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Abstract: In recent years, human-machine interactions encompass many avenues of life, ranging from
personal communications to professional activities. This trend has allowed for person identication
based on behavior rather than physical traits to emerge as a growing research domain, which spans
areas such as online education, e-commerce, e-communication, and biometric security. The expression
of opinions is an example of online behavior that is commonly shared through the liking of online
images. Visual aesthetic is a behavioral biometric that involves using a person’s sense of fondness
for images. The identification of individuals using their visual aesthetic values as discriminatory
features is an emerging domain of research. This paper introduces a novel method for aesthetic
feature dimensionality reduction using gene expression programming. The proposed system
is capable of using a tree-based genetic approach for feature recombination. Reducing feature
dimensionality improves classifier accuracy, reduces computation runtime, and minimizes required
storage. The results obtained on a dataset of 200 Flickr users evaluating 40,000 images demonstrate a
95% accuracy of identity recognition based solely on users’ aesthetic preferences.

Keywords: pattern recognition; behavioral biometrics; biometric security; gene expression
programming; visual aesthetics; human-machine interactions

1. Introduction

Human-machine interactions rely on human behavior [1]. Behavioral biometrics can prove
effective in situations where a person’s mood, emotions, or intent are to be identified. While the
majority of biometric research focuses on behavioral biometrics such as voice and gait [2], as well as the
enhancement of accuracy through information fusion [3,4], this article presents the most comprehensive
study to date on the use of aesthetic-based human traits expressed through human-machine interaction
for biometric identification. In the domain of behavioral biometrics, social-behavioral biometrics
utilizes a person’s interpersonal interactions, dispositions, and attitudes expressed through online
media and communications as features [5,6]. Social network users exhibit many unique features
through daily communications [7]. One such feature includes an individual’s visual aesthetic
preference, which can be described as the principles or criteria which represent one’s judgment
of visual beauty [8]. Research on the identification of individuals based on their visual aesthetics,
essentially their visual preferences, emerged very recently [9-11]. With knowledge of an individual’s
visual preference from a selection of images, corresponding features can be retrieved, which forms
the person’s specific visual aesthetic authentication template. This is the basis of visual aesthetic
identification. The present research is a significantly extended version of conference paper [12].

As a relatively new domain of research, visual aesthetic identification shows very high potential.
Human-machine interaction often includes not only work-related tasks but also online social activities,
interactions with family members, recreation and more. Among them, sharing photographs, discussing
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art, and expressing the liking of posted images are common expressions of human behavior. However,
understanding these behaviors has been notoriously difficult due to the numerous visual features that
are present in the images. During the creation of user authentication templates, it is important to use the
most discriminatory features for classification. In pattern recognition, a feature is a characteristic that
represents some data of an observation. Although what are considered good feature characteristics
depends heavily on the problem domain, many common techniques aim to improve the efficacy
of feature data such as normalization, selection, extraction, and expansion. Highly correlated or
otherwise non-discriminatory features can decrease the accuracy and speed of the classifier, with
intensity varying depending on the model. The most recent work [11] used 861 original features,
reduced to 700 Principal Components (PC) using Principal Component Analysis (PCA). Although the
accuracy obtained was higher than in the previous works, a further increase in accuracy and reduction
of template generation time were outlined as future challenges. A reduced feature set can lower these
times, which is typically done through feature selection or extraction techniques [13].

In this paper, we apply Gene Expression Programming (GEP) to reduce feature dimensionality
and increase classifier accuracy in a new identification model for visual aesthetic identification. Gene
expression programming is a stochastic, meta-heuristic approach that utilizes structured gene trees to
represent generated candidate solutions. The general structure of a GEP model follows other genetic
approaches that use the fundamental principles of evolution: selection, mutation, and crossover (also
called recombination). Through the use of program generations, unique candidates are generated
based on random mutation and crossover with the previous generation to maintain a population of
programs [7,14]. The motivation to investigate the benefits of a GEP method for biometric identification
originates from the recent successful applications of this method in medicine [15] and physics [16].

A modified GEP-based approach to feature extraction is proposed in this paper to improve
aesthetic-based person identification accuracy and reduce enrollment times. This approach transforms
the original feature set into a smaller set of complex features through structured program evolution. We
establish that these complex features can increase accuracy due to the reduction of noise introduced into
the classifier system. A smaller feature vector with higher discriminatory ability also results in fewer
computations during classification and a lower amount of memory required to store an authentication
template. The proposed approach can be applied to other domains and lead to integration into more
complex systems. In proposing such a model, the paper aims to improve the current state-of-the-art
visual aesthetic identification and test the efficacy of a GEP approach given a large feature set in this
domain. Results surpass the state-of-the-art methods for visual aesthetic identification.

