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Abstract: Recent advances in myoelectric controlled techniques have made the surface
electromyogram (sEMG)-based sensing armband a promising candidate for acquiring bioelectric
signals in a simple and convenient way. However, inevitable electrode shift as a non-negligible defect
commonly causes a trained classifier requiring continuous recalibrations. In this study, a novel hand
gesture prediction is firstly proposed; it is robust to electrode shift with arbitrary angle. Unlike
real-time recognition which outputs target gestures only after the termination of hand motions,
our proposed advanced prediction can provide the same results, even before the completion of
signal collection. Moreover, by combining interpolated peak location and preset synchronous
gesture, the developed simplified rapid electrode shift detection and correction at random rather than
previous fixed angles are realized. Experimental results demonstrate that it is possible to achieve both
electrode shift detection with high precision and gesture prediction with high accuracy. This study
provides a new insight into electrode shift robustness which brings gesture prediction a step closer to
practical applications.

Keywords: simplified rapid correction; electrode shift; hand gesture prediction; sEMG; synchronous
gesture

1. Introduction

Hand gesture serves not only as an auxiliary enhancer of reinforcing information delivery in
human conversations, but also as a primary method for transferring instructions with human–computer
interaction devices [1]. The capability of machines to recognize distinctive gesture characteristics
can be harnessed in a wide variety of applications [2,3]. The fast growing characteristic of surface
electromyogram (sEMG) has made it a promising candidate for hand motion detection, recognition or
even prediction (as bio-signal sensing technique is). While the sEMG signal cannot be solely utilized
in discriminating dynamic or spatial hand gestures [4], it has particular advantages of non-invasive
sensing and decoding fine muscular activity simply and directly. Additionally, compared with
vision-based approaches which could be greatly affected by background illumination and complexity
or other external factors [5], the sEMG signal can also provide a responsive way which is capable of
eliminating interference by ambient light and noise to take full control of a prosthesis [6].

By attaching certain sets of electrodes to the skin, sEMG signals are typically recorded via electrical
activities such as muscle contraction. Different hand gestures activate specific muscular regions; thus,
hand or fingers movement intentions can be identified while performing multiple ones [7]. However,
there are usually classification errors due to an electrode shift and when the wearing position may
deviate from that of previous use [8]. Recent advances in wearable sEMG sensors (e.g., sEMG armband)
have facilitated the process of bioelectrical signal acquisition, whereas electrode position should be
consistent in case of reducing the classification accuracy [9]. The position-dependent properties of
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such bioelectrical signals are the critical challenge to make recognition performance less interference
with subtle or larger position change during practical use.

The conventional solutions to address the above classification issues can be categorized into two
basic strategies: training the classifier for general or individual [10]. General recognition classifiers are
trained with a standard and open-access but sample-limited dataset which requires implementing
the same electrode configuration to allow data collection regularization. To further train and test the
general recognition systems, the sensing armband ought to be placed on the exactly unaltered position
which seems unlikely to achieve in actual applications [11]. In comparison to general classification
models, although training an individual classifier does not need to have a pre-defined consistent
wearing style, its model has to be retrained and retested on every new session [12]. Take into account
user experience; a previous case study implies that amputees who have to refresh prothesis up 3.2
times per day are willing to recalibrate the classifier no more than every 2.4 h [13]. Therefore, selecting
an optimal training strategy and minimizing calibration times are the key concerns which should be
addressed in priority.

However, there has been little systematic literature that focus on exploring the effective solutions
to ring-armband position-changed issues. A previous study published by Zhang et al. [14] indicates
that sensor rotation strongly deteriorates the accuracy of classification model training by signals
acquired from one position. Specifically, the proposed model can only make rotating correction and
remapping of every 45◦. Li et al. [15] initially established a polar coordinate to measure shifting angles,
whereas predicted rotating resolution limits to ± 45◦ as well. Steinhardt et al. [16] take advantage
of particular time-domain features (e.g., mean absolute value) to repeatedly characterize orientation
shift between initial and new wearing position. Vimos et al. [10] adopted one training set that was
acquired from the same suggested position; the involved model can only present higher accuracies on
π/4-based positions.

