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Abstract: Vibration-based data-driven structural damage identification methods have gained large 
popularity because of their independence of high-fidelity models of target systems. However, the 
effectiveness of existing methods is constrained by critical shortcomings. For example, the measured 
vibration responses may contain insufficient damage-sensitive features and suffer from high 
instability under the interference of random excitations. Moreover, the capability of conventional 
intelligent algorithms in damage feature extraction and noise influence suppression is limited. To 
address the above issues, a novel damage identification framework was established in this study by 
integrating massive datasets constructed by structural transmissibility functions (TFs) and a deep 
learning strategy based on one-dimensional convolutional neural networks (1D CNNs). The 
effectiveness and efficiency of the TF-1D CNN framework were verified using an American Society 
of Civil Engineers (ASCE) structural health monitoring benchmark structure, from which dynamic 
responses were captured, subject to white noise random excitations and a number of different 
damage scenarios. The damage identification accuracy of the framework was examined and 
compared with others by using different dataset types and intelligent algorithms. Specifically, 
compared with time series (TS) and fast Fourier transform (FFT)-based frequency-domain signals, 
the TF signals exhibited more significant damage-sensitive features and stronger stability under 
excitation interference. The utilization of 1D CNN, on the other hand, exhibited some unique 
advantages over other machine learning algorithms (e.g., traditional artificial neural networks 
(ANNs)), particularly in aspects of computation efficiency, generalization ability, and noise 
immunity when treating massive, high-dimensional datasets. The developed TF-1D CNN damage 
identification framework was demonstrated to have practical value in future applications. 

Keywords: structural health monitoring; damage identification; transmissibility function; 
convolutional neural networks; deep learning 
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1. Introduction 

As an important topic in the field of structural health monitoring, vibration-based data-driven 
structural damage identification has been attracting increasing research interest in recent years [1–5]. 
Typically, the implementation of data-driven methods relies on surrogate models, rather than  
high-fidelity models, constructed based only on output responses obtained by different types of 
sensor array [6–8]. Thus, the major drawbacks of traditional model-based methods, in particular their 
data acquisition processes that are often computationally prohibitive, can be effectively prevented by 
using data-driven methods, the application of which is particularly suitable for online health 
monitoring under structural operational states. Along with the rapid developments in sensor 
technology and computational capacity, two key aspects are deemed crucial for data-driven damage 
identification methods: massive datasets consisting of structural dynamic responses associated with 
damage information and intelligent algorithms that can perform accurate and efficient extraction of 
damage features. 

A number of intelligent algorithms, such as the Bayesian method [9], genetic  
algorithms (GAs) [10], k-nearest neighbor (kNN) [11], support vector machines (SVMs) [12–16], and 
artificial neural networks (ANNs) [17–23], have been used in structural damage detection. Benefiting 
from the rapid developments in artificial intelligence theory and computer technology, the concept 
of deep learning shows paramount importance in engineering applications [24]. The convolution 
neural network (CNN), one of the most widespread deep learning models, has been demonstrated 
as a promising tool for identifying structural damage [25–29]. Compared with other machine learning 
methods, CNN, with its sparse connection and weight sharing features, has unique advantages in 
aspects of computation efficiency, generalization ability, and noise immunity, particularly in the 
processing of massive, high-dimensional datasets. In recent years, one-dimensional convolutional 
neural networks (1D CNNs) were adopted by many scholars for damage identification. Ince et al. [30] 
proposed a 1D CNN-based early fault detection system for motor condition monitoring. Zhang  
et al. [31] proposed a fault diagnosis model based on 1D CNN, using wide kernels in the first 
convolutional layer to extract features and suppress high frequency noise. That method was tested in 
a motor driving mechanical system and compared with another method based on a deep neural 
network (DNN). Abdeljaber and Avci et al. [32,33] used 1D CNNs to automatically extract  
damage-sensitive features in acceleration signals measured from the Qatar University Grandstand 
Simulator to achieve real-time damage detection. Abdeljaber et al. [34] proposed an enhanced  
CNN-based approach that requires a reduced amount of measurement sets subject only to 
undamaged or fully damaged cases. The method was verified using experimental data from the 
American Society of Civil Engineers (ASCE) structural health monitoring benchmark structure. 