Very preliminary research on this topic has been published as a conference paper [12]. In the
current work, additional extensive experimentations on model hyperparameters and analysis have
been provided. An adaptive mutation behavior was implemented, which increases the robustness
and growth of the overall accuracy of the system. Model performance comparisons between different
machine learning algorithms have also been added. Thus, this paper makes the following contributions:

1. A novel visual aesthetic-based identification model is introduced that achieves higher accuracy
over the most recently reported results.

2. The investigation of utilizing gene expression programming to construct complex features is
conducted for the first time in the aesthetic research domain.

3.  The proposed model reduces the dimensionality of the feature data required for identification,
which achieves an improvement in both computation speed and system robustness of the visual
aesthetic-based identification system.

4. A comparison with the proposed model and previous works is performed on the
benchmark dataset.

2. Previous Work

The research on visual aesthetics presented in this paper is introduced in the context of social
biometrics [5,6], an area of biometrics that understands human behavior and personality traits based on
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human social network activities. This emerging direction of research was preceded by the development
of a new generation of biometric systems based on fundamental modeling principles [17], with a focus
on the simulation of biometric information based on real-life models [18]. The majority of research
on visual aesthetic identification is very recent, with the initial attempt at identification using visual
aesthetics conducted by Lovato et al. [9]. This work used a total of 62 image features from a collected
database of 40,000 Flickr images, chosen by 200 users (200 images per user). A lasso-regression model
was used to construct the visual aesthetic template to identify users, achieving an accuracy of 14% at
rank 1 and 51% at rank 5. Although the accuracy was very low, the work served as a proof of concept
and feasibility on the discriminatory usage of basic visual aesthetic features.

A more sophisticated approach was developed by Segalin et al., which utilized a multi-resolution
counting grid to categorize similar images [10]. Features were separated into two categories: perceptual
features and content features. The experiments resulted in above 70% accuracy at rank 1 on the
benchmark dataset collected by the authors of [9].

The more recent work performed by Azam and Gavrilova presented a larger feature set of 861
that consisted of local perceptual features, global perceptual features, histogram of gradients (HOG)
features, and content features [11]. The methodology used Principal Component Analysis for feature
reduction, which produced 700 principal components from 861 original features. These principal
components are complex features generated through linear combinations of the original feature set,
sorted by total variance. Using the same database of 40,000 liked Flickr images from 200 users
(200 images per user), the system was able to identify users with a rank 1 accuracy of 84.50%, and a
rank 5 accuracy of 98%.

In solving this identification problem, the classification techniques used in the previous works
consisted of a mixture of traditional machine learning and feature engineering. As a general trend,
more features are extracted to improve identification accuracy, with 861 features introduced in the
most recent work [11] compared to 62 in the initial work [9]. More sophisticated machine learning
techniques have also been shown to improve the system’s ability to capture a person’s aesthetic
judgment. However, the introduction of a high number of features can result in a classifier’s diminished
performance [19]. Non-discriminative features can be interpreted as noise to a machine learning
algorithm that detracts from useful data. This non-discriminative data can also encourage unnecessary
computations and storage requirements in a real-world system. Thus, in this work, we propose
to utilize gene expression programming for complex feature extraction in order to further improve
accuracy and reduce computation time.

The recently introduced GEP methodology has proven highly beneficial in a variety of
applications [20]. Like other techniques such as genetic algorithms (GA) or genetic programming
(GP), GEP operates using the fundamental principles of genetic evolution. Generally, GEP has been
applied to five categories of problems: symbolic regression, classification, automatic model design,
combinatorial optimization, and real parameter optimization [21]. GEP leverages the strengths of
genetic-based algorithms while retaining simple genetic operations and faster convergence than GP
approaches in complex optimization problems [22]. Thus, we hypothesize that GEP will be highly
suitable for the aesthetic identification problem. The benefits of GP and GEP for feature construction
are numerous, with solution trees used for both single and multi-dimensional feature construction [23].
Single dimensional feature constructions using GP compresses many features into one complex
feature encoded by a single GP tree [24]. Though performance is favorable in certain scenarios, one
complex feature may not be enough to accurately discriminate between classes in a problem with
high complexity. Thus, multi-dimensional approaches have been proposed that include using many
evolutionary generations to implement a unique function which designates a new feature in each
subtree [25]. Although the application of GEP on large feature dimensionality has been explored, it
was never considered for the behavioral biometric classification problem.
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3. Methodology

3.1. Overview

The proposed system is a visual aesthetic-based identification system that utilizes GEP-based
feature construction and an SVM to classify individuals. Given a collection of favorite images from
a user, the model first extracts pertinent perceptual and content features. This high dimensionality
feature vector is then inputted into the GEP constructed tree structure to reduce dimensionality, before
being used to train the SVM in the enrollment phase. During identification, the features from the set of
images from an unknown user will be extracted and transformed using the same GEP structure to a
lower dimensionality. The trained SVM will then be consulted and the stored template of the closest
user will be returned as the prediction. A figure illustrating the enrollment and identification phases of
the system is shown in Figure 1.