Furthermore, to our knowledge, many state-of-the-art research regarding real-time improvement
of hand gesture recognition still only pay attention to investigate the critical parameters which may
cause human perceivable delay [17]; for example, feature [18,19] and classifier selection [20–24].
However, their common trait is that the following data processing procedures have to wait until
sEMG recording is finished (i.e., motions ended). Although recognition technologies present good
real-time performance [25,26], there is an inherent flaw–procedure separation of signal acquisition and
processing as indicated above. So, the method of conducting data preprocessing and extracting features
while bioelectrical signals are being collected is a novel point to gain a decent real-time response,
endowing the model with the capacity of gesture prediction.

In this paper, we firstly report a hand gesture prediction model with an emphasis on estimating
electrode shift effects to provide a new insight into wearing-independence based on an sEMG armband.
The main contributions of our work are as follows:

1. the proposed model enables advanced predictive capability via an improved artificial neural
network (ANN) substantially, which could output predicted results in 338 ms from hand gestures
start, with above 94% accuracy;

2. the developed method allows electrode displacement detection at random angles rather than
conventional fixed coarse resolution, capable of satisfying actual requirements;

3. this system can make simplified rapid correction according to electrode shift.

As a demonstration of our proposed solution’s utility, we randomly conduct eight independent
experiment sessions over time in which the subjects could perform various wearing styles. The method
of effectiveness and robustness to ring–electrode rotation, together with a predictive classifier, show
promising potential in making hand gesture recognition or even prediction more applicable in practice.

We describe the materials and methods in Section 2; in Section 3, the experimental results
demonstrate the decent performance both of electrode shift detection and improved ANN-based hand
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gesture prediction. Finally, we will discuss the novelty of our proposed prediction model and shift
correction strategy, then give a brief conclusion.

2. Materials and Methods

There are two primary objectives of this work: 1. To investigate the optimal strategy for correcting
electrode rotation shift with an arbitrary angle; 2. To realize hand gesture prediction. By means of a
wearable armband mounted around the forearm, we are able to access raw sEMG data from either
initial suggested or new shifting positions. Then, the raw acquired signal data can be preprocessed,
including data normalization; low-pass filtering for removing sEMG noise is used to make the collected
information more representative of target gestures.

Meanwhile, for reducing electrode shift, the proposed method underlying robustness to the
position-shifted model contains four basic procedures, including electrode shift identification by
interpolated peak location (IPL), signal matrix rearrangement, three-standard shifting training and
multi-session prediction testing, as shown in Figure 1. It should be noted that the trained model
combining majority voting needs to output target gestures before motion is finished. The involved
sEMG sensing device, developed rotating correction and hand motion prediction method will be
described in detail as follows.
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Figure 1. Scheme of adaptive channel shift strategy using preprocessed data plus improved ANN
classifier with majority voting method. The electrode shifting position can be identified only using the
predefined synchronous gesture, and once the changed configuration is established during acquiring
training data from three representative wearing positions, the subject does not require further recalibrate
the algorithm on one session.

2.1. Electrode Registration and Data Acquisition

All experiments are conducted with ten able-bodied subjects (two females included, 24 ± 1.5 years)
by Myo armband, a commercially available sEMG sensor, which consists of eight circular-distributed
bipolar dry electrodes. This sensor is capable of normally measuring forearm muscular electrical
activity with a sampling frequency of 200 Hz. Additionally, the collected sEMG data can be transmitted
to host computer (OS: Windows 10; CPU: i7-9750H; RAM: 16 GB) via built-in Bluetooth in real time;
then, with a front panel graphical user interface for data display and via MATLAB for next data
processing and analysis.

