
sensors

Article

Autonomous Dam Surveillance Robot System Based
on Multi-Sensor Fusion †

Chao Zhang 1, Quanzhong Zhan 1, Qi Wang 2,*, Haichao Wu 2, Ting He 1 and Yi An 3

1 Information Center of the Ministry of water resources of the P.R.C, Beijing 100053, China;
zhangchao@mwr.gov.cn (C.Z.); zcqcz@mwr.gov.cn (Q.Z.); heting@mwr.gov.cn (T.H.)

2 Beijing Tritalent Intelligence Technology Co., Ltd., Beijing 100078, China; wuhaichao@tritalent.cn
3 School of Control Science and Engineering, Dalian university of technology, Dalian 116024, China;

anyi@dlut.edu.cn
* Correspondence: wangqi@tritalent.cn
† This paper is an extended version of our paper published in Zhang, C.; Wang, Q.; Zhan, Q.; He, T.; An, Y.

Autonomous System Design for Dam Surveillance Robots. In Proceedings of the IEEE Smart World
Congress, Leicester, UK, 19–23 August 2019.

Received: 31 December 2019; Accepted: 12 February 2020; Published: 17 February 2020
����������
�������

Abstract: Dams are important engineering facilities in the water conservancy industry. They have
many functions, such as flood control, electric power generation, irrigation, water supply, shipping,
etc. Therefore, their long-term safety is crucial to operational stability. Because of the complexity of
the dam environment, robots with various kinds of sensors are a good choice to replace humans to
perform a surveillance job. In this paper, an autonomous system design is proposed for dam ground
surveillance robots, which includes general solution, electromechanical layout, sensors scheme,
and navigation method. A strong and agile skid-steered mobile robot body platform is designed and
created, which can be controlled accurately based on an MCU and an onboard IMU. A novel low-cost
LiDAR is adopted for odometry estimation. To realize more robust localization results, two Kalman
filter loops are used with the robot kinematic model to fuse wheel encoder, IMU, LiDAR odometry,
and a low-cost GNSS receiver data. Besides, a recognition network based on YOLO v3 is deployed to
realize real-time recognition of cracks and people during surveillance. As a system, by connecting
the robot, the cloud server and the users with IOT technology, the proposed solution could be more
robust and practical.

Keywords: water conversancy robot; dam surveillance; autonomous navigation; fusion localization

1. Introduction

In the water conservancy industry, there are many fundamental engineering facilities, such as
dams, water and soil conservation, water transfer project, shipping project, water supply project,
hydraulic power plants, irrigation facilities, etc. Big water dams are the most comprehensive facilities.
They always have many functions, such as flood control, electric power generation, irrigation, water
supply, shipping, etc. [1]. Therefore, the safety of big dams is crucial to cities and people around.

In the past, staff must check the environment, structure, and electromechanical facilities of dams
regularly every day. This is a necessary way of keeping the dam running safely. However, it cannot
realize all-weather all-day monitor and sometimes staffs are at risk since most dams are constructed in
remote rural areas. Nowadays, with the great improvement of robot technology, robots have been
used in public safety, security check, disaster rescue, and high-voltage lines inspection [2–5]. Many
researchers and engineers are also paying attention to utilize underwater robots, unmanned aerial
vehicles, unmanned surface vehicles for dams’ surveillance and inspection.

Sensors 2020, 20, 1097; doi:10.3390/s20041097 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-2794-8830
http://dx.doi.org/10.3390/s20041097
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/4/1097?type=check_update&version=2

Sensors 2020, 20, 1097 2 of 19

However, applications of ground mobile robots are very rare. It is not easy for a ground robot
to do the dam surveillance job autonomously. Firstly, the working places for most dams are off-road
terrains, which needs a small, powerful, and agile robot mechanics design. Secondly, the GNSS satellite
signal cannot fully cover all working area. The robot is difficult to continue path planning without
accurate position information. Besides, to make a comprehensive check for a dam, the robot needs
carry kinds of sensors. The robot must be capable of real-time data analyzing. In addition to the above,
the robot system has to be low cost and robust.

In the autonomous robot area, simultaneous localization and mapping (SLAM) technology has
been applied in many practical robot applications, especially laser SLAM. Researchers have proposed
many laser-SLAM algorithms to build 2D/3D maps and realize localization [6,7]. Visual odometer (VO)
is another hot topic in this area [8,9]. Cameras are relatively cheap and visual algorithms could show
better performance in some environments. Many path planning methods are also being proposed
to solve the obstacle avoiding problem [10,11]. The navigation technology now is ready for mobile
robot design. Developing an autonomous dam surveillance robot system presents a wide variety of
challenges. The robot should move on all kinds of ground surfaces and sometimes should move on
narrow spaces. GNSS signal cannot cover all the work areas and it is difficult to acquire an accurate
position. Online real-time inspection should be applied to the robot and the inspection algorithms
should work with small computing resources.

This paper presents a general system for the mobile robot, which includes the robot, the cloud
server, and terminals. The system can watch surveillance jobs status and can control the robot remotely
when an emergency. As the robot body itself, we design a small powerful wheeled skid-steering
mobile platform. Compared to alternative wheel configurations such as Ackerman or axle-articulated,
the skid-steering platform shows two major advantages. First, it is simple and robust in mechanical
terms. Second, it provides better maneuverability, including zero-radius turning. After analyzing the
kinematic model of the skid-steered robot, we can estimate wheel odometry well with an onboard
IMU (inertial measurement unit).

In this paper, a low-cost LiDAR sensor is used for laser odometry. This Livox MID40 LiDAR is
a high-performance low-cost LiDAR sensor easily available. However, the LiDAR only has a 38.4◦

FOV and has a novel non-repeat scan mode, which differs a lot with common laser rangefinders.
The method LiDAR odometry and mapping (LOAM) is adopted here for odometry estimation from
its point cloud data. The method here avoids high computing burden since we only use the data
for odometry calculation, not for real-time mapping. Besides, the robot was equipped with a GNSS
receiver and an IMU. Therefore, we have position data from different sources: the LiDAR odometry,
the longitude and latitude data, the wheel odometry and IMU measured data. To build a robust
and fast localization system, we designed two extended Kalman filter (EKF) nodes. The first EKF
node fuses IMU data, wheel odometry, LiDAR odometry to get robot transform in the inertial frame.
By running it on the robot STM32 MCU board, we can ensure the fusion has real-time performance
with high frequency. The second fuses results of first node, IMU data, longitude and latitude data to
get robot transform in the world frame. The second node is running on the upper PC. The longitude
and latitude data would be the observer position when the GNSS signal is good. After the position is
acquired, we use a dynamic window approach (DWA) algorithm to do motion planning.

The paper is organized as follows. Some related work on robot control, fusion localization, object
detection methods is summarized in Section 2. The general robot design is shown in Section 3. The
mechanical design and control of the mobile robot can be seen in Section 4. All mounted sensors would
be introduced in Section 5. Localization solution and some practical results could be found in Section 6.
The online detection method is described in Section 7. Finally, a short conclusion is given in Section 8.

2. Related Work

To solve the dam surveillance and inspecting the problem, many robotics and sensor technologies
have been deployed. A GPS-based surveillance robot is proposed in [12] to monitor the exterior

Sensors 2020, 20, 1097 3 of 19

deformation of the dam. A mechanically scanned imaging sonar (MSIS) is used for locating the
underwater robot relative position for dam wall surveillance [13]. Many researchers utilized UAVs for
dam image collecting and modeling, which is low-cost and convenient [14,15].

The wheeled skid-steering mobile robot is agile and strong, but its kinematics is complex since the
drift always occurs and difficult to measure [16]. In [16], an IMU-based EKF fusion method is also
proposed to improve the wheel odometry. To improve real-time motion control and dead-reckoning,
a method to experimentally obtain an optimized kinematic model of the robot is presented in [17].
A detail model analysis and a back-stepping controller design are proposed in [18], simulation results
for trajectory tracking are good. To find the correct model parameters [19], designed analysis and
experimental kinematic scheme for skid-steering wheeled robot based-on a laser scanner sensor. The
practical experiments show improvement in dead-reckoning performance.

A real-time kinematic (RTK) GPS sensor can help the robot to get an accurate position. It is
commonly used in wide-open space [20]. Laser SLAM is now a relatively mature way to do mapping
and localization (LiDAR odometry and mapping). LOAM proposed in [21] is one of the best LiDAR
SLAM methods. The LOAM was running on the Velodyne Puck LiDAR which has 16 laser lines.
Recently, a novel version of LOAM is proposed in [22], which is running on a low-cost novel Livox
LiDAR and shows good performance in experiments. For land robots, dead reckoning is another
reliable source of odometry. A robust AHRS could improve the wheel dead reckoning well [23].