Enrollment

Aesthetic GEP Complex
Feature :> Feature :> SVM

Extraction Construction

Aesthetic Template
Database

LU

Set of User's Favorite Images

Identification

Aestheti GEP C |
e [T | reae [T | Taimed | 2t (0 redieted
SVM User

Extraction Construction

Set of Unknown User’s Favorite Images

Figure 1. Enrollment and identification phases of the visual aesthetic-based identification system.

The illustration of a conceptual flowchart using the proposed aesthetic identification system
is shown in Figure 2. The figure depicts a fully developed aesthetic matching system that can be
used to reinforce or assist a human’s decision when there is low confidence. After using a person’s
physiological traits (such as gait or face) for biometric identification, if needed, the human actor
can consult the aesthetic identification module to aid in making a final decision. The individual’s
online aesthetic profile is then used for authentication with the template database. In comparison to
other traditional biometric modalities, aesthetic identification is non-intrusive and widely accessible.
This can prove effective when the aesthetic matching module is used as a component of a deeper
multimodal security system. Note that this is only one of the possible usage scenarios for the proposed
system. Other applications in retail, online shopping, and remote communications are also possible.
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Figure 2. The conceptual flowchart of a human-assisted decision-making process.

3.2. Feature Extraction

The database of 200 users labeled to 200 of their favorite images is used [9], with a total of
40,000 images and size of 6.35 GB. First, the set of favorite images for each user is processed by
extracting a predetermined number of features. These features constitute the original feature set.
The features are categorized into three general groups: global perceptual and content features, local
perceptual features, and histogram of oriented gradients (HOG) features. This categorization is made
based on the feature categories recommended in [9-11].

Perceptual features describe direct properties of the image such as mean hue, saturation, and
value (HSV), colorfulness, and entropy of pixel intensities. The further distinction between global and
local perceptual features is the applied space—global perceptual features are taken from the entire
image, while local perceptual features are taken from each of nine evenly split partition cells of the
image in a grid fashion. Content features describe the count and average area of detected faces and
objects in the image (bikes, birds, boats, bottles, buses, cars, cats, chairs, dogs, horses, motorbikes,
people, planes, and tables). Lastly, the HOG features are generated using gradient values returned from
point locations of the image based on the corresponding angle and magnitude maps. All feature values
are normalized with zero mean/unit standard deviation and largely operate on the pixel properties
(color space) of the image. The feature categorization is shown in Figure 3.

After the concatenation of these features into a combined high dimensional feature vector, it is
preprocessed before undergoing feature extraction. The GEP module takes as input the original feature
set of size 924 and performs various logical and arithmetic recombinations to produce an evolving
complex feature set. A large portion of the implementation is in the GEP module, with the classifier
system serving as a wrapper function to direct the evolutionary fitness of each generated feature.
Each candidate solution is evaluated using the classifier prediction accuracy with 5-fold random split
cross-validation.

After a pre-determined number of generations, the GEP module outputs a lower-dimensional
feature vector of complex features which is subsequently used to generate visual aesthetic templates
for every user in the training set. A similar process is followed for user identification, where the
complex feature score for the user to be identified is calculated and compared to the stored templates
in the template database. The user corresponding to the stored visual aesthetic template generated at
enrollment which matches most with the provided template is chosen as the system prediction.
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Figure 3. The categorization and count of features extracted for each image.

3.3. Gene Expression Programming Based Feature Construction

As a genetic-based algorithm, the genetic operators of selection, mutation, and recombination are
used to generate new complex features. These complex features take the form of tree-based structures,
where leaf nodes are called terminals and branch nodes are called functions. Terminals are selected
from the pool of features from the original feature set, while functions are selected from a pool of
available mathematical and logical functions. A candidate solution is called a chromosome, which is
composed of subtrees called genes. Collectively, a generation is composed only of a pre-determined
number of chromosomes called the population, which shifts every iteration of the algorithm simulating
evolution. A small process map of the GEP algorithm is shown in Figure 4, which is a common
procedure of many genetic-based approaches.