For data preprocessing and segmentation, we implement an initial data process on the smoothed
signals with marking the region of muscular activity. This practice is achieved by calculating the
energy spectrum using short-time Fourier transform (STFT), which can eliminate inactive intervals
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and keep effective information. Then, we employ sliding windows to convert signal data into
feature vectors. The window length in this study is 200 ms with a step of 5 ms, and every sliding
window can automatically align with the onset of the muscular activity region and slide along the
processing direction.

2.1.1. Standard Configuration and Initial Position Designation

The armband manufacturer recommends a specific wearing style as standard configuration;
the logo-printed channel (channel 4 or CH4) should be approximately aligned with subject’s middle
finger, as illustrated in Figure 2a. To avoid more variables while acquiring signals and make contrast
with previous studies, we designate the above-suggested configuration as the initial position for the
next rotation shift analysis.
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Figure 2. Scheme of standard electrode configuration and applied hand gestures. (a) Logo channel,
also defined as CH4 is suggested to be aligned with middle finger. (b) Red-marked synchronous
gesture, WE is used to identify electrode shift. Here hand closed (HC), hand opened (HO), wrist
extension (WE), wrist flexion (WF), double tap (DT) and no movement (NM).

2.1.2. Employed and Synchronous Gesture Definition

Six typical hand gestures (Figure 2b) are employed with the Myo armband, including hand closed
(HC), hand opened (HO), wrist extension (WE), wrist flexion (WF), double tap (DT) and no movement
(NM). Subjects were asked to finish each gesture in 2 s. Specially, we also define a synchronous gesture
(WE) to predict the rotation angle at onset of each independent session, and the above synchronous
operation is merely required to be performed once.

2.1.3. Training and Testing Dataset Organization

To realize correcting rotation shift with arbitrary angle and build a user-specific model using
minimum training data, we took three representative positions to perform these selected gestures.
It should be noted that every single gesture (gesture NM included) only comprises five repetitions.
To evaluate the trained ANN classifier, subjects were required to repeat each gesture (gesture
NM excluded) 15 times in one independent session regardless of wearing style; the testing set
consists of eight sessions over time. For every repetition, the subjects started with his/her arm
relaxed, and then performed designated gestures, then returned to the initial relax position. Notably,
before performance evaluation, sEMG data acquirement from three training wearing positions was
conducted independently.

2.2. Electrode Shift Detection Based on IPL and Synchronous Gesture

Although sEMG signals can be recorded in a simple-operated way, the properties of non-linearity
and non-stationarity are considered to be barriers to the achievement of high classification accuracy [27].
Inspired by feature-based methods, we attempted to take advantage of optimal feature to quantitatively
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measure electrode shift during session switching. That is, the shifted electrode position can be corrected
to standard configuration only when the shift angles are confirmed, then feed the proofed data to a
trained ANN classifier to make gesture predictions. To address this problem, we propose a specific
gesture based on a signal synchronization method [28] that can activate minimum muscular regions as
muscle contraction. This work uses IPL to detect the maximum interpolated amplitude via the sum of
preprocessed data in each sensing channel, and then the interpolated curve can be plotted using a
cubic spline interpolation as shown in Figure 3a.
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Figure 3. Scheme of initial position on right forearm and IPL by WE. (a) Based on sum of each channel
signal, the interpolated curve can be plotted using a cubic spline interpolation, and the shifting angle
can be represented as red-marked point (130◦). (b) One full electrode position range is divided into 45◦,
and the tolerance of Standard Space is increased to ± CH4 as red-dotted zone.

Concerning the proposed rotation shifting prediction strategy with high accuracy of arbitrary
angle, there is a need to increase the position-correction tolerance of the present model. Therefore,
Standard Space is defined to regularize, and then we make a rearrangement of the raw signals allowing
the position detection model to be robust to sensor shift. After electrode shifting status is assured,
the raw channels will be transformed to Standard Space, which are ordered by the highest sum channel
using IPL. Moreover, we choose WE to serve as the synchronous gesture since both maximum signal
value and data sum consistently concentrate in one specific channel. Experimentally, the tolerance of
Standard Space is increased to ± CH4 (Figure 3b). To further identify the specific offset orientation
with arbitrary angle, we apply the maximum data value of interpolated amplitude to represent
electrode shift.

