted of recordings from 67 subjects. The average age of subjects was
25.19, the average height 175.75 cm, and the average weight 76.80 kg. Motion sensor data were
recorded by a Samsung Galaxy S3 with the LSM330DLC inertial module.

4.1.2. Motion-Sense

The Motion-Sense dataset consisted of recordings from 24 subjects (14 men and 10 women) with
a balance of gender. The subjects’ age spanned between 18 and 46, the height from 161 to 190 cm,
and the weight from 48 to 102 kg. For each participant, an iPhone 6s was located in the pants pocket
freely and in a random orientation. The motion sensors were logged by SensingKit, which included
accelerometer, gravity sensor, gyroscope, and attitude sensor data.

4.1.3. BMI values and the Nutritional Status of the Two Datasets

The BMI values of the two benchmark datasets are shown in Figure 2. According to the conversion
method of Table 1, the nutritional status of the subject associated with BMI is shown in Figure 3. We
found that the normal weight and pre-obesity population accounted for a large proportion, which
was mainly related to the data samples collected from the university campus, and the average age of
volunteers was less than age 30.
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Figure 2. The BMI of the two datasets.
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Figure 3. The nutritional status related to BMI of the two datasets. U: underweight; N: normal weight;
P: pre-obesity; O: obesity.

4.2. Comparison with Existing Methods

We compared our proposed hybrid deep neural network model with some state-of-the-art
feature-based methods using WEKA [37], which included a k-nearest neighbor algorithm (kNN)
that is called an instance-based learner (IBk) in WEKA [10], a support vector machine (SVM), and
a C4.5 decision tree that is called J48 in WEKA [10]. Among them, the data contained in one
example duration were converted into a single example, described by 43 features [10], which were
variations of six essential features, including the average acceleration value, the standard deviation,
the average absolute difference, the average resultant acceleration, the time between peaks, and the
binned distribution.

IBk uses a distance measure to locate k “close” instances in the training data for each test instance
and uses those selected instances to make a prediction.

SVM with radial the basis function (RBF) kernel was used as the classifier.
J48 is an algorithm used to generate a decision tree that can be used for prediction, and for this

reason, J48 (C4.5) is often referred to as a statistical classifier.

4.3. Leave-One-Subject-Out Cross-Validation

Suppose a dataset with N subjects. For each experiment, we used N − 1 subjects’ sensor data for
training and the remaining subject’s sensor data for testing. At first, in LOSO, the subjects {Sn}N

n=1
were partitioned into N groups. The samples were then partitioned by the groups into N sub-samples
{Dn}N

n=1 of the N sub-samples. A single sub-sample Dtest was retained for testing the model, and the
remaining N − 1 sub-samples Dtrain were used as the training data. Finally, the CV process was then
repeated N times, with each of the N sub-samples used exactly once as the validation data.

4.4. Evaluation Measures

To have a fair comparison, we used two kinds of regression measures, namely, mean absolute
error (MAE) and root mean squared error (RMSE), to evaluate the performance of different methods
on the test data in the experiments.

(1) Mean absolute error (MAE):
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The MAE is the absolute value of the difference between the predictions and the targets (L1
norm). It is a linear score, which means that all the individual differences are weighted equally in
the average.

MAE =
1
N

N

∑
i
|yi − ŷi| (21)

(2) Root mean squared error (RMSE):

The RMSE is a quadratic scoring rule that also measures the average magnitude of the error (L2
norm). It’s the square root of the average of the squared differences between the prediction and
the actual observation. The RMSE is more sensitive to outliers, and MAE is more stable.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (22)

4.5. Results

In this section, we evaluate the performance of the proposed prediction model on two datasets
and compare it with three other feature-based methods. Additionally, we verify the effectiveness of the
MEn-based filtering strategy, and we discuss what types of ADLs might be suitable for the prediction
of BMI.

4.5.1. Experiments without Data Filtering

To demonstrate the performance of our proposed hybrid deep neural network (CNN-LSTM), we
used LOSO cross-validation on MobiAct and Motion-Sense.