Localization is one of the most important elements in the robot system. When the GPS/GNSS
signal is too weak to use, a framework combines keyframe-based visual-inertial odometry with novel
geometric image-based localization is built to provide a real-time estimate of a UAV’s pose. Weak
GPS feeds are used as a weak prior for suggesting loop closures [24]. A Monte Carlo Localization
system that fuses wheel and visual odometry for the prediction are designed for sewer inspection
robots. The update step takes into account the network topology and other active methods. The system
works well in practical experiments [25]. To address existing positioning systems do not perform well
in urban canyons, tunnels, and indoor parking lots for driverless cars, an EKF based multi-sensor
positioning system that combines a GPS sensor, a camera, and in-vehicle sensors assisted by kinematic
and dynamic vehicle models [26]. Among all the localization system, EKF is widely used and shows
good performances [27,28].

For dam surveillance, people and dam crack detection are important to ensure people and dam
safety. Vision-based approaches to detect, track and identify people on a mobile robot in real-time has
been used for many years. Thermal and grey images are successfully used to do the people recognition
job on a mobile security robot [29]. Deep Learning shows great potential for crack damage detection.
A deep architecture of convolutional neural networks (CNNs) method is proposed in [30] to find
concrete cracks for civil infrastructures.

Therefore, a wheeled skid-steering mobile robot is built for the dam surveillance, which carries an
onboard IMU, wheel encoders, a Livox LiDAR sensor, a GNSS antenna, a monocular industrial camera,
and a customized MCU controller. We proposed the robot platform controller design, odometry
methods, fusion localization, crack detection network to make the whole system low-cost and robust.

3. General Design

In dam surveillance applications, there are three main modules, which are the robot itself, the cloud
server and the front-end terminals. The robot is responsible for moving in the workplace, collecting
monitor data and handling some online detection applications. The cloud server takes charge of data
processing and transferring. The users can watch the robot status, do manual analysis, and control the
robot remotely based on real-time video streaming when necessary.

The robot and the server are connected by mobile internet and WIFI. The server and the terminal
users are connected by the Internet and LAN. The general structure diagram is shown in Figure 1.
The robot itself and the cloud server are connected via message queuing telemetry transport protocol

Sensors 2020, 20, 1097 4 of 19

(MQTT). Robot navigation data can transfer to the server and the server can send job command and
global navigation plan to the robot. This paper mainly focuses on the robot module.Sensors 2020, 20, x 4 of 20

Figure 1. General design scheme for a dam surveillance robot.

A state machine is designed here for robot control, which includes self-check, autonomous

navigation, remote control, idle, and emergency states. The robot would get into self-check state once

the power is turned on. All sensors, motors, localization data, the high-level computer will then be

checked. The robot would get into an idle state and wait for task command from the cloud server if

the self-check is passed. Autonomous navigation would be triggered once the task and waypoints

are received. The emergency state would be triggered when the robot is stuck or some sensors are

running wrong. The logic of the state machine is shown in Figure 2.

Figure 2. State machine logic structure.

4. Robot Platform

To realize high robustness and agile motion performance, the robot body is built with an all-

aluminum chassis which about a total of 10 Kg weight. Two 200W DC brushless high torque motors

are deployed to realize four-wheel drive. A 24 V lithium battery with 40 AH capacity is used as the

power supply.

All motors are controlled by a customized MCU board, which connects the motors and drivers

by CAN bus. The maximal speed is 2 m/s; the maximum payload is 40 Kg; the maximum runtime is

more than 4 hours. It is suitable for rugged all-terrain operation with four off-road tires. Figure 3

shows the body design.

As shown in Figure 4, for the robot body, we will use the velocity and the angular velocity in the

robot axis as state variables, i.e., [𝑣𝑥 𝑤]
𝑇. After the kinematic analysis of the robot, we can find the

relationship between robot velocities and wheel speed.

Figure 1. General design scheme for a dam surveillance robot.

A state machine is designed here for robot control, which includes self-check, autonomous
navigation, remote control, idle, and emergency states. The robot would get into self-check state once
the power is turned on. All sensors, motors, localization data, the high-level computer will then be
checked. The robot would get into an idle state and wait for task command from the cloud server if the
self-check is passed. Autonomous navigation would be triggered once the task and waypoints are
received. The emergency state would be triggered when the robot is stuck or some sensors are running
wrong. The logic of the state machine is shown in Figure 2.

Sensors 2020, 20, x 4 of 20

Figure 1. General design scheme for a dam surveillance robot.

A state machine is designed here for robot control, which includes self-check, autonomous

navigation, remote control, idle, and emergency states. The robot would get into self-check state once

the power is turned on. All sensors, motors, localization data, the high-level computer will then be

checked. The robot would get into an idle state and wait for task command from the cloud server if

the self-check is passed. Autonomous navigation would be triggered once the task and waypoints

are received. The emergency state would be triggered when the robot is stuck or some sensors are

running wrong. The logic of the state machine is shown in Figure 2.

Figure 2. State machine logic structure.

4. Robot Platform

To realize high robustness and agile motion performance, the robot body is built with an all-

aluminum chassis which about a total of 10 Kg weight. Two 200W DC brushless high torque motors

are deployed to realize four-wheel drive. A 24 V lithium battery with 40 AH capacity is used as the

power supply.

All motors are controlled by a customized MCU board, which connects the motors and drivers

by CAN bus. The maximal speed is 2 m/s; the maximum payload is 40 Kg; the maximum runtime is

more than 4 hours. It is suitable for rugged all-terrain operation with four off-road tires. Figure 3

shows the body design.

As shown in Figure 4, for the robot body, we will use the velocity and the angular velocity in the

robot axis as state variables, i.e., [𝑣𝑥 𝑤]
𝑇. After the kinematic analysis of the robot, we can find the

relationship between robot velocities and wheel speed.

Figure 2. State machine logic structure.

4. Robot Platform

To realize high robustness and agile motion performance, the robot body is built with an
all-aluminum chassis which about a total of 10 Kg weight. Two 200W DC brushless high torque motors
are deployed to realize four-wheel drive. A 24 V lithium battery with 40 AH capacity is used as the
power supply.

All motors are controlled by a customized MCU board, which connects the motors and drivers by
CAN bus. The maximal speed is 2 m/s; the maximum payload is 40 Kg; the maximum runtime is more
than 4 hours. It is suitable for rugged all-terrain operation with four off-road tires. Figure 3 shows the
body design.

Sensors 2020, 20, 1097 5 of 19

Sensors 2020, 20, x 5 of 20

[
𝑣𝑥
𝑤
] = 𝑟

𝜋𝑑

60𝑛
[

1

2

1

2

−
1

2𝑐
−
1

2𝑐

] [
𝑊𝑙

𝑊𝑟
] (1)

where r is so called effective radius of wheels, n is the reduction ratio, 2c is a spacing wheel track.

Figure 3. Mechanical layout and onboard control diagram.

For the robot body, it will get velocity and angular velocity command [𝑣𝑥
𝑑 𝑤𝑑]𝑇 from upper PC.

We should control the velocities to track the command. From (1), we have

{

 𝑊𝑙 +𝑊𝑟 =

2𝑣𝑥
𝑑

𝑟
𝜋𝑑
60𝑛

−𝑊𝑙 +𝑊𝑟 =
2𝑤𝑑 𝑐

𝑟
𝜋𝑑
60𝑛

 (2)

Figure 4. Kinematic model of the robot.

From (2), we could calculate the desired wheel velocities easily, but the direct calculation does

not work well since the model is a realistic model and the angular velocity always has a large lag.

Therefore, we add an onboard IMU and use the following equation to set the wheel velocities.

Figure 3. Mechanical layout and onboard control diagram.

As shown in Figure 4, for the robot body, we will use the velocity and the angular velocity in the
robot axis as state variables, i.e., [vx w]T. After the kinematic analysis of the robot, we can find the
relationship between robot velocities and wheel speed.[

vx

w

]
= r

πd
60n

[1
2

1
2

−
1
2c −

1
2c

][
Wl
Wr

]
(1)

where r is so called effective radius of wheels, n is the reduction ratio, 2c is a spacing wheel track.