We also provide a schematic view (Figure 3a) to illustrate that the synchronous process can be
activated by gesture WE, as shown in the blue-dotted zone. Meanwhile, the shift-corrected angle at a
new position can be expressed precisely as 130◦ rather than the initial CH4 angle (135◦). Specifically,
raw sEMG signals acquired from the sEMG sensor are represented as [29]:

I(n) = (I1(n), . . . , I8(n))
T (1)
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Each employed gesture takes 2 s with the Myo armband which normally works with a sampling
rate of 200 Hz, that is, it contains 400 items of minimum measurement unit I(n). It is defined as:

Sn = (I(n− 399), . . . , I(n))T
∈ R400×8 (2)

Moreover, signal preprocessing can be expressed as:

F = Ψ[abs[Sn]]
400×8 (3)

where Sn is raw sEMG data acquired in 2 s, Ψ represents a 4th order low-pass Butterworth filter with
a cutoff frequency of 5 Hz. We can add the items in each column to seek the highest sum of signal
channel data (NCH4) which is defined as:

NCH4 = max
(∑

F(1), . . . ,
∑

F(8)
)1×8

(4)

2.3. Data Rearrangement

By means of the above electrode shift detection using IPL, the armband rotating position can
be confirmed and transformed to Standard Space. Therefore, the shifted degree can be expressed
via the offset angle whose channel possesses maximum interpolated amplitude relative to initial
electrode configuration. To correct the interfered sEMG samples, signal data have to be rearranged to
Standard Space. The correction procedure is only done once at the onset of each experiment session by
performing synchronous gestures. The rearrangement method can be briefly described by establishing
a polar coordinate as illustrated in Figure 4, and all the sampling points which are collected in one
gesture duration (2 s) are present in eight polar axes in steps of π/4, respectively. Then, the identified
peak signal polar can be rotated counterclockwise to 3π/4, and the shifted channel satisfies the definition
of Standard Space.
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Figure 4. Polar scatter of every sampling point in each sensing channel on 8 polar axes. Raw channel is
transformed to shifted channel according to maximum channel amplitude.

Applying the above rearrangement strategy, shifted position P’ can be transformed to Standard
Space by raw position P as calculated in the following:

P(mod(k+n−4, 8)) → P
′

, n = 1, 2, . . . , 8 (5)

Similarly, shifted sEMG data I’(n) of each electrode channel can be expressed as:

I(mod(k + n− 4, 8)) = I
′

(n), n = 1, 2, . . . , 8 (6)
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where k is the channel of maximum interpolated amplitude, mod means the remainder after division.
Supposing k is 2 (instance as Figure 4), the relation between raw and shifted channel is listed in Table 1.

Table 1. The relation between raw and shifted channel.

Electrode Position sEMG Rearrangement

2→ 4 I(2) = I’(4)
3→5 I(3) = I’(5)
4→ 6 I(4) = I’(6)
5→ 7 I(5) = I’(7)
6→ 8 I(6) = I’(8)
7→ 1 I(7) = I’(1)
8→ 2 I(8) = I’(2)
1→ 3 I(1) = I’(3)

2.4. Training Set Selection

The above shift detection and correction allow the raw shifted data to transform to the unified
sEMG data arrangement on Standard Space. By means of these data, we can train one classifier without
taking random shift conditions into consideration. To evaluate the shift-corrected performance at
various sessions over time, we employ the above strategy of shift detection and data rearrangement,
and set the criterion of whether the corrected position presents under the tolerance of Standard Space
(i.e., ± CH4 or 135◦ ± 22.5◦). As shown in Figure 5a, the corrected rotation offsets among all testing
sessions are confined to Standard Space. Meanwhile, we also select three representative wearing
positions (close to 135◦ and 135 ± 22.5◦) to organize the training set (Figure 5b).
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2.5. ANN-Based Hand Gesture Prediction