Each of these tree expressions is evaluated given the corresponding values in the original feature
set to create a transformed feature vector. To store a multi-dimensional complex feature, an individual
complex feature is defined as a gene subtree of the candidate chromosome. Each gene encodes one
complex feature, with the combined feature vector represented as a multi-dimensional vector of its
composite gene values over all observations. These candidate solution vectors are the structures that
are ultimately optimized for accuracy using classifier accuracy as a fitness function.
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Figure 4. The flowchart for the Gene Expression Programming method for feature selection
and classification.

3.3.1. Model Parameters

Most model parameters of GEP affect the genetic operation phases directly. The number of genes
and the head length afforded to each chromosome is determined at the construction of the model,
which is fixed throughout the program after definition. This determines the overall complexity and
number of generated features. A gene number of 150 and a head length of 30 was used. The values of
150 complex features and 30 head length were determined empirically, showing the most sustained
improvement and faster convergence to the solution. These values are subject to variation between
problem domains as the number of original features, the complexity of the problem and the nature of
the problem are vital considerations for determining the complex feature structure.

The population of each generation is also an important consideration, where a small population
can result in higher probabilities of model stagnation and a large population results in longer generation
times on average. A balance between computational load and model efficacy was sought in this
research. A population of 30 was used, which proved to be a large enough population to avoid most
cases of homogeneity among the active population while taking time and computational restraints
into consideration.

The initialization of the starting population is randomly selected by drawing within the pool
of available terminals and functions. Although there is a scaled fitness selection method, the initial
population will always be independently random, due to the absence of fitness direction. The head
and gene counts of the candidates are fixed, meaning that, even at initialization, all complex features
generated will exhibit syntactic correctness (there will not be any uncharacteristically unstructured
candidates, for example). The pool of available terminals and functions used in the project are included
in Table 1. An example of the string representation for a candidate feature is depicted in Figure 5.
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Table 1. The pool of available node values in the GEP complex feature tree.

Category Arity Representation
Terminals 0 {fo, f1, - fu}
Constants 0 {0,1, 7, e}
Power 2 {"}
Arithmetic 2 {4+ — % /,%}
Comparison 2 {=1=<>,<=>=}

{feea} {E~H{f612}{f388{E~{f495}{ f683}{fB830}/{f778}

Figure 5. Example of a string representation of a feature.
3.3.2. Fitness

The fitness of every complex feature vector in the population is evaluated every generation.
A wrapper-based approach to fitness is applied, where the complex feature vector is tested with
the classifier for every candidate. The fitness value is produced through 5-fold cross-validation
using random splitting. The stratified and randomized test/training set pairs avoid the selection
of an overfitted set of complex features that can only successfully classify for very limited cases.
Any candidates that are unviable due to mathematical/logical errors are automatically assigned a
fitness value of 0 and effectively discarded due to the nature of evolutionary bias. The combination
that generates the highest classification accuracy is then chosen to persist to the next generation as a
simple form of elitism. The best candidate of the population will not be mutated or recombined (but
can be recombined with) to preserve its discriminatory ability.

3.3.3. Termination Condition

The termination condition used in the model was 300 generations. The time required per
generation increases significantly based on training and testing sample dimensionality; therefore,
the number of generations in this implementation may be smaller than other GEP implementations.
Maintaining 300 generations proved to capture a sufficient period for growth and usually led to
indicators of convergence to a solution. For larger user datasets, the number of generations will likely
need to increase, as it will take the system more evolutionary generations to converge on a larger
solution space.

3.3.4. Mutation

Mutation in the GEP implementation operates by selecting a random index with probability based
on the pre-determined mutation rate. This implementation uses a base adaptive mutation rate that
decreases proportionally to classifier accuracy, with an increasing mutation rate of 0.05 per generation
without improvement compared to the last best accuracy. When an improvement is experienced,
the mutation rate will return to the base adaptive mutation rate.

A base adaptive mutation rate allows for the system to adjust the minimum amount of mutations
every generation. The intuition behind this is to restrict the explorable solution space as smaller
changes to the existent solution are required. By allowing the mutation rate to increase above the base
adaptive rate during periods of non-improvement, the model increases the explorable solution space to
potentially escape local maxima. This will allow the model to restrict and release the solution space by
manipulating the probability of random changes to every node of every solution tree, which produces
a more robust searching model. This is especially significant when the population has reached an over
homogeneous state or has difficulty converging onto a smaller solution space.