Sensors 2020, 20, x 5 of 20

[
𝑣𝑥
𝑤
] = 𝑟

𝜋𝑑

60𝑛
[

1

2

1

2

−
1

2𝑐
−
1

2𝑐

] [
𝑊𝑙

𝑊𝑟
] (1)

where r is so called effective radius of wheels, n is the reduction ratio, 2c is a spacing wheel track.

Figure 3. Mechanical layout and onboard control diagram.

For the robot body, it will get velocity and angular velocity command [𝑣𝑥
𝑑 𝑤𝑑]𝑇 from upper PC.

We should control the velocities to track the command. From (1), we have

{

 𝑊𝑙 +𝑊𝑟 =

2𝑣𝑥
𝑑

𝑟
𝜋𝑑
60𝑛

−𝑊𝑙 +𝑊𝑟 =
2𝑤𝑑 𝑐

𝑟
𝜋𝑑
60𝑛

 (2)

Figure 4. Kinematic model of the robot.

From (2), we could calculate the desired wheel velocities easily, but the direct calculation does

not work well since the model is a realistic model and the angular velocity always has a large lag.

Therefore, we add an onboard IMU and use the following equation to set the wheel velocities.

Figure 4. Kinematic model of the robot.

For the robot body, it will get velocity and angular velocity command
[
vd

x wd
]T

from upper PC.
We should control the velocities to track the command. From (1), we have

Wl + Wr =
2vd

x
r πd

60n

−Wl + Wr =
2wdc
r πd

60n

(2)

Sensors 2020, 20, 1097 6 of 19

From (2), we could calculate the desired wheel velocities easily, but the direct calculation does
not work well since the model is a realistic model and the angular velocity always has a large lag.
Therefore, we add an onboard IMU and use the following equation to set the wheel velocities.{

vx = vd
x

w = kpew + ki
∫

ew + kd
.
ew

(3)

where kp, ki, kd are constants for the simple PID controller, ew = wd
−wi, wi is the feedback from the

onboard IMU. The practical response could be seen in Figure 5.

Sensors 2020, 20, x 6 of 20

{
𝑣𝑥 = 𝑣𝑥

𝑑

𝑤 = 𝑘𝑝𝑒𝑤 + 𝑘𝑖∫𝑒𝑤 + 𝑘𝑑�̇�𝑤
 (3)

where 𝑘𝑝, 𝑘𝑖 , 𝑘𝑑 are constants for the simple PID controller, 𝑒𝑤 = 𝑤𝑑 − 𝑤𝑖, 𝑤𝑖 is the feedback from

the onboard IMU. The practical response could be seen in Figure 5.

Figure 5. Practical response of the forward velocity and angular velocity.

It is simple to calculate the wheel odometry in the inertial frame. We drive the robot moving a

square and back to the origin, the dead reckoning result is shown in Figure 6 and final position value

is [0.1229–0.2654 0.03] (should be [0 0 0]T). The whole distance is about 70 m and we did experiments

10 times, the origin RMSE (root mean square errors) is 0.3135.

{

 [
�̇�
�̇�
] = [

cos 𝜃 sin 𝜃
sin 𝜃 cos 𝜃

] [
𝑣𝑥
𝑣𝑦
]

𝜃 = 𝑤𝑖̇

𝑣𝑦 = −𝑋𝐼𝐶𝑅 ∙ 𝑤
𝑖

 (4)

Figure 6. Dead reckoning results.

5. Sensors

The experimental robot with sensors is shown in Figure 7. From the front to the back, there are

1 GNSS receiver, a stereo camera, a Livox LiDAR, a monocular camera, a 4G LTE wireless router, an

industrial computer, a GNSS antenna. An onboard MCU controller with IMU is located inside the

body box. Motion control is handled by the onboard MCU which also sends odometry data to the

high-level industrial computer. The navigation is handled by the computer which is connected to the

cloud server.

A navigation map is built mainly by the LiDAR and odometry data using the LOAM SLAM

method. The map would be regarded as prior knowledge. The monocular camera in the middle is

used to transfer video streaming and do the people and crack detection jobs. The GNSS receiver with

Figure 5. Practical response of the forward velocity and angular velocity.

It is simple to calculate the wheel odometry in the inertial frame. We drive the robot moving a
square and back to the origin, the dead reckoning result is shown in Figure 6 and final position value is
[0.1229–0.2654 0.03] (should be [0 0 0]T). The whole distance is about 70 m and we did experiments 10
times, the origin RMSE (root mean square errors) is 0.3135.

 .
X
.
Y

 = [
cosθ sinθ
sinθ cosθ

][
vx

vy

]
.

θ = wi

vy = −XICR·wi

Z (4)

Sensors 2020, 20, x 6 of 20

{
𝑣𝑥 = 𝑣𝑥

𝑑

𝑤 = 𝑘𝑝𝑒𝑤 + 𝑘𝑖∫𝑒𝑤 + 𝑘𝑑�̇�𝑤
 (3)

where 𝑘𝑝, 𝑘𝑖 , 𝑘𝑑 are constants for the simple PID controller, 𝑒𝑤 = 𝑤𝑑 − 𝑤𝑖, 𝑤𝑖 is the feedback from

the onboard IMU. The practical response could be seen in Figure 5.

Figure 5. Practical response of the forward velocity and angular velocity.

It is simple to calculate the wheel odometry in the inertial frame. We drive the robot moving a

square and back to the origin, the dead reckoning result is shown in Figure 6 and final position value

is [0.1229–0.2654 0.03] (should be [0 0 0]T). The whole distance is about 70 m and we did experiments

10 times, the origin RMSE (root mean square errors) is 0.3135.

{

 [
�̇�
�̇�
] = [

cos 𝜃 sin 𝜃
sin 𝜃 cos 𝜃

] [
𝑣𝑥
𝑣𝑦
]

𝜃 = 𝑤𝑖̇

𝑣𝑦 = −𝑋𝐼𝐶𝑅 ∙ 𝑤
𝑖

 (4)

Figure 6. Dead reckoning results.

5. Sensors

The experimental robot with sensors is shown in Figure 7. From the front to the back, there are

1 GNSS receiver, a stereo camera, a Livox LiDAR, a monocular camera, a 4G LTE wireless router, an

industrial computer, a GNSS antenna. An onboard MCU controller with IMU is located inside the

body box. Motion control is handled by the onboard MCU which also sends odometry data to the

high-level industrial computer. The navigation is handled by the computer which is connected to the

cloud server.

A navigation map is built mainly by the LiDAR and odometry data using the LOAM SLAM

method. The map would be regarded as prior knowledge. The monocular camera in the middle is

used to transfer video streaming and do the people and crack detection jobs. The GNSS receiver with

Figure 6. Dead reckoning results.

5. Sensors

The experimental robot with sensors is shown in Figure 7. From the front to the back, there are
1 GNSS receiver, a stereo camera, a Livox LiDAR, a monocular camera, a 4G LTE wireless router,
an industrial computer, a GNSS antenna. An onboard MCU controller with IMU is located inside the

Sensors 2020, 20, 1097 7 of 19

body box. Motion control is handled by the onboard MCU which also sends odometry data to the
high-level industrial computer. The navigation is handled by the computer which is connected to the
cloud server.

Sensors 2020, 20, x 7 of 20

antenna can acquire accurate position data in the wide-open area. On the other hand, the LiDAR’s

point cloud and cameras’ depth data are designed to be used in obstacles perception as well in the

future.

Figure 7. Experiment robot with sensors.

6. Localization and Navigation

The navigation includes perception, localization, path planning, and a remote controller. The

whole diagram is depicted in Figure 8. The mature cost grid map is used for general environment

representation. The filtered point cloud and depth data would be obstacles shown on the map.

The path planning method is divided into two parts here. The global waypoints are sent to the

robot by the cloud server, which is pre-defined by different jobs. The local motion planning is

achieved by the DWA algorithm on the grid map.

Localization is one of the most difficult problems for dam robots since the environment is

changing and the robot has to move indoor and outdoor. Using one single sensor to acquire a positon

is an impossible task. Many sensors would introduce fusion problem. Extended Kalman filter (EKF)

is a good way to solve this problem and has been deployed in many robot localization applications.

Figure 7. Experiment robot with sensors.

A navigation map is built mainly by the LiDAR and odometry data using the LOAM SLAM
method. The map would be regarded as prior knowledge. The monocular camera in the middle is
used to transfer video streaming and do the people and crack detection jobs. The GNSS receiver with
antenna can acquire accurate position data in the wide-open area. On the other hand, the LiDAR’s point
cloud and cameras’ depth data are designed to be used in obstacles perception as well in the future.