Compared with extensive investigations concentrating on intelligent algorithms, relatively limited 
studies have focused on data selection and comparisons for data-driven damage identification 
methods. The time series (TS) is a typical data type adopted by deep learning algorithms. However, TSs 
contain highly redundant information, distributed over a wide frequency range, but with insufficient 
signal features directly associated with structural damage. Frequency-domain responses obtained 
normally by conducting fast Fourier transform (FFT) belong to another category of commonly used 
signals that contain typical vibration characteristics. However, the damage sensitivity of  
FFT-based signals is still limited, particularly when dealing with minor damage. Furthermore, a 
crucial drawback of both the TS and FFT-based signals is their high instability under interference 
from excitations, mostly of a random nature. In common engineering, practice excitations are 
extremely difficult to control well, so the interference on both TS and FFT-based signals from the 
excitations is severe and unavoidable, whereby the damage-related information contained in the 
signals is severely submerged.  

Compared with traditional TS and FFT data, transmissibility functions (TFs) contain significant 
damage-sensitive features and are inherently independent of excitation interference. Devriendt et al. 
[35–38] proposed several methods for modal parameter identification using TFs. Johnson et al. [39] 
discussed the validity of TFs in detecting, locating, and quantifying damage in linear and nonlinear 
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structures. Kong et al. [40] constructed damage indices based on the transmissibility characteristics 
of a vehicle-bridge coupled (VBC) system. Caccese et al. [41] verified the sensitivity of TFs in detecting 
bolt loosening in experiments. Zhu et al. [42] developed a spring-mass damping model with multiple 
degrees of freedom for performing damage sensitivity analysis based on TF signals. Feng et al. [43] 
verified the feasibility and sensitivity of TFs in damage detection in subway tunnels using numerical 
simulation. Zhou et al. [44] combined TFs with correlation analysis and conducted damage detection 
in cantilever beam and ASCE benchmark structures.  

While both exhibit potential advantages in structural health monitoring, the TF data and CNN 
model have rarely been integrated in damage identification tasks. To address this drawback, this study 
presents a novel damage identification framework, wherein massive datasets consisting of a large 
number of TF signals are constructed and used as inputs to a 1D CNN model designed to extract signal 
features in an adaptive and efficient manner. Relying on the TF-1D CNN framework, structural damage 
in an ASCE benchmark structure are identified with satisfactory accuracy and noise immunity. 

The rest of this paper is organized as follows. Section 2 introduces the fundamental theories of 
TFs and the 1D CNN; Section 3 describes the establishment process of the TF-1D CNN structural 
damage identification framework, including the construction of massive TF datasets and the design 
of the structure of the 1D CNN model; Section 4 introduces the implementation of the TF-1D CNN 
framework in damage identification in an ASCE structural health monitoring benchmark structure; 
Section 5 presents a comparison study related to the examination of damage detection accuracy under 
combinations of different data types and intelligent algorithms. Some important conclusions are 
drawn in Section 6. 

2. Fundamental Theories 

2.1. One-Dimensional Convolutional Neural Networks (1D CNNs): Convolution and Pooling 

In general, CNNs include convolutional (CONV) layers, pooling layers, and fully connected 
layers, where the CONV layers conduct convolution operations to the input data to extract feature 
maps; the pooling layers down-sample the feature maps to highlight the extracted features while 
achieving data dimensionality reduction and the extracted features are then classified by the fully 
connected layers. 