Five time-domain features are selected for further extracting characteristic information from
preprocessed data, including mean absolute value, root mean square, slope sign change, wave
length, and Hjorth parameter. For outputting predicted gestures before motions are finished and
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decreasing spurious misclassification errors, we add postprocessing to the last link of prediction system.
By combining the majority voting method [30], every sliding window (200 ms or 40 sampling points)
generates one specific code in accordance with predefined gestures via the prediction function of
educated classifier. Then, the current window shifts into the next with the step of 5 ms. If the gestural
labels accumulate to the threshold (55), the postprocessing terminates.

Our forward-propagation ANN model is implemented with three layers and trained by using
full batch gradient descent with cross-entropy cost function, and applied regularization using weight
decay (λ = 150). The number of input layer nodes is 376, that is, the product of one sliding window
length and total channel number (40 × 8 = 320), plus features extraction functions creating a vector of
56 features (7 × 8 = 56), corresponding to the length of feature vectors. Meanwhile, we take the size
of a hidden layer to be half of the input one using the tanh transfer function [12]. Moreover, we set
six nodes on the output layer in order to correspond to the six pre-defined gestures (including NM).
The specific prediction procedure will be detailed at the Algorithm 1.

Algorithm 1. ANN-based prediction model.

Input: F′
(n), T(n) ← corrected sEMG & testing set

Output: 1, 2, 3, 4, 5 ← gesture code
1: initialize s; // where s denotes stride length
2: initialize ξ(X); // where ξ(X) denotes time-domain features bag function;
3: training process: extract features from F′

(n) using ξ(X) to form (Fi, Li)← ξ(F′
(n))

// where Fi and Li denote feature vector and corresponding label vector, respectively
4: compute weight decay && employ regularization to F← (Fi−µ)

σ
5: apply (F, Υ) to classifier, and form classifier.predict
6: for each windowed T(n), feed ξ

(
T(n)

)
to classifier for predicting gesture code

7: count number of different generated code to form n
8: if n == preset threshold of outputting gesture, then

get the predicted gesture code, else return None

3. Experimental Results

3.1. Prediction Accuracy with Electrode Shift Correction

Applying the above electrode shift correction strategy, Figure 6a shows the overall classification
accuracy for all gestures with various sessions. For each group of presented hand gestures,
the corresponding prediction results are much better than the control groups in Section 3.2. The highest
and lowest precisions for hand motions are WF (98.6%) and HO (88.8%), respectively. With respect to
sensitivity, the gesture HO has the highest rate (96.2%) and WF has the lowest (93.1%). Furthermore,
Figure 6b highlights the developed prediction model for the responsive superiority with an averaged
response time 338 ms. It should be noted that this prediction procedure starts at the onset of hand
motion, and terminates at the corresponding response time. Therefore, the prediction results can be
presented before gestures are completed, eliminating external device delay as perceived by users [31].

3.2. Accuracy Improvement on Electrode Shift

In this study, we also explore the governing parameters that may significantly influence the
prediction accuracy, including the number of wearing positions during training data acquisition.
The gesture prediction accuracy comparison between electrode shift corrected and non-corrected
situations is summarized as shown in Table 2. Specifically, as for non-correction of electrode shift,
the lowest and highest accuracy improvements are SUB #3 (12.0%) and SUB #04 (71.7%), respectively.
This is probably because of distinctive wearing styles and forearm girths among individuals.