Let MR be the mutation rate, n¢ be the current generation count, np be the generation count with
the best accuracy, and A be the accuracy as a decimal value. Then, the computation is carried out as:
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(A=A(nc)) i
MR(nc) = {(1/1(()71 ) ?fA(nC) > Alns) @
e + (0.05 % (nc —np)) if A(nc) < A(np)

The value of the denominator of 10 was used to restrict the mutation rate to values within a range
of 0.0 to 0.1, or 0% to 10%. Regardless of the initialization of the population, the best solution at
any given generation is typically higher than 50%, as even non-optimal complex features carry some
discriminatory ability. The increment of 0.05 acts as an increased weight to the mutation rate, which
was determined empirically to ensure the impact is significant yet controlled. This increment is then
multiplied with the period of non-improvement, denoted by n¢ — np.

3.3.5. Crossover

Crossover is the random exchange of a set of genes between two candidate features. The number
and location of these exchanges are random and can occur multiple times throughout a single gene
crossover. This implementation uses a unique variable uniform, one-point, and two-point crossover
rates based on current best classifier accuracy. A uniform gene crossover is a default rate at which
every node of either candidate solution can be chosen, while an n-point crossover denotes n + 1 regions
where all nodes of one candidate are chosen. The variable crossover rate increases as the proposed
complex feature vector inputted into the classifier gains accuracy. This allows a higher probability
of the candidates in the population to converge more into a smaller solution space. Feature sets
with discriminatory complex features at this stage are encouraged to crossover with other capable
candidates, which aims to increase the chances of convergence on a solution.

Let CRg be the uniform crossover rate, CR; be the one-point crossover rate, CR; be the two-point
crossover rate, and A be the accuracy as a decimal value. Then, the computation is carried out as:

A
CRy = 1 )
CR; = 2CRy (3)
CR, = 2CRy (4)

The denominator of 4 was used to ensure the crossover rate did not exceed 0.25 but maintained
a high chance per node to be exchanged. In addition, the one-point and two-point crossover rates
increase in proportion to the uniform crossover rate. This allows for an increased rate of diverse
crossover, which contributes to a more varied resulting population.

3.3.6. Selection

The selection phase collects the resultant, evolved population and iterates back to the evaluation
phase. During this stage, the GEP model uses simple elitism by automatically carrying and saving
the best candidate from the previous generation into the next. This maintains at least one complex
feature combination with the best current accuracy, allowing the other candidate solutions in the next
generation the opportunity to crossover. A bias is applied through a scaled roulette wheel that favors
candidates with higher accuracy. These solutions will be allowed an increased chance of reproduction
with other solutions.

3.4. SVM-Based Identification

The evaluation of the fitness of each candidate solution vector is handled by a linear support vector
machine (SVM) classifier. Each evaluation score is generated from the mean of 5-fold cross-validations
on the train and test sets, with a random splitting of sample indices. When performing multi-class
prediction, the classifier adopts the One-Versus-Rest (OVR) approach by constructing a binary classifier
for each class, with samples from that corresponding class marked as positive, while all other
classes are negative. The combination stage takes the classifier result with the highest confidence
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score. Preprocessing is vital due to the potential distribution of the complex features produced.
The complex features are preprocessed through standardization and a power transform to resemble
more Gaussian-distributed data. Hyperparameters for the classifier favored classifier accuracy and
speed of classification, as the speed of the classifier is directly correlated to the efficacy of the gene
expression model. A reduced classification time can allow for more extensive feature combinations,
a higher candidate population, and additional generations. Classifier hyperparameters are evaluated
before the GEP implementation.

4. Experimentation and Results

The classification system was implemented in Python 3.5, using the open-source PyGEP 3.5 port
library for the base GEP framework. All experiments were run on a Windows distribution using
an Intel Core i7-8700 @ 3.20 GHz CPU and an Nvidia GeForce GTX 1080 GPU. Six cores, 12 logical
processors, and 16 GB RAM are available to the machine.

The system is tested on a 40,000 Flickr benchmark dataset consisting of 200 users each with
200 labeled favorite images [9]. An overall rate of repeated images chosen by the different users is
0.05%. A large feature vector was extracted and precomputed from the local, perceptual, content and
HOG features. The images are split into a 50-50 distribution of testing and training sets, with different
combinations of these images organized for 5-fold cross-validation. Each image set is composed of
100 images. The 5-fold cross-validation is applied within the image set level, where each fold shuffles
the choice of the images used within the 100 image sets. This ensures that each test and training set is
different between folds.

To evaluate the strength of the computed complex features, the GEP approach was used with
a gene number or complex feature count of 150 on the same classification problem. A termination
condition of 300 generations was used, as the improvement of the produced solution was found to
become stable after this generation count.