6. Localization and Navigation

The navigation includes perception, localization, path planning, and a remote controller. The
whole diagram is depicted in Figure 8. The mature cost grid map is used for general environment
representation. The filtered point cloud and depth data would be obstacles shown on the map.

Sensors 2020, 20, x 7 of 20

antenna can acquire accurate position data in the wide-open area. On the other hand, the LiDAR’s

point cloud and cameras’ depth data are designed to be used in obstacles perception as well in the

future.

Figure 7. Experiment robot with sensors.

6. Localization and Navigation

The navigation includes perception, localization, path planning, and a remote controller. The

whole diagram is depicted in Figure 8. The mature cost grid map is used for general environment

representation. The filtered point cloud and depth data would be obstacles shown on the map.

The path planning method is divided into two parts here. The global waypoints are sent to the

robot by the cloud server, which is pre-defined by different jobs. The local motion planning is

achieved by the DWA algorithm on the grid map.

Localization is one of the most difficult problems for dam robots since the environment is

changing and the robot has to move indoor and outdoor. Using one single sensor to acquire a positon

is an impossible task. Many sensors would introduce fusion problem. Extended Kalman filter (EKF)

is a good way to solve this problem and has been deployed in many robot localization applications.

Figure 8. Navigation diagram.

Sensors 2020, 20, 1097 8 of 19

The path planning method is divided into two parts here. The global waypoints are sent to the
robot by the cloud server, which is pre-defined by different jobs. The local motion planning is achieved
by the DWA algorithm on the grid map.

Localization is one of the most difficult problems for dam robots since the environment is changing
and the robot has to move indoor and outdoor. Using one single sensor to acquire a positon is an
impossible task. Many sensors would introduce fusion problem. Extended Kalman filter (EKF) is a
good way to solve this problem and has been deployed in many robot localization applications.

A two EKF node structure is proposed here to build a robust localization system. The GNSS data
is transformed based on the local origin and then input to EKF global node update process. The yaw
angle from the LiDAR odometry is input to the EKF update process. The result of the EKF local node
is input to the EKF global predict process. The LiDAR odometry data are input to the EKF local update
process. The wheel odometry data and the IMU measurement is input to the EKF local predict process.
It is noted here that the local EKF node is running on the embedded MCU at 200Hz and it handles in
3D space with 16 states.

It is important to get the 3D pose information for the rubber ground surface. However, the global
EKF node is running at 30Hz on the computer and it only produces in 2D space. The robot position and
orientation in the map are acquired with the EKF global updating. The fusion localization structure
diagram is shown in Figure 9. Where Wd

l , Wd
l are the wheel velocity command, Wl, Wl are the feedback

wheel velocity from encoders, Vd
x,ωd are the velocity command generated from motion planning,

Vx,ωz are the wheel odometry outputs, x, y, yaw are the LiDAR odometry, X, Y, Yaw are the final global
pose estimation result.

Sensors 2020, 20, x 8 of 20

Figure 8. Navigation diagram.

A two EKF node structure is proposed here to build a robust localization system. The GNSS data

is transformed based on the local origin and then input to EKF global node update process. The yaw

angle from the LiDAR odometry is input to the EKF update process. The result of the EKF local node

is input to the EKF global predict process. The LiDAR odometry data are input to the EKF local

update process. The wheel odometry data and the IMU measurement is input to the EKF local predict

process. It is noted here that the local EKF node is running on the embedded MCU at 200Hz and it

handles in 3D space with 16 states.

It is important to get the 3D pose information for the rubber ground surface. However, the global

EKF node is running at 30Hz on the computer and it only produces in 2D space. The robot position

and orientation in the map are acquired with the EKF global updating. The fusion localization

structure diagram is shown in Figure 9. Where W𝑙
𝑑 ,W𝑙

𝑑 are the wheel velocity command, W𝑙 ,W𝑙

are the feedback wheel velocity from encoders, V𝑥
𝑑 , ω𝑑 are the velocity command generated from

motion planning, V𝑥 , ωz are the wheel odometry outputs, 𝑥, 𝑦, 𝑦𝑎𝑤 are the LiDAR odometry,

𝑋, 𝑌, 𝑌𝑎𝑤 are the final global pose estimation result.

Figure 9. Fusion localization structure diagram.

With the kinematic models and zero-velocity constraints, we are now ready to design a

kinematic-model-based robot positioning scheme for the local EKF node. The general state update

equation is

1t t tx Fx Gu−= + (5)

where
0 1 2 3[]T

t x y z bias bias bias xbias ybias zbiasx q q q q x y z V V V V V V = is the state variables,

0 1 2 3q q q q are the quaternion, x y z are the position in the inertial frame, x y zV V V are the

corresponding velocities, bias bias bias are the rotation zero-offset, xbias ybias zbiasV V V are the

acceleration zero-offset. We have the following detail state update equations.

()

()

()

()

()

()

()

()

0 0

1 1

2 2

3 3

1

1
()

1

1

q k q k

q k q k
q h

q k q k

q k q k

 +

+ = •
 +

+

 (6)

Figure 9. Fusion localization structure diagram.

With the kinematic models and zero-velocity constraints, we are now ready to design a
kinematic-model-based robot positioning scheme for the local EKF node. The general state update
equation is

xt = Fxt−1 + Gut (5)

where xt = [q0 q1 q2 q3 x y z Vx Vy Vz δϕbias δθbias δψbias δVxbias δVybias δVzbias]
T is the state variables,

q0 q1 q2 q3 are the quaternion, x y z are the position in the inertial frame, Vx Vy Vz are the corresponding

Sensors 2020, 20, 1097 9 of 19

velocities, δϕbias δθbias δψbias are the rotation zero-offset, δVxbias δVybias δVzbias are the acceleration
zero-offset. We have the following detail state update equations.

q0(k + 1)
q1(k + 1)
q2(k + 1)
q3(k + 1)

 = q(h)•

q0(k)
q1(k)
q2(k)
q3(k)

 (6)

q(h) =

1

δφ
2 −

δφ bias
2

δθ
2 −

δθbias
2

δψ
2 −

δψbias
2

 (7)

where δφ, δθ, δψ are the radian variations during dt.
Vx(k + 1)
Vy(k + 1)
Vz(k + 1)

 =

Vx(k)
Vy(k)
Vz(k)

+

gx(k)
gy(k)
gz(k)

•dt + Tn
bδV (8)

where gx(k)gy(k)gz(k) are the components of gravity.

δV =

δVx

δVy

δVz

−

δVxbias
δVybias
δVzbias

 (9)

where δVxbias, δVybias, δVzbias are the velocity variations during dt.
x(k + 1)
y(k + 1)
z(k + 1)

 =

x(k)
y(k)
z(k)

+

Vx(k)
Vy(k)
Vz(k)

•dt (10)

δφbias(k + 1)
δθbias(k + 1)
δψbias(k + 1)

 =

δφbias(k)
δθbias(k)
δψbias(k)

 (11)

δVxbias(k + 1)
δVybias(k + 1)
δVzbias(k + 1)

 =

δVxbias(k)
δVybias(k)
δVzbias(k)

 (12)

The general time update equation is

Pk = Fk−1Pk−1FT
k−1 + Gk−1Qk−1GT

k−1 + Qs (13)

Sensors 2020, 20, 1097 10 of 19

where, Pk is the covariance matrix, Fk =
(
∂ f
∂x

)
k

is state Jacobian, Gk =
(
∂ f
∂u

)
k

is control input Jacobian,

Qk−1 is sensor process noise, Qs is an additional process noise. The state transform matrix have

Fk =

1 F0,1 F0,2 F0,3 0 0 0 0 0 0 F0,10 F0,11 F0,12 0 0 0
F1,0 1 F1,2 F1,3 0 0 0 0 0 0 F1,10 F1,11 F1,12 0 0 0
F2,0 F2,1 1 F2,3 0 0 0 0 0 0 F2,10 F2,11 F2,12 0 0 0
F3,0 F3,1 F3,2 1 0 0 0 0 0 0 F3,10 F3,11 F3,12 0 0 0
F4,0 F4,1 F4,2 F4,3 1 0 0 0 0 0 0 0 0 F4,13 F4,14 F4,15

F5,0 F5,1 F5,2 F5,3 0 1 0 0 0 0 0 0 0 F5,13 F5,14 F5,15

F6,0 F6,1 F6,2 F6,3 0 0 1 0 0 0 0 0 0 F6,13 F6,14 F6,15

0 0 0 0 dt 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 dt 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 dt 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

(14)

Therefore, we can acquire

F0,1 =
∂q0(t + ∆t)