Moreover, the OVERALL row of Table 2 indicates that the system performance will decrease
dramatically (fall from 94.7% to 51.4%) without proposed correction strategy. The averaged prediction
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results with one specific wearing style also shows an accuracy of 72.0% (also a drop from 94.7%), which
is not up to the standard of real applications.Sensors 2020, 20, x FOR PEER REVIEW 9 of 14 
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Table 2. The classification accuracy for all gestures with different experimental sessions.

M1 M2 M3 C1-3 C2-3

SUB #01 73.7 55.3 94.0 20.3 38.7
SUB #02 69.8 78.3 94.0 24.2 15.7
SUB #03 79.3 72.0 91.3 12.0 19.3
SUB #04 21.3 60.0 93.0 71.7 33.0
SUB #05 60.8 59.5 96.2 35.4 36.7
SUB #06 28.2 89.0 97.5 69.3 8.5
SUB #07 48.5 63.2 90.7 42.2 27.5
SUB #08 34.2 81.3 95.7 61.5 14.4
SUB #09 36.5 78.2 96.8 60.3 18.6
SUB #10 61.5 83.5 98.2 36.7 14.7

OVERALL 51.4 72.0 94.7 43.3 22.7

M1 represents the method without using proposed electrode shift correction strategy; M2 stands for the method
merely using 1 wearing position to acquire training dataset; M3 represents our proposed shift-correction strategy
based on improved ANN; C1-3 stands for prediction accuracy lifting compared M3 with M1; C2-3 stands for prediction
accuracy lifting compared M3 with M2. Unit: %.

3.3. Synchronous Gesture Selection Varies Accuracies

A comparison is also made in this work among different gestures to emphasize the significance of
selecting the appropriate synchronous gesture. From Table 3, a certain prediction accuracy of lifting
varies among subjects and could be easily realized while shifting from gesture WF to WE; the overall
accuracy is improved by 34.2%.
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Table 3. The classification accuracy for all gestures with different synchronous gestures.

S1 S2 C1-3

SUB #01 42.7 94.0 51.3
SUB #02 61.7 94.0 32.3
SUB #03 80.5 91.3 10.8
SUB #04 29.7 93.0 63.3
SUB #05 33.0 96.2 63.2
SUB #06 29.8 97.5 67.7
SUB #07 71.3 90.7 19.4
SUB #08 84.7 95.7 11.0
SUB #09 72.5 96.8 24.3
SUB #10 98.7 98.2 −0.5

OVERALL 60.5 94.7 34.2

S1 represents the shift correction method by WF; S2 stands for the method by WE; C1-3 stands for prediction accuracy
lifting compared S2 with S1. Unit: %.

4. Discussion

With the considerable advancements and a broad range of applications of sEMG-based technologies,
myoelectric-controlled terminals (e.g., prostheses) have pointed out more greater requirements for
real-time system responses, simplified rapid error-correction and high recognition or even prediction
accuracy. Specifically, in clinical scenarios, it is inevitable that the electrode shift happens during
the sEMG sensors being taken on and off, which will definitely cause degradation of classification
performance [32]. Thus, this study reveals that the electrode displacement correction of an arbitrary
angle is a crucial necessity to enhance robustness on hand gesture prediction.

4.1. Governing Parameters Varies Accuracies

In this research, we analyze the governing parameters that may cause degradation of prediction
performance without correcting electrode shift and selecting enough training sets or appropriate
synchronous gestures. From the analysis of the given clues, it is more obvious that the classification
accuracy for all gestures among different experimental sessions are all improved to varying degrees.

Meanwhile, as for selecting an appropriate number of training wearing positions, solely taking
advantage of one preset electrode arrangement whose electrode position is almost or exactly the same
as the standard configuration presents lower accuracy than choosing three positions. That is, there is
an accuracy lifting that appropriately chooses more training positions which can enable prediction
model to better cope with the electrode shift with arbitrary angles.

Obviously, as Figure 7 illustrates, there are two activation muscular regions while performing WF,
whereas WE only presents one activation region which could minimize interference in shift detection.
Notably, the signals from non-boxed channels can be filtered at preprocessing; however, other hand
motions involved in this paper always possess rather complex sEMG characteristics which is hard to
be filtered effectively.