The experiments were designed to verify the system’s ability to perform highly accurate
identification reliably and efficiently. The experiments begin with the testing of the optimal generation
and gene count. This configuration is then used to compare the performance of different classifiers,
where SVM produces the best result. Performance metrics for the system including the cumulative
matching characteristic, receiver operating characteristic, and the false positive/negative graphs
are shown. These results are compared to the current state-of-the-art methods, with the proposed
system outperforming the most recent published model in [11] and its reimplemented result. Lastly,
a final comparison shows that the GEP model outperforms other common dimensionality reduction
techniques for the visual aesthetic-based identification problem.

Figure 6 shows a graph of the performance of the system using the SVM classifier for a period of
400 generations. The initial best candidate has a rank 1 identification accuracy of 76%, which increases
to 93% based on steady improvement observed from generation 0 to 200. The intervals of improvement
grow smaller between generation 200 and 300, reaching an accuracy of 95%. Beyond generation
288, no further improvement to the system accuracy can be observed. This is indicative of the GEP
module being unable to find a better solution within a heavily restricted solution space. Even after
100 generations of no improvement, the system with a high variable mutation rate remains unable
to find a better solution in the less restricted solution space. A maximum has been reached, with the
probability of both escaping and finding a better solution low. Therefore, a baseline generation count
of 300 was used.
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Figure 6. Model accuracy over a period of 400 generations.

The choice of gene count was determined empirically, with the results of the experiments shown
in Figure 7. The rank 1 accuracy comparison with the different gene counts is available in Table 2.
Since each gene subtree encodes a complex feature, the gene count parameter determines the number
of complex features in the resulting feature vector. A higher feature count allows for an expanded
solution space with more trainable parameters but is prone to higher generation count required and
difficulty in convergence. A lower feature count is a primary objective of feature dimensionality
reduction, though a feature count that is too low can be unable to capture sufficient discriminatory
information between classes. From these tests, a gene count of 150 proved to result in a system with
the highest accuracy at generation 300.

Gene Count Comparison

100 -

Rank 1 Identification Rate (%)

—— 50 Genes
70 A 100 Genes
—— 150 Genes
65 —— 200 Genes
—— 250 Genes
60 T T T T T
0 50 100 150 200 250 300

Generation Count

Figure 7. Comparison of model accuracy over 300 generations with various gene counts.
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Table 2. Summary comparison of rank 1 accuracy between various gene counts used in the system.

Gene Count Rank1

50 93.4%
100 93.1%
150 95.1%
200 93.7%
250 92.4%

A comparison of the different classifiers is shown in Figure 8. The rank 1 accuracy comparison
with the different classifiers is available in Table 3. K-Nearest Neighbor (KNN), Naive Bayes, Stochastic
Gradient Descent (SGD) Classifier, and Support Vector Machines are compared, with SVM showing
the highest rank 1 identification at 95.1%. The tolerance for the SGD and SVM classifiers were both set
to 0.001, with the SVM set to the linear kernel with a regularization parameter of 0.25. Each classifier’s
decision boundaries can influence the gene expression programming module with every evaluation,
with an effect on both accuracy and model runtime. SVM was found to be the best performing classifier.

Classifier Comparison

100 A
95 A
90 -
85 A
80
75 A
70 A
65 1
60 1
55 1
50
45 1
40 1

Rank 1 Identification Rate (%)

—— KNN (K=1)
Bayes

— SGD

351 — SVM

30 T T T T T
50 100 150 200 250 300

Generation Count

o

Figure 8. Model accuracy comparing different classifiers.

Table 3. Summary comparison of rank 1 accuracy between different classifiers used in the system.

Model Rank 1

KNN 92.3%
Naive Bayes  92.8%
SGD 51.8%
SVM 95.1%

The Cumulative Matching Characteristic (CMC) curve is shown in Figure 9, which displays the
proposed classification system’s accuracy across rank 1 to rank 5 recognition rates. A CMC curve is
a common indication of classifier accuracy, as it displays the correctness at each rank of prediction.
A rank N recognition rate is the probability that the correct prediction is chosen among the top N
matches. The normalized Area-Under-the-Curve (NAUC) of a CMC curve is a performance metric
that gauges accuracy over all ranks for a specific classifier system, where a value of 1 is ideal accuracy.
The system achieves a normalized AUC of 0.9987 among all 200 classes, with a rank 1 recognition of
95.1% and a rank 5 recognition of 98.9%.
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Figure 9. Cumulative matching characteristic curve for the first six ranks, and nAUC for all 200 ranks.