The CONV layers, including a set of filters (kernels) with learnable weights, undertake the major 
computational task in CNNs. The filters and inputs have the same depth. Specifically, in a 1D CONV 
layer, the forward propagation (FP) can be expressed by: 𝑔 = 𝑓[∑ 𝑐𝑜𝑛𝑣1𝐷(𝑤 ,  , 𝑎 ) + 𝑏 ], (1) 

where 𝑔  is the calculation result of the ith filter; 𝑎 is the input data of size 1 × 𝑁 × 𝑁; 𝑤  is the 
weight matrix of the ith filter, the size of which is 1 × 𝑁 × 𝑁; 𝑏  and 𝑓 are the bias of the ith filter and 
the activation function, respectively. 

The pooling layers down-sample the feature maps extracted by the CONV layers, where Max 
pooling is the commonly used strategy, expressed as: 𝑝 (𝑗) = 𝑚𝑎𝑥( )× ×  (𝑎 (𝑘)) (2) 

where 𝑎 (𝑘) is the kth element of the ith feature map input into the pooling layer and 𝑝 (𝑗) is the jth 
element of the ith feature map output by the pooling layer. The size of the pooling layer filter is 1 × 𝑚. 

The fully connected layers then classify the feature maps extracted by the CONV and the pooling 
layers to obtain the original output data, which is then normalized using the SoftMax function to 
calculate the probability distribution of the input samples located in different categories. The SoftMax 
function is defined as: 𝑝 = 𝑒( )𝑒(∑ ( )), (3) 
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where 𝑝  is the probability of the input sample within the kth classification and x is the original  
output data. 

2.2. Transmissibility Function (TF) 

A TF is defined as the ratio of two sets of dynamic responses in the frequency domain: 𝑇 (𝜔) = ( )( ) , (4) 

where 𝑇 (𝜔) is the TF and 𝑋 (𝜔) and 𝑋 (𝜔) are the Fourier transforms of the dynamic responses 
at the ith and jth degree of freedom (DOF), respectively. 

For a linear dynamic system, the frequency response, 𝑋(𝜔), can be expressed as 𝑋(𝜔) = 𝐻(𝜔)𝐹(𝜔), (5) 

where 𝐻(𝜔) = (𝑲 − 𝜔 𝑴 + 𝑖𝜔𝑪) . (6) 

In the above equation, 𝐹(𝜔)is the excitation; 𝐻(𝜔) is the frequency response function (FRF) 
matrix; and K, M, and C are the stiffness, mass, and damping matrices of the system. 

In particular, subject to a single excitation or multiple uncorrelated random excitations at the 
same spectral density level, a TF can be estimated as [45,46]: 𝑇 = 𝐺𝐺 = ℎ∗ℎℎ∗ℎ , (7) 

where 𝐺  is the cross-spectral density of the responses at DOF i and j; 𝐺  is the auto-spectral 
density of the response at DOF j; ℎ is the reduced row entries of the FRF matrix, H, corresponding 
to the DOFs where the excitations are located; (*) represents the complex conjugate transpose. From 
Equation (7), it can be deduced that a TF can be represented as a function of the FRF matrix, which 
contains rich information about structural dynamic characteristics, but without any involvement of 
the influence of excitation.  

3. Construction of the TF-1D CNN Damage Identification Framework 

The damage identification framework in the present study was established by integrating the 
advantages of both TF datasets and CNN algorithms. Relying on a great number of structural 
dynamic response measurements, a massive TF dataset could be constructed as the input to a 1D 
CNN model, the structure of which was sophisticatedly designed to perform adaptive damage 
feature extractions and noise suppression. 