4.2. Performance of Electrode Shift Correction

There is a large volume of literature published regarding non-shift occurrences, and various
classification methods and data processing strategies have been applied on gesture recognition with
decent performance. However, electrode shift should be considered together with practical use, and
this factor influencing accuracies have been shown by less studies as listed in Table 4. As Table 4
shows, the sEMG armband and high-density electrodes are the primary sources to obtain raw acquired
bioelectrical signals. Note that resolutions of electrode displacement correction in previous studies
range roughly between 22.5◦ to 45◦, or 1 cm or 2 cm shift, thereby showing much resistance towards
clinical or practical deployments.
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Table 4. The results of different hand gesture recognitions.

Task Work Electrode Channel Classifier Gesture Response Time Resolution of Shift
Correction Accuracy

Advanced
prediction OUR dry 8 ANN 6* 338ms (< GD) arbitrary angle 94.7%

Traditional
recognition

Li et al. [15] dry 8 SVM 8* GD+ fixed (45◦) 78.4%
Vimos et al. [10] dry 8 SVM 6* GD+ fixed (45◦) 92.4%

Steinhardt et al. [16] dry 8 SRC 6* GD+ fixed (22.5◦) 95.7%
Zhang et al. [14] dry 8 RF 15 GD+ fixed (45◦) 91.5%

Lv et al. [33] SA 192 SAE 10* GD+ fixed (1-cm shift) 85.0%
Fan et al. [34] SA 30 LDA 11* GD+ fixed (1-cm shift) 88.2%

Yang et al. [35] dry 8 CNN 10* GD+ fixed (45◦) 63.2%

* Note: SA (self-adhesive electrode); GD (gesture duration); n* represents total gesture number, including
no-movement (NM).

Meanwhile, the response time (i.e., real-time performance evaluation) of recognition systems
has not been investigated via related algorithms, reducing the introduction of gesture prediction
techniques. The proposed strategy for correcting electrode displacement endows the model with the
ability of shift detection with any arbitrary angle. Various experiments also demonstrate that the preset
hand motions could be accurately identified, no matter how electrode rotation is offset away from
the standard configuration. The main breakthrough also presents gesture prediction which evidently
achieves high real-time classification accuracy.

4.3. Performance with Gesture Prediction

The final experimental result is related to the evaluation of predictive accomplishment via
our improved ANN-based gesture prediction model. The postprocessing using majority voting
compensates for the device intrinsic delay, which highlights the superiority of the prediction strategy.
In the specific classification case of postprocessing, the trained classifier will generate one gesture code
or label corresponding to one certain target hand motion in the same step of sliding window processing,
then the output labels are added up to calculate the sum of each emerged gesture code. Eventually,
the present model determines the final predicted gesture depending on which cumulative result
reaches the threshold first. The scheme implementation superiority of majority voting for predicting
rather than recognizing is not needed to obtain the entire part of the sEMG signals, which provides
proof of the high real-time performance based on our improved data processing method.
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Besides, compared with the strategy of conventional training and testing dataset segmentation,
the current work focuses on implementing the proposed prediction model plus electrode shift detection
in real scenarios. We believe that this novel strategy could provide a proof-of-concept for an innovation
in organizing acquired bioelectrical data, to better stimulating practical application and evaluating
classification performance.

5. Conclusions

In this research, we firstly propose a novel strategy for enhancing robustness to electrode
displacement with any arbitrary angle on hand gesture prediction. Compared with traditional
shift-correction methods with fixed coarse resolutions, the developed method allows electrode
displacement prediction to be performed at random angles via IPL and synchronous gestures.
In addition, our improved ANN-based model has dramatically improved hand gesture prediction by
combining majority voting. This study also provides a new insight into a simplified rapid correction
strategy on electrode shift with the promising potential in practical applications.
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