Given the prediction probabilities for the test samples, a CMC curve is constructed by calculating
the rank N recognition rate for each rank. As the system identifies individuals, there are 200 ranks.
This is depicted in the following formula:

Py = Correct identifications within top N matches T, = Size of testing sample )

Rank, Accuracy = L] (6)
Te

The Receiver Operating Characteristic (ROC) curve in Figure 10 shows the relation between a
system’s true positive rate over false positive rate. A high true positive rate and area-under-the-curve
are indicative of a more robust model with less verification error. The false positive/negative graph in
Figure 11 shows the false positive rate (Type I error) over false negative rate (Type II error), along with
the equal error rate (EER). A false positive corresponds to the incorrect acceptance of an unknown
user, and a false negative corresponds to the incorrect rejection of an enrolled user. A lower equal
error rate is desired for a biometric system, as it is less prone to making both types of verification error.
The model exhibits a ROC area-under-the-curve of 0.9964, with an equal error rate of 0.0303.

The equal error rate is the point at which the false positive rate and the false negative rate intercept.
In the context of this multiclass problem, a micro-mean approach is taken, where the ROC and EER
metrics were averaged for all binary class scenarios using the one-versus-rest strategy. The relationship
between the ROC and EER metrics are depicted in the following formula:

True Positives
TruePositiveRate(TPR) = 7
ruePositiveRate( ) False Negatives + True Positives @

False Positives

FalsePositiveRate(FPR) = True Negatives + False Positives ®
) True Negatives
T tiveRate(TNR) =
rueNegativeRa ¢(TNR) True Negatives + False Positives ©)
Fal ti
FalseNegativeRate(FNR) = alse Negatives (10)

~ False Negatives + True Positives
EER = Equal Error Rate = FNRy N FPRy (11)



Sensors 2020, 20, 1133 14 of 19

Reciever Operating Characteristic (ROC) Curve

1.0 [’— —~
0.8
g
© e
o« o
0 0.6 /
2 7
5
o %
o /’
5041
= o
0.2 1
/" —— Micro-mean ROC curve (area = 0.9964)
---- TPR = FPR
0.0 + T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 10. Receiver operating characteristic for all 200 users.
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Figure 11. False positive/negative rates for all 200 users and calculated equal error rate.

4.1. Analysis

Three of the referenced models are compared to the proposed model, with data shown in Table 4.
The experiments were conducted on the same image dataset initially collected by Lovato et al. [9].
The overall classification accuracy of the system increases as classification accuracy is used to optimize
an initially random complex feature set, surpassing the original accuracy seen in [11] while using only
150 computed complex features generated over 300 generations. The 700 principal components used
in [11] is also far higher than the computed feature size in the proposed model. An improvement
of 81.1% percent was achieved over the original 2012 work [9], 22.1% percent over 2014 work [10],
and 11.1% over the most recent work [11] at rank 1. Rank 5 results were also improved. In addition,
the proposed model effectively used 550 fewer features in the resultant feature vector than the most
recent work. The GEP implementation offers high accuracy in these test scenarios by constructing
highly discriminative features that are not bound by only linear combinations of the original feature
set. Using a similar original feature vector size as [11], the usage of GEP and the novel customization of
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its genetic operators have heavily reduced feature dimensionality while increasing the discriminative
ability of the model. The proposed model also surpasses the rank 1 and rank 5 recognition rates of
other state-of-the-art works operating on the same dataset. The dataset used is the largest benchmark
dataset for person identification using visual aesthetics.

Table 4. Summary comparison of rank 1 accuracy, rank 5 accuracy, and number of features with
state-of-the-art works.

Model Rank1 Rank5 Number of Features
Lovato et al. (2012) [9] 14% 51% 62
Segalin et al. (2014) [10] 73% 92% 111
Azam & Gavrilova (2017) [11] 84% 98% 861 (700 PC)
Proposed GEP Model 95.1% 99% 924 (150 CF)

As more improvements are made throughout the generations, the growth in classifier accuracy
decreases as it becomes more difficult to generate further discriminating features without overlap.
More generations are required to fine-tune smaller changes to the feature trees due to the random
nature of the evolutionary operations. It is also important to consider 300 generations as a low count
for typical genetic-based algorithms. The largest expense to the model is the evaluation of every
individual complex feature vector, which takes on average under 10 s. Each generation requires at
most 1 evaluations, along with evaluations required for refitting the classifier. Further tests with higher
generation count, higher population size, or additional complex features can potentially increase
accuracy rates further.

In addition, the state-of-the-art approach presented in [11] has been fully reimplemented in
MATLAB and compared against the proposed model on the same machine, with results shown in
Table 5. The method in [11] uses PCA to generate 700 principal component features and lasso-regression
for classification.

Table 5. Comparison of model time.

Model Rank1 Time Memory
Reimplemented [11] 80.6% 367s 511 MB
Sieu & Gavrilova (2019) [12]  94.1%  6.24s 150 MB
Proposed GEP Model 951%  6.71s 150 MB

The proposed model is shown in Table 6 to have much higher rank 1 and rank 5 recognition
rates when compared to the reimplementation, with an improvement of 14.5% and 1.6%, respectively.
This is indicative of a more accurate classification system, which is a product of the complex features
constructed by the GEP module along with the linear SVM classifier.