3.1. Construction of Massive TF Datasets 

Dynamic responses are extracted from a target structure and then categorized into reference and 
non-reference responses. The TFs are then calculated using the reference and non-reference pairs. In 
the present study, dynamic responses in both x and y directions were extracted from the structure 
(according to a given coordinate system). Assuming there were 2n non-reference dynamic responses 
and two reference responses, the TFs were then constructed as 𝑇𝑥 = ( , )( , )𝑇𝑦 = ( , )( , ) , 𝑖 = 1,2, … , 𝑛, (8) 

where 𝑇𝑥  and 𝑇𝑦  are the TFs; 𝑅𝑥  and 𝑅𝑦 are the reference responses; 𝑎𝑥  and 𝑎𝑦  are the 
non-reference responses; 𝐺(𝑎𝑥 , 𝑅𝑥)  and 𝐺(𝑎𝑦 , 𝑅𝑦)  represent the cross-spectral density between 
the reference and non-reference responses; and 𝐺(𝑅𝑥, 𝑅𝑥)  and 𝐺(𝑅𝑦, 𝑅𝑦)  are the  
auto-spectral density of the reference responses. 



Sensors 2020, 20, 1059 5 of 26 

 

3.2. Construction of the 1D CNN Model 

The 1D CNN model was constructed to include two CONV layers, two max pooling layers, and 
two fully connected layers, as shown in Figure 1. The CONV layers 1 and 2 included 32 and 64 filters, 
respectively, with the filter size of 1 × 5 × 𝑁 (where the filter depth, N, is equal to that of the input 
of the layer). The size of the filters in the pooling layers was 1 × 5. A total of 1024 neurons were 
included in the first layer of the fully connected layers. Rectified Linear Unit (ReLU) was adopted as 
the activation function in CONV layers 1, 2, and fully connected layer 1, expressed as: 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥). (9) 

As stated, the second layer of the fully connected layers consisted of the original outputs of the 
1D CNN. 

 
Figure 1. The designed structure of the one-dimensional convolutional neural network  
(1D CNN) model. 

As an illustration, Figure 2 presents the constructed damage identification framework based on 
the responses of a target structure. The TFs were constructed as the functions of non-reference and 
reference signals along the x and y directions (as introduced in Section 3.1) and were then treated as 
the inputs of the 1D CNN model, on which basis a damage pattern recognition process was realized. 
In real applications, a massive amount of TF data must be collected to represent the dynamic 
characteristics of engineering structures (normally with complex geometric and physical properties) 
and, on the other hand, to provide sufficiently large datasets for the training of deep learning models. 
Therefore, a massive dataset, including a large number of structural dynamic responses, was 
constructed under various combinations of excitations and damage scenarios, as introduced in the 
following sections. 
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Figure 2. Illustration of transmissibility function (TF)-1D CNN damage identification framework. 

4. Damage Identification in the ASCE Benchmark Structure 

4.1. Numerical Model 

The ASCE structural health monitoring benchmark structure (Figure 3) [47] is a four-story frame 
structure at 3.6 m in height and 2.5 m in both length and width. Each layer of the structure consists of 9 
columns, 8 braces, and 1 floor panel, including 4 slabs and 12 floor beams. The weights of individual 
slabs of the first (bottom) to the fourth (top) floor panel are 800, 600, 600, and 400 kg, respectively. The 
120-DOF finite element (FE) model of the structure was used in this paper, as shown in Figure 4a. Note 
that equal horizontal displacements and rotations (referring to the z axis) are associated with the FE 
nodes in the same layer. Structural damage was introduced in terms of stiffness reduction of the braces 
of the structure. The excitation consists of two concentrated forces along the x and y directions, 
respectively, exerted simultaneously on the first floor, located at the positions as shown in Figure 4b. 
The excitations are in terms of white Gaussian noise, where the magnitude variations of the two 
concentrated forces are uncorrelated. In the following study, the durations of all excitations were 10 s, 
with a power and sampling frequency of 30 dbw and 1000 Hz, respectively. 
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Figure 3. American Society of Civil Engineers (ASCE) structural health monitoring benchmark structure. 

 

(a) 

 

(b) 

Figure 4. Finite element model of the ASCE structural health monitoring benchmark structure with 
marked positions of (a) the damaged braces and response measurement and (b) the excitations. 