∂q1
= δφ bias/2− δφ/2; (15)

F0,2 =
∂q0(t + ∆t)

∂q2
= δθbias/2− δθ/2; (16)

F0,3 =
∂q0(t + ∆t)

∂q3
= δψbias/2− δψ/2; (17)

F0,10 =
∂q0(t + ∆t)
∂δφ bias

=
q1

2
; (18)

F0,11 =
∂q0(t + ∆t)
∂δθbias

=
q2

2
; (19)

F0,12 =
∂q0(t + ∆t)
∂δψbias

=
q3

2
; (20)

F1,0 =
∂q1(t + ∆t)

∂q0
= δφ/2− δφ bias/2; (21)

F1,2 =
∂q1(t + ∆t)

∂q2
= δψ/2− δψbias/2; (22)

F1,3 =
∂q1(t + ∆t)

∂q3
= δθbias/2− δθ/2; (23)

F1,10 =
∂q1(t + ∆t)
∂δφ bias

= −
q0

2
(24)

F1,11 =
∂q1(t + ∆t)
∂δθbias

=
q3

2
; (25)

F1,12 =
∂q1(t + ∆t)
∂δψbias

= −
q2

2
; (26)

Sensors 2020, 20, 1097 11 of 19

F2,0 =
∂q2(t + ∆t)

∂q0
= δθ/2− δθ bias/2; (27)

F2,1 =
∂q2(t + ∆t)

∂q1
= δψbias/2− δψ/2; (28)

F2,3 =
∂q2(t + ∆t)

∂q3
= δφ/2− δφbias/2; (29)

F2,10 =
∂q2(t + ∆t)
∂δφ bias

= −
q3

2
; (30)

F2,11 =
∂q2(t + ∆t)
∂δθbias

= −
q0

2
; (31)

F2,12 =
∂q2(t + ∆t)
∂δψbias

=
q1

2
; (32)

F3,0 =
∂q3(t + ∆t)

∂q0
= δψ/2− δψbias/2; (33)

F3,1 =
∂q3(t + ∆t)

∂q1
= δθ/2− δθbias/2; (34)

F3,2 =
∂q3(t + ∆t)

∂q2
= δφ bias/2− δφ/2; (35)

F3,10 =
∂q3(t + ∆t)
∂δφ bias

=
q2

2
; (36)

F3,11 =
∂q3(t + ∆t)
∂δθbias

= −
q1

2
; (37)

F3,12 =
∂q3(t + ∆t)
∂δψbias

= −
q0

2
; (38)

F4,0 =
∂vx(t+∆t)

∂q0
= 2 ∗ q0 ∗ (δVx − δVxbias) − 2 ∗ q3 ∗ (δVy − δVybias) + 2 ∗ q2 ∗ (δVz − δVzbias

)
; (39)

F4,1 =
∂vx(t+∆t)

∂q1
= 2 ∗ q1 ∗ (δVx − δVxbias) + 2 ∗ q2 ∗ (δVy − δVybias) + 2 ∗ q3 ∗ (δVz − δVzbias

)
; (40)

F4,2 =
∂vx(t+∆t)

∂q2
= 2 ∗ q1 ∗ (δVy − δVybias) − 2 ∗ q2 ∗ (δVx − δVxbias) + 2 ∗ q0 ∗ (δVz − δVzbias); (41)

F4,3 =
∂vx(t+∆t)

∂q3
= 2 ∗ q1 ∗ (δVz − δVzbias) − 2 ∗ q0 ∗ (δVy − δVybias) − 2 ∗ q3 ∗ (δVx − δVxbias

)
; (42)

F4,13 =
∂vx(t + ∆t)
∂δVxbias

= −q02
− q12 + q22 + q32 (43)

F4,14 =
∂vx(t + ∆t)
∂δVybias

= 2 ∗ q0 ∗ q3 − 2 ∗ q1 ∗ q2 (44)

F4,15 =
∂vx(t + ∆t)
∂δVzbias

= −2(q0 ∗ q2 + q1 ∗ q3); (45)

F5,0 =
∂vy(t+∆t)

∂q0
= 2 ∗ q3 ∗ (δVx − δVxbias) + 2 ∗ q0 ∗ (δVy − δVybias) − 2 ∗ q1 ∗ (δVz − δVzbias

)
; (46)

F5,1 =
∂vy(t+∆t)

∂q1
= 2 ∗ q2 ∗ (δVx − δVxbias) − 2 ∗ q1 ∗ (δVy − δVybias) − 2 ∗ q0 ∗ (δVz − δVzbias); (47)

F5,2 =
∂vy(t+∆t)

∂q2
= 2 ∗ q1 ∗ (δVx − δVxbias) + 2 ∗ q2 ∗ (δVy − δVybias) + 2 ∗ q3 ∗ (δVz − δVzbias); (48)

F5,3 =
∂vy(t+∆t)

∂q3
= 2 ∗ q0 ∗ (δVx − δVxbias) − 2 ∗ q3 ∗ (δVy − δVybias) + 2 ∗ q2 ∗ (δVz − δVzbias); (49)

Sensors 2020, 20, 1097 12 of 19

F5,13 =
∂vy(t + ∆t)
∂δVxbias

= − 2 ∗ q0 ∗ q3 − 2 ∗ q1 ∗ q2 (50)

F5,14 =
∂vy(t + ∆t)
∂δVybias

= −q02 + q12
− q22 + q32 (51)

F5,15 =
∂vy(t + ∆t)
∂δVzbias

= 2(q0 ∗ q1 − q2 ∗ q3); (52)

F6,0 =
∂vz(t+∆t)

∂q0
= 2 ∗ q1 ∗ (δVy − δVybias) − 2 ∗ q2 ∗ (δVx − δVxbias) + 2 ∗ q0 ∗ (δVz − δVzbias); (53)

F6,1 =
∂vz(t+∆t)

∂q1
= 2 ∗ q3 ∗ (δVx − δVxbias) + 2 ∗ q0 ∗ (δVy − δVybias) − 2 ∗ q1 ∗ (δVz − δVzbias

)
; (54)

F6,2 =
∂vz(t+∆t)

∂q2
= 2 ∗ q3 ∗ (δVy − δVybias) − 2 ∗ q0 ∗ (δVx − δVxbias) − 2 ∗ q2 ∗ (δVz − δVzbias

)
; (55)

F6,3 =
∂vz(t+∆t)

∂q3
= 2 ∗ q1 ∗ (δVx − δVxbias) + 2 ∗ q2 ∗ (δVy − δVybias) + 2 ∗ q3 ∗ (δVz − δVzbias

)
; (56)

F6,13 =
∂vz(t + ∆t)
∂δVxbias

= 2 ∗ q0 ∗ q2 − 2 ∗ q1 ∗ q3 (57)

F6,14 =
∂vz(t + ∆t)
∂δVybias

= − 2 ∗ q0 ∗ q1 − 2 ∗ q2 ∗ q3 (58)

F6,15 =
∂vz(t + ∆t)
∂δVzbias

= −q02 + q12 + q22
− q32 (59)

The control input Jacobian matrix is

Gk =

−
q1
2 −

q2
2 −

q3
2 0 0 0

SG(1) −
q3
2

q2
2 0 0 0

q3
2 SG(1) −

q1
2 0 0 0

−
q2
2

q1
2 SG(1) 0 0 0

0 0 0 SG(4) − SG(3) − SG(2) + SG(5) SG(8) − 2 ∗ q0 ∗ q3 SG(7) + 2 ∗ q0 ∗ q2
0 0 0 SG(8) + 2 ∗ q0 ∗ q3 SG(3) − SG(2) − SG(4) + SG(5) SG(6) − 2 ∗ q0 ∗ q1
0 0 0 SG(7) − 2 ∗ q0 ∗ q2 SG(6) + 2 ∗ q0 ∗ q1 SG(2) − SG(3) − SG(4) + SG(5)
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

(60)

where

SG =

q0
2

q3
2

q2
2

q1
2

q0
2

2 ∗ q2∗q3
2 ∗ q1∗q3
2 ∗ q1∗q2

(61)