Firstly, to give a reliable performance comparison, we trained the model for a relative optimal
network structure and hyper-parameters. Since CNN-LSTM is deep in both the spatial domain and
the time domain, there were different structures that may have an impact on the performance of the
model. For example, considering only the number of network layers, the number of convolutional
layers may affect the ability of the model to learn the spatial structures. The number of recursive
hidden layers may affect the intensity of the model’s learning of temporal relationships. The number
of fully connected hidden layers may change the learning feature transformation. The optimization
of hyper-parameters also improved the overall performance and generalization capacity of the
model. Tuning hyper-parameters for the DL model, however, was a time consuming and challenging
task because there were numerous parameters to be configured. In this work, we used the grid
search method to determine the optimal hyper-parameters of the proposed model. Six common
hyper-parameters, namely the optimizer, the learning rate, the number of epochs, the batch size,
the dropout rate, and the regularizer, were optimized. To implement a grid search more efficiently,
the search spaces of hyper-parameters were manually selected in the initial stage after experiments on
the datasets. The optimized parameters, their search spaces, and their determined optimal values are
presented in Table 2.
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Table 2. Hyper-parameters of the CNN-LSTM.

Parameter Search Space Optimal Values

Optimizer (Rmsprop, Adam, Sgd) Adam

Learning Rate (0.0001, 0.001, 0.01) 0.001

Epochs (50, 100, 200, 300) 200

Batch Size (10, 20, 30, 40) 20

Dropout Rate (0, 0.2, 0.5) 0.5

Regularizer (L1, L2) L2

Secondly, the results presented in Tables 3 and 4 show that our proposed hybrid deep neural
network (CNN-LSTM) with an optimal structure led to significant performance improvements
compared with conventional feature-based models in all cases.

Finally, both Tables 3 and 4 show that jogging was the most suitable activity for BMI prediction,
based on a comparison of four ADLs. In practice, an acceptable BMI prediction value could also be
obtained while walking and walking upstairs.

Table 3. The experimental results in MobiAct without data filtering.

Dataset ADL Model MAE MSRE

MobiAct

Jogging

CNN-LSTM 1.836 2.547

IBk 2.973 4.192

SVM 2.497 7.156

J48 2.314 5.272

Walking

CNN-LSTM 2.190 3.804

IBk 2.810 4.962

SVM 3.293 6.910

J48 3.455 5.040

Walking upstairs

CNN-LSTM 1.919 2.978

IBk 2.039 3.746

SVM 3.926 5.804

J48 2.421 6.002

Walking downstairs

CNN-LSTM 3.203 4.771

IBk 4.902 6.296

SVM 5.614 7.472

J48 5.403 6.921
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Table 4. The experimental results on Motion-Sense without data filtering.

Dataset ADL Methods MAE MSRE

Motion-Sense

Jogging

CNN-LSTM 2.319 3.817

IBk 3.213 4.791

SVM 3.907 7.143

J48 5.078 9.037

Walking

CNN-LSTM 2.976 4.301

IBk 2.401 4.097

SVM 4.723 7.072

J48 6.002 9.426

Walking upstairs

CNN-LSTM 2.607 3.572

IBk 2.319 3.491

SVM 3.193 4.147

J48 5.733 6.710

Walking downstairs

CNN-LSTM 4.109 6.018

IBk 5.312 8.830

SVM 5.901 8.012

J48 7.517 9.521

4.5.2. Experiments with Data Filtering

To verify the effectiveness of our proposed MEn-based filtering strategy, we performed
comparisons among three different data filtering settings by threshold parameter θ and tolerance
parameter ψ, as mentioned in Section 3.1.4. The experimental results showed that the entropy filtering
strategy improved the performance of the CNN-LSTM model by about 10%, if the parameters were
set properly.