Table 6. Comparison of reimplemented [11] and the proposed method.

Model Rank1 Rank5

Reimplemented [11] 80.6% 97.3%
Proposed GEP Model  95.1%  98.9%

In addition, the proposed model is compared with the most recent state-of-the-art methods in
Table 5. The amount of time required to generate and test the aesthetic template of all 200 users given
the feature vector is significantly lower with the proposed model at 6.71 s. This difference is likely due
to the efficiencies of the linear SVM in classifying this distribution of observations and the smaller
dimensions of the complex feature vector compared to the PCA feature vector. The smaller complex
feature vector when stored only requires 150 megabytes (MB), which is much less than the 511 MB
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required for the reimplemented approach. The proposed model has higher rank 1 accuracy when
compared to the recent conference results by 1%, with similar time and memory requirements.

Additional tests are shown in Table 7 that display the performance of the classification system
with different types of dimensionality reduction techniques. All techniques were set to output
a reduced dimensionality of 150 from the original 924 feature vector for accurate comparison.
Independent component analysis discovers statistically independent components of the feature set
through maximizing rotated component non-Gaussanity. Factor analysis searches for underlying latent
variables that describe observed variables by considering joint variations or factors. Lastly, principal
component analysis extracts linear combinations of the feature vector that explain the most variance.
It is shown that the proposed GEP module reduces the components while also increasing the accuracy
of the original feature set over other existent dimensionality reduction techniques. When applied on
the 924-feature set, the GEP module reduced dimensionality to 150 components while having a 16.2%
increase in rank 1 accuracy over using PCA.

Table 7. Comparison of different dimensionality reduction techniques and the proposed GEP module.

Dimension Reduction Method Rank1 Features
Independent Component Analysis (ICA)  64.4% 150
Factor Analysis (FA) 76.4% 150
Principle Component Analysis (PCA) 78.9% 150
Proposed GEP Model 95.1% 150

Summarizing the performed experiments, both the rationale and the performance of the system
have been validated. First, it was discovered that a gene count of 150 performed the best among a
set range of different gene counts. This gene count translates to 150 complex features, as each gene
subtree encodes one complex feature. Using 150 complex features, the GEP model outperformed
common dimensionality reduction techniques such as Independent Component Analysis, Factor
Analysis, and Principal Component Analysis when applied to the same feature space. Different
classifier configurations are tested with the model, with a Support Vector Machine-based classification
outperforming K-Nearest Neighbor, Naive Bayes, and Stochastic Gradient Descent. The Cumulative
Matching Characteristic curve establishes the system’s consistently accurate performance across
ranks and a normalized Area-Under-the-Curve of 0.9987. A Receiver Operating Characteristic
Area-Under-the-Curve of 0.9964 and an Equal Error Rate of 0.0303 proves the system’s robustness
and low chance of misidentification. The proposed system achieves a rank 1 accuracy of 95.1% and
arank 5 accuracy of 98.9%. The time and memory required for this system are much lower than the
reimplementation of the most recent state-of-the-art method. The results prove that the proposed
model outperforms the state-of-the-art visual aesthetic identification methods in accuracy, speed,
and storage required.

5. Conclusions and Future Works

This article presents the most comprehensive study to date on the use of aesthetic-based
human traits expressed through human-machine interaction for biometric identification. It answers
the research question of whether a new algorithm can be developed based on gene expression
programming that can significantly outperform previous approaches for aesthetic-based human
identification. The research demonstrated on a large dataset through extensive experimentation
that GEP is an effective method for feature extraction in visual aesthetic identication and that the
proposed model reduces the number of features required for identification while also increasing the
overall recognition rate. The method reduced the dimensionality of the large original feature set
while achieving rank 1 and rank 5 accuracies of 95.1% and 98.9%, respectively. The time and memory
requirements have also been shown to be lower than in the previous methods.
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This study opens new avenues in harvesting rich information provided during human-machine
interaction, where human aesthetics plays a vital role in selecting favorite images. A more thorough
investigation into the model implementation may allow the opportunity for further optimizations
in system performance through the use of extensive parallelism. In addition to system complexity,
the selection, mutation, and crossover strategies can be further developed to increase the robustness
and the accuracy of the converged solution. On a broader level, the exploration of alternative ways of
human-machine interaction based on other aesthetics, such as music and touch, can be performed
for the development of more comprehensive human-machine interfaces as well as more versatile
security systems.
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