Sensors 2020, 20, 1097 13 of 19

The process noise matrix is

Qk =

q0,0 SQ(9) SQ(8) SQ(7) 0 0 0 0 0 0 0 0 0 0 0 0
SQ(9) q1,1 SQ(6) SQ(5) 0 0 0 0 0 0 0 0 0 0 0 0
SQ(8) SQ(6) q2,2 SQ(4) 0 0 0 0 0 0 0 0 0 0 0 0
SQ(7) SQ(5) SQ(4) q3,3 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 q4,4 SQ(3) SQ(2) 0 0 0 0 0 0 0 0 0
0 0 0 0 SQ(3) q5,5 SQ(1) 0 0 0 0 0 0 0 0 0
0 0 0 0 SQ(2) SQ(1) q6,6 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(62)

where,

SQ =

dvzCov ∗ (SG(6) − 2 ∗ q0 ∗ q1) ∗ (SG(2) − SG(3) − SG(4) + SG(5)) − dvyCov ∗ (SG(6) + 2 ∗ q0 ∗ q1) ∗ (SG(2) − SG(3) + SG(4) − SG(5)) + dvxCov ∗ (SG(7) − 2 ∗ q0 ∗ q2) ∗ (SG(8) + 2 ∗ q0 ∗ q3)
dvzCov ∗ (SG(7) + 2 ∗ q0 ∗ q2) ∗ (SG(2) − SG(3) − SG(4) + SG(5)) − dvxCov ∗ (SG(7) − 2 ∗ q0 ∗ q2) ∗ (SG(2) + SG(3) − SG(4) − SG(5)) + dvyCov ∗ (SG(6) + 2 ∗ q0 ∗ q1) ∗ (SG(8) − 2 ∗ q0 ∗ q3)
dvzCov ∗ (SG(6) − 2 ∗ q0 ∗ q1) ∗ (SG(7) + 2 ∗ q0 ∗ q2) − dvyCov ∗ (SG(8) − 2 ∗ q0 ∗ q3) ∗ (SG(2) − SG(3) + SG(4) − SG(5)) − dvxCov ∗ (SG(8) + 2 ∗ q0 ∗ q3) ∗ (SG(2) + SG(3) − SG(4) − SG(5))

(dayCov ∗ q1 ∗ SG(1))/2 − (dazCov ∗ q1 ∗ SG(1))/2 − (daxCov ∗ q2 ∗ q3)/4
(dazCov ∗ q2 ∗ SG(1))/2 − (daxCov ∗ q2 ∗ SG(1))/2 − (dayCov ∗ q1 ∗ q3)/4
(daxCov ∗ q3 ∗ SG(1))/2 − (dayCov ∗ q3 ∗ SG(1))/2 − (dazCov ∗ q1 ∗ q2)/4
(daxCov ∗ q1 ∗ q2)/4 − (dazCov ∗ q3 ∗ SG(1))/2 − (dayCov ∗ q1 ∗ q2)/4
(dazCov ∗ q1 ∗ q3)/4 − (daxCov ∗ q1 ∗ q3)/4 − (dayCov ∗ q2 ∗ SG(1))/2
(dayCov ∗ q2 ∗ q3)/4 − (daxCov ∗ q1 ∗ SG(1))/2 − (dazCov ∗ q2 ∗ q3)/4

SG(1)2

q12

(63)

q0,0 = (dayCov ∗ q22)/4 + (dazCov ∗ q32)/4 + (daxCov ∗ SQ(11))/4
q1,1 = (dazCov ∗ q22)/4 + (dayCov ∗ q32)/4 + daxCov ∗ SQ(10)
q2,2 = (daxCov ∗ q32)/4 + dayCov ∗ SQ(10) + (dazCov ∗ SQ(11))/4
q3,3 = (daxCov ∗ q22)/4 + (dayCov ∗ SQ(11))/4 + dazCov ∗ SQ(10)
q4,4 = dvyCov ∗ (SG(8) − 2 ∗ q0 ∗ q3)2 + dvzCov ∗ (SG(7) + 2 ∗ q0 ∗ q2)2

+dvxCov ∗ (SG(2) + SG(3) − SG(4) − SG(5))2

q5,5 = dvxCov ∗ (SG(8) + 2 ∗ q0 ∗ q3)2 + dvzCov ∗ (SG(6) − 2 ∗ q0 ∗ q1)2

+dvyCov ∗ (SG(2) − SG(3) + SG(4) − SG(5))2

q6,6 = dvxCov ∗ (SG(7) − 2 ∗ q0 ∗ q2)2 + dvyCov ∗ (SG(6) + 2 ∗ q0 ∗ q1)2

+dvzCov ∗ (SG(2) − SG(3) − SG(4) + SG(5))2

(64)

where, daxCov, dayCov, dazCov are the radius variance, and dvxCov, dvyCov, dvzCov are the velocities
variance.

The Kalman feedback matrix is

Kk = P−k Hk
[
HkP−k HT

k + Rk
]−1

(65)

where

Hk =

(
∂zp

∂x

)
k

(66)

The covariance update equation is

P+
k = [I −KkHk]P−k (67)

Finally, we could get the state update equation

x+k = x−k + Kkv (68)

Sensors 2020, 20, 1097 14 of 19

The global EKF node is designed in the same method, the details are omitted here. The localization
result in the practical environment can be found in Figure 10. The body coordinate represents the
filtered pose of the robot now. The robot was running a circle in the practical environment. We can see
that the localization performs well even sometimes the GNSS receiver is out of the lock and the result
is ready for navigation. The localization and path planning could fail sometimes, even if so many
sensors have been deployed. In this application, we designed a remote controller module. Users can
control the robot remotely with real-time video streaming.
Sensors 2020, 20, x 15 of 20

Figure 10. Practical localization performance on map.

Figure 11. Experiment environment.

Figure 10. Practical localization performance on map.

The Figure 11 shows a picture of an experiment environment for a surveillance job, this picture is
captured from the camera on the robot. In this environment, the road is narrow and the GNSS signal is
weak because of many trees. However, the proposed robot system works well. The practical results
could be seen in Figure 12. The goal and the blue line are the planned global path. The green line is the
local path planning result. We can see the robot locate itself well and find where to go correctly.

Sensors 2020, 20, x 15 of 20

Figure 10. Practical localization performance on map.

Figure 11. Experiment environment. Figure 11. Experiment environment.

Sensors 2020, 20, 1097 15 of 19

Sensors 2020, 20, x 16 of 20

Figure 12. Navigation results.

7. Environment Inspection

The dam crack identification and pedestrian detection are the key technologies related to the

safety of the dam. We use the trained model of YOLO V3 [31] to recognize them. We use the dataset

online to train the YOLO V3 algorithm and then recognize the dam crack. The YOLO V3 algorithm

includes a darknet-53 module, eight DBL components, three convolutional layers, two upsampling

layers, and two tensor concat layers. The darknet-53 includes a DBL component and five residual

learning units res1, res2, res8, res8, and res4.

The DBL contains a convolutional layer, a BN layer and a leaky ReLU. The convolutional

parameters of the convolutional layer are the kernel size 3 × 3, stride 1, same padding and output

channels 32. The res1, res2, res8, and res4 contain 1, 2, 8, and 4 basic units of the residual learning,

respectively, and each basic unit of the residual learning contains two DBL and an identity map. The

convolutional parameters of the first DBL are the kernel size 1 × 1, stride 1, and the output channels

are equal to the number of basic units of the residual learning. The convolutional parameters of the

second DBL are the kernel size 3 × 3, stride 2, same padding, and output channels are equal to 2 times

basic units of the residual learning.

Figure 12. Navigation results.

7. Environment Inspection

The dam crack identification and pedestrian detection are the key technologies related to the
safety of the dam. We use the trained model of YOLO V3 [31] to recognize them. We use the dataset
online to train the YOLO V3 algorithm and then recognize the dam crack. The YOLO V3 algorithm
includes a darknet-53 module, eight DBL components, three convolutional layers, two upsampling
layers, and two tensor concat layers. The darknet-53 includes a DBL component and five residual
learning units res1, res2, res8, res8, and res4.

The DBL contains a convolutional layer, a BN layer and a leaky ReLU. The convolutional
parameters of the convolutional layer are the kernel size 3 × 3, stride 1, same padding and output
channels 32. The res1, res2, res8, and res4 contain 1, 2, 8, and 4 basic units of the residual learning,
respectively, and each basic unit of the residual learning contains two DBL and an identity map. The
convolutional parameters of the first DBL are the kernel size 1 × 1, stride 1, and the output channels
are equal to the number of basic units of the residual learning. The convolutional parameters of the

Sensors 2020, 20, 1097 16 of 19

second DBL are the kernel size 3 × 3, stride 2, same padding, and output channels are equal to 2 times
basic units of the residual learning.