Table 5 shows that the MAEs of the BMI were 2.461 ± 1.000 in the jogging state in the MobiAct
dataset and 3.137 ± 1.300 in the jogging state in the Motion-Sense dataset. This indicated that the error
of our proposed model was low, considering the wide range of BMI from 17 to 35, visually shown in
Figure 2.

As shown in Figure 3, both datasets were quite unbalanced, as subjects in the underweight
and obesity categories are scarcity. Table 6 shows the total number of sub-sequences (samples) in the
jogging state selected by data filtering. Taking Motion-Sense as an example, the normal weight category
with the threshold parameter θ = 0.1 contained the highest number of sub-sequences (samples), which
was about 57.6% of the whole set. The pre-obesity category was the second largest, which contained
431 sub-sequences (samples). These two categories possessed about 92.5% of the whole set.
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Table 5. The experimental results in the jogging state with data filtering.

Dataset Threshold Percentile Measures
Tolerance Parameter

ψ = 0.01 ψ = 0.05 ψ = 0.1

MobiAct

θ = 0
MAE 1.836

MSRE 2.547

θ =·0.05
MAE 2.239 1.930 2.861

MSRE 3.418 2.806 3.726

θ = 0.1
MAE 1.793 1.623 2.156

MSRE 2.541 2.410 2.962

θ = 0.25
MAE 3.352 2.304 3.449

MSRE 4.917 3.705 5.024

Motion-Sense

θ = 0
MAE 2.319

MSRE 3.817

θ = 0.05
MAE 2.613 2.107 3.445

MSRE 2.541 2.410 2.962

θ = 0.1
MAE 2.268 2.005 3.574

MSRE 3.773 3.049 4.218

θ = 0.25
MAE 4.530 3.631 5.108

MSRE 5.311 4.503 5.919

Table 6. Total number of sub-sequences (samples) in the jogging state selected by data filtering.

Categories
MobiAct Motion-Sense

θ = 0 θ = 0.05 θ = 0.1 θ = 0.25 θ = 0 θ = 0.05 θ = 0.1 θ = 0.25

Underweight 43 40 34 22 67 58 51 35

Normal weight 1376 1194 1063 691 904 824 712 467

Pre-obesity 895 812 728 467 561 497 431 298

Obesity 603 538 474 310 58 47 40 26

The MAE was defined as the average of the absolute errors between the predicted BMIs and
the ground-truth BMIs. Figure 4 shows the MAEs of our proposed CNN-LSTM model in most BMI
categories: underweight, normal weight, pre-obesity, and obesity, with threshold parameter θ = 0.1
and tolerance parameter ψ=0.05 in the jogging state. As a result, we obtained a higher accuracy,
94.8% ± 1.5%, in predicting BMI according to the recordings of motion sensors in the normal and
pre-obesity BMI categories. The lower prediction accuracies in the underweight and obesity categories
were probably because of the limited sub-sequences in both training and testing, as shown in Table 6.
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Figure 4. The MAEs in different BMI categories with optimal parameters.

5. Conclusions and Discussion

In this paper, we proposed a hybrid deep neural network with a novel MEn-based filtering
strategy for predicting the BMI of smartphone users using built-in motion sensors only. We also
have shown that the accuracy of our proposed prediction model is the highest in a jogging state, and
an acceptable BMI prediction value can also be obtained while walking and walking upstairs, by
extensive experiments on two public datasets. We believe that the conclusions of this study will help to
develop a long-term remote BMI monitoring system. The so-called long-term remote monitoring refers
to the collection of a few motion sensor data every day for many years to trace a person’s physical
conditions, which is different from the short-term real-time recognition of human activity.

Despite the progress made in this work, sensor-based BMI predictions remain challenging.
The performance of deep learning models still heavily depends on labeled samples. Obtaining
enough activity labels is expensive and time consuming. Therefore, in order to predict the BMI value
corresponding to sensor data without activity labels, unsupervised HAR is urgent. We will try to use
transfer learning in subsequent research to perform data annotation by leveraging labeled data from
other auxiliary domains.
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