The three convolutional layers are CConv1, CConv2, and CConv3. The filter sizes of the CConv1,
CConv2, and CConv3 are 512, 256, and 128 respectively. The convolutional layers CConv1, CConv2,
and CConv3 respectively contain six convolutional operations. The convolutional parameters of the
first convolutional operation are the convolutional kernel size 1 × 1, and the number of output channels
is equal to the filter size. The convolutional parameters of the second convolutional operation are the
convolutional kernel size 3 × 3, and the number of output channels is equal to 2 times the filter size.
The convolutional parameters of the third convolutional operation are the convolutional kernel size
1 × 1, and the number of output channels is equal to the filter size. The convolutional parameters of
the fourth convolutional operation are the convolutional kernel size 3 × 3, and the number of output
channels is equal to 2 times the filter size. The convolutional parameters of the fifth convolutional
operation are the convolutional kernel size 1 × 1, and the number of output channels is equal to the
filter size. The convolutional parameters of the sixth convolutional operation are the convolutional
kernel size 3 × 3, and the number of output channels is equal to 2 times the filter size. The upsampling
layers Upsample1 and Upsample2 sample the input feature maps and the input feature maps of the
concat layer into the same size.

The network structure is shown in Figure 13. This method can do the detection job at 10 Hz with
less than 20% CPU occupying. Some results are shown in Figures 14 and 15.

Sensors 2020, 20, x 17 of 20

The three convolutional layers are CConv1, CConv2, and CConv3. The filter sizes of the CConv1,

CConv2, and CConv3 are 512, 256, and 128 respectively. The convolutional layers CConv1, CConv2,

and CConv3 respectively contain six convolutional operations. The convolutional parameters of the

first convolutional operation are the convolutional kernel size 1 × 1, and the number of output

channels is equal to the filter size. The convolutional parameters of the second convolutional

operation are the convolutional kernel size 3 × 3, and the number of output channels is equal to 2

times the filter size. The convolutional parameters of the third convolutional operation are the

convolutional kernel size 1 × 1, and the number of output channels is equal to the filter size. The

convolutional parameters of the fourth convolutional operation are the convolutional kernel size 3 ×

3, and the number of output channels is equal to 2 times the filter size. The convolutional parameters

of the fifth convolutional operation are the convolutional kernel size 1 × 1, and the number of output

channels is equal to the filter size. The convolutional parameters of the sixth convolutional operation

are the convolutional kernel size 3 × 3, and the number of output channels is equal to 2 times the filter

size. The upsampling layers Upsample1 and Upsample2 sample the input feature maps and the input

feature maps of the concat layer into the same size.

The network structure is shown in Figure 13. This method can do the detection job at 10 Hz with

less than 20% CPU occupying. Some results are shown in Figure 14 and 15.

Figure 13. YOLO V3 network structure.

Figure 14. People detection results.

Figure 13. YOLO V3 network structure.

Sensors 2020, 20, x 17 of 20

The three convolutional layers are CConv1, CConv2, and CConv3. The filter sizes of the CConv1,

CConv2, and CConv3 are 512, 256, and 128 respectively. The convolutional layers CConv1, CConv2,

and CConv3 respectively contain six convolutional operations. The convolutional parameters of the

first convolutional operation are the convolutional kernel size 1 × 1, and the number of output

channels is equal to the filter size. The convolutional parameters of the second convolutional

operation are the convolutional kernel size 3 × 3, and the number of output channels is equal to 2

times the filter size. The convolutional parameters of the third convolutional operation are the

convolutional kernel size 1 × 1, and the number of output channels is equal to the filter size. The

convolutional parameters of the fourth convolutional operation are the convolutional kernel size 3 ×

3, and the number of output channels is equal to 2 times the filter size. The convolutional parameters

of the fifth convolutional operation are the convolutional kernel size 1 × 1, and the number of output

channels is equal to the filter size. The convolutional parameters of the sixth convolutional operation

are the convolutional kernel size 3 × 3, and the number of output channels is equal to 2 times the filter

size. The upsampling layers Upsample1 and Upsample2 sample the input feature maps and the input

feature maps of the concat layer into the same size.

The network structure is shown in Figure 13. This method can do the detection job at 10 Hz with

less than 20% CPU occupying. Some results are shown in Figure 14 and 15.

Figure 13. YOLO V3 network structure.

Figure 14. People detection results. Figure 14. People detection results.

Sensors 2020, 20, 1097 17 of 19

Sensors 2020, 20, x 18 of 20

Figure 15. Dam crack detection results.

8. Conclusions

In this paper, a general robot system is proposed for dam surveillance. The robot is connected

to cloud servers and terminal users by mobile internet and IoT network. Like the robot itself, this

paper introduces mechanics layout, sensor selection, and the navigation method. A simple controller

and a wheel odometry calculation are proposed and achieve good performance. A two-node EKF

structure localization framework is proposed to solve localization problem, which fuses LiDAR

SLAM, wheel odometry, IMU, and GNSS signals. For unexpected circumstances, a remote controller

based on real-time video streaming is deployed as an emergency supplement. To make the whole

system able to work all-time, a control state machine is also introduced. A YOLO v3 network is

trained and deployed to detect dam crack and people around. From the practical experiments, this

system can work well and is capable of the surveillance job for dams. Afterward, we will pay more

attention to specific dams’ surveillance jobs, such as intrusion detection and dam deformation

detection. We believe robots will greatly improve the work efficiency for water conservancy in the

future.

Author Contributions: Data curation, C.Z. and Q.W.; Formal analysis, T.H. and H.W.; Funding acquisition, Q.Z.;

Methodology, C.Z., Y.A., and Q.W.; Software, Y.A. and H.W.; Supervision, Q.Z.; Writing—original draft, C.Z.

Funding: This research was supported by the National Key R&D Program of China under grant no.

2018YFC040770* and the National Natural Science Foundation of China under grant no. 61673083.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Su, H.; Hu, J.; Wu, Z. A study of safety evaluation and early-warning method for dam global behavior.

Struct. Health Monit. 2012, 11, 269–279.

2. Räty, T.D. Survey on contemporary remote surveillance systems for public safety. IEEE Trans. Syst. Man

Cybern. Part C (Appl. and Rev.) 2010, 40, 493–515.

3. Theodoridis, T.; Hu, H. Toward intelligent security robots: A survey. IEEE Trans. Syst. Man Cybern. Part C

(Appl. and Rev.) 2012, 42, 1219–1230.

4. Yoshida, T.; Nagatani, K.; Tadokoro, S.; Nishimura, T.; Koyanagi, E. Improvements to the rescue robot

quince toward future indoor surveillance missions in the Fukushima Daiichi nuclear power plant. In Field

and Service Robotics; Kazuya, Y., Satoshi, T., Eds.; Springer: Berlin, Heidelberg, Germany, 2014; pp. 19–32.

5. Debenest, P.; Guarnieri, M. Expliner—From prototype towards a practical robot for inspection of high-

voltage lines. In Proceeding of the 2010 IEEE 1st International Conference on Applied Robotics for the

Power Industry, Montreal, QC, Canada, 5–7 October 2010; pp. 1–6.

Figure 15. Dam crack detection results.

8. Conclusions

In this paper, a general robot system is proposed for dam surveillance. The robot is connected
to cloud servers and terminal users by mobile internet and IoT network. Like the robot itself, this
paper introduces mechanics layout, sensor selection, and the navigation method. A simple controller
and a wheel odometry calculation are proposed and achieve good performance. A two-node EKF
structure localization framework is proposed to solve localization problem, which fuses LiDAR SLAM,
wheel odometry, IMU, and GNSS signals. For unexpected circumstances, a remote controller based on
real-time video streaming is deployed as an emergency supplement. To make the whole system able to
work all-time, a control state machine is also introduced. A YOLO v3 network is trained and deployed
to detect dam crack and people around. From the practical experiments, this system can work well
and is capable of the surveillance job for dams. Afterward, we will pay more attention to specific dams’
surveillance jobs, such as intrusion detection and dam deformation detection. We believe robots will
greatly improve the work efficiency for water conservancy in the future.

Author Contributions: Data curation, C.Z. and Q.W.; Formal analysis, T.H. and H.W.; Funding acquisition, Q.Z.;
Methodology, C.Z., Y.A., and Q.W.; Software, Y.A. and H.W.; Supervision, Q.Z.; Writing—original draft, C.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Key R&D Program of China under grant no. 2018YFC040770*
and the National Natural Science Foundation of China under grant no. 61673083.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Su, H.; Hu, J.; Wu, Z. A study of safety evaluation and early-warning method for dam global behavior.
Struct. Health Monit. 2012, 11, 269–279.

2. Räty, T.D. Survey on contemporary remote surveillance systems for public safety. IEEE Trans. Syst. Man
Cybern. Part C (Appl. and Rev.) 2010, 40, 493–515. [CrossRef]

3. Theodoridis, T.; Hu, H. Toward intelligent security robots: A survey. IEEE Trans. Syst. Man Cybern. Part C
(Appl. and Rev.) 2012, 42, 1219–1230. [CrossRef]

4. Yoshida, T.; Nagatani, K.; Tadokoro, S.; Nishimura, T.; Koyanagi, E. Improvements to the rescue robot quince
toward future indoor surveillance missions in the Fukushima Daiichi nuclear power plant. In Field and
Service Robotics; Kazuya, Y., Satoshi, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 19–32.

5. Debenest, P.; Guarnieri, M. Expliner—From prototype towards a practical robot for inspection of high-voltage
lines. In Proceedings of the 2010 IEEE 1st International Conference on Applied Robotics for the Power
Industry, Montreal, QC, Canada, 5–7 October 2010; pp. 1–6.

http://dx.doi.org/10.1109/TSMCC.2010.2042446
http://dx.doi.org/10.1109/TSMCC.2012.2198055

Sensors 2020, 20, 1097 18 of 19

6. Hess, W.; Kohler, D.; Rapp, H.; Andor, D. Real-time loop closure in 2D LIDAR SLAM. In Proceedings of the
2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May
2016; pp. 1271–1278.

7. Grisetti, G.; Stachniss, C.; Burgard, W. Improved techniques for grid mapping with rao-blackwellized particle
filters. IEEE Trans. Rob. 2007, 23, 34–36. [CrossRef]

8. Qin, T.; Li, P.; Shen, S. Vins-mono: A robust and versatile monocular visual-inertial state estimator.
IEEE Trans. Rob. 2018, 34, 1004–1020. [CrossRef]

9. Leutenegger, S.; Lynen, S.; Bosse, M.; Siegwart, R.; Furgale, P. Keyframe-based visual-inertial odometry using
nonlinear optimization. Int. J. Rob. Res. 2015, 34, 314–334. [CrossRef]

10. Kunchev, V.; Jain, L.; Ivancevic, V.; Finn, A. Path planning and obstacle avoidance for autonomous mobile
robots: A review. In Knowledge-Based Intelligent Information and Engineering Systems; Gabrys, B., Howlett, R.J.,
Jain, L.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 537–544.

11. Duchoň, F.; Babinec, A.; Kajan, M.; Beňo, P.; Florek, M.; Fico, T.; Jurišica, L. Path planning with modified a
star algorithm for a mobile robot. Procedia Eng. 2014, 96, 59–69. [CrossRef]

12. Jiang, C.G.; Peng, J.G. Research, manufacture and application of GPS-based surveying robot automatic
monitoring system for dam safety. In Proceedings of the 2009 IEEE International Conference on Intelligent
Computing and Intelligent Systems, Shanghai, China, 20–22 November 2009; pp. 151–155.

13. Kazmi, W.; Ridao, P.; Ribas, D.; Hernández, E. Dam wall detection and tracking using a mechanically scanned
imaging sonar. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe,
Japan, 12–17 May 2009; pp. 3595–3600.

14. Buffi, G.; Manciola, P.; Grassi, S.; Barberini, M.; Gambi, A. Survey of the Ridracoli Dam: UAV–based
photogrammetry and traditional topographic techniques in the inspection of vertical structures. Geomatics Nat.
Hazard. Risk 2017, 8, 1562–1579. [CrossRef]

15. Ridolfi, E.; Buffi, G.; Venturi, S.; Manciola, P. Accuracy analysis of a dam model from drone surveys. Sensors
2017, 17, 1777. [CrossRef]

16. Yi, J.; Wang, H.; Zhang, J.; Song, D.; Jayasuriya, S.; Liu, J. Kinematic modeling and analysis of
skid-steered mobile robots with applications to low-cost inertial-measurement-unit-based motion estimation.
IEEE Trans. Rob. 2009, 25, 1087–1097.

17. Mandow, A.; Martinez, J.L.; Morales, J.; Blanco, J.L.; Garcia-Cerezo, A.; Gonzalez, J. Experimental kinematics
for wheeled skid-steer mobile robots. In Proceedings of the 2007 IEEE/RSJ International Conference on
Intelligent Robots and Systems, San Diego, CA, USA, 29 October–2 November 2007; pp. 1222–1227.

18. Kozłowski, K.; Pazderski, D. Modeling and control of a 4-wheel skid-steering mobile robot. Int. J. Appl.
Math. Comput. Sci. 2004, 14, 477–496.

19. Wang, T.; Wu, Y.; Liang, J.; Han, C.; Chen, J.; Zhao, Q. Analysis and experimental kinematics of a skid-steering
wheeled robot based on a laser scanner sensor. Sensors 2015, 15, 9681–9702. [CrossRef] [PubMed]

20. Lenain, R.; Thuilot, B.; Cariou, C.; Martinet, P. Rejection of sliding effects in car like robot control: Application
to farm vehicle guidance using a single RTK GPS sensor. In Proceedings of the 2003 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2003), Las Vegas, NV, USA, 27–31 October 2003;
pp. 3811–3816.

21. Zhang, J.; Singh, S. LOAM: Lidar Odometry and Mapping in Real-time. Rob. Sci. Syst. 2014, 2, 9.
22. Lin, J.; Zhang, F. A fast, complete, point cloud based loop closure for LiDAR odometry and mapping. arXiv

2019, arXiv:1909.11811.
23. Sabet, M.T.; Daniali, H.M.; Fathi, A.R.; Alizadeh, E. Experimental analysis of a low-cost dead reckoning

navigation system for a land vehicle using a robust AHRS. Rob. Autom. Syst. 2017, 95, 37–51. [CrossRef]
24. Surber, J.; Teixeira, L.; Chli, M. Robust visual-inertial localization with weak GPS priors for repetitive UAV

flights. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA),
Singapore, 29 May–3 June 2017; pp. 6300–6306.

25. Alejo, D.; Caballero, F.; Merino, L. A Robust Localization System for Inspection Robots in Sewer Networks.
Sensors 2019, 19, 4946. [CrossRef] [PubMed]

26. Min, H.; Wu, X.; Cheng, C.; Zhao, X. Kinematic and Dynamic Vehicle Model-Assisted Global Positioning
Method for Autonomous Vehicles with Low-Cost GPS/Camera/In-Vehicle Sensors. Sensors 2019, 19, 5430.
[CrossRef]

http://dx.doi.org/10.1109/TRO.2006.889486
http://dx.doi.org/10.1109/TRO.2018.2853729
http://dx.doi.org/10.1177/0278364914554813
http://dx.doi.org/10.1016/j.proeng.2014.12.098
http://dx.doi.org/10.1080/19475705.2017.1362039
http://dx.doi.org/10.3390/s17081777
http://dx.doi.org/10.3390/s150509681
http://www.ncbi.nlm.nih.gov/pubmed/25919370
http://dx.doi.org/10.1016/j.robot.2017.05.010
http://dx.doi.org/10.3390/s19224946
http://www.ncbi.nlm.nih.gov/pubmed/31766253
http://dx.doi.org/10.3390/s19245430

Sensors 2020, 20, 1097 19 of 19

27. Rezaei, S.; Sengupta, R. Kalman filter-based integration of DGPS and vehicle sensors for localization.
IEEE Trans. Control Syst. Technol. 2007, 15, 1080–1088. [CrossRef]

28. Suhr, J.K.; Jang, J.; Min, D.; Jung, H.G. Sensor fusion-based low-cost vehicle localization system for complex
urban environments. IEEE Trans. Intell. Transp. Syst. 2016, 18, 1078–1086. [CrossRef]

29. Treptow, A.; Cielniak, G.; Duckett, T. Active people recognition using thermal and grey images on a mobile
security robot. In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Edmonton, AB, Canada, 2–6 August 2005; pp. 2103–2108.

30. Cha, Y.J.; Choi, W.; Büyüköztürk, O. Deep learning-based crack damage detection using convolutional neural
networks. Comput.-Aided Civ. Infrastruct. Eng. 2017, 32, 361–378. [CrossRef]

31. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TCST.2006.886439
http://dx.doi.org/10.1109/TITS.2016.2595618
http://dx.doi.org/10.1111/mice.12263
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	General Design
	Robot Platform
	Sensors
	Localization and Navigation
	Environment Inspection
	Conclusions
	References