Sensors 2020, 20, 1059 8 of 26 

 

4.2. Dynamic Response Analysis 

With the aim of examining the sensitivity and stability of different dynamic response types, two 
simple damage scenarios were first introduced into the structure, where scenarios 1 and 2 correspond 
to a 10% stiffness reduction of braces A and B in the ASCE benchmark structure, respectively, as 
presented in Figure 4a. Two different Gaussian white noise excitations (denoted as excitation 1 and 
2), with specific parameters as introduced in Section 4.1, were applied on the structure. Dynamic 
accelerations in the forms of TS and FFT-based signals were captured from point a, as marked in 
Figure 4a. TFs were constructed based on the acceleration responses captured at both a and b, in 
accordance with Equation (8), where the signal at b is treated as the reference response. 

Under a given excitation (i.e., excitation 1), three types of signals corresponding to different 
damage scenarios are presented in Figure 5. The variations in TS and FFT-based signals subject to 
different damage scenarios are barely recognizable, as shown in Figures 5a and 5b, respectively. More 
specifically, the TS signals contain a large amount of data under the current sampling frequency. 
However, the information included in the signals is considered redundant and poorly relevant to 
damage features. On the other hand, the FFT-based signals can reflect typical dynamic characteristics 
of the structure, such as natural frequencies, as indicated by the peak values in Figure 5b. However, the 
damage-associated features contained in the signals are still difficult to identify. In contrast, apparently 
high sensitivity to damage can be observed in the TF signals, as shown in Figure 5c, where both 
magnitudes and phases of the TF signals exhibit distinct variations under different damage scenarios. 

Signal stability was then examined under different excitations with the same damage scenario, 
i.e., damage scenario 1. From Figure 6a,b, it is observed that both TS and FFT-based signals show 
severe instability subject to excitation variations. It should be realized that, in real applications, 
stochastic excitation is usually unavoidable due to environmental factors, implying that the signal 
instabilities of the TS and FFT-based signals under random excitations are difficult to prevent. The 
TF signals, on the other hand, possess inherent independence and thus outstanding stability, subject 
to the excitation influence, which can be clearly observed from the minimal signal disturbance, as 
shown in Figure 6c. Such a feature is considered to have important merit that makes TFs ideal signal 
types for damage identification in practical applications. 

 

 (a) 

Figure 5. Cont. 
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(b) 

 

(c) 

Figure 5. Dynamic responses in terms of (a) time series (TS), (b) fast Fourier transform (FFT)-based, 
and (c) TF signals, subject to different damage scenarios and the same excitation condition. 
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(a) 

 

(b) 

Figure 6. Cont. 
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(c) 

Figure 6. Dynamic responses in terms of (a) TS, (b) FFT-based, and (c) TF signals, subject to the same 
damage scenario and different excitation conditions. 

To further examine the sensitivity of the TF signals to structural damage, a series of TF signals 
were calculated under a given excitation, subject to different degrees of damage severity, by introducing 
stiffness reductions in brace A and B, respectively, ranging from 5% to 50%, with an interval of 5%. The 
calculated TF signals are presented in Figures 7a and 7b, corresponding to damage in brace A and B, 
respectively. Approximately linear increases in the TF magnitude, along with the increase of the degree 
of stiffness reduction, can be seen in Figure 7. These observations demonstrate the capacity of TF signals 
to identify and differentiate structural damage over a wide range of severity degrees. 

 
(a) 
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Figure 7. Cont. 

 
(b) 

Figure 7. TFs between accelerations b and a under (a) stiffness loss of brace A, ranging from 5% to 
50% at 5% intervals; (b) stiffness loss of brace B, ranging from 5% to 50% at 5% intervals. 

4.3. Damage Identification Using the TF-1D CNN Framework 

In the subsequent study, a number of damage scenarios were identified by using the established 
TF-1D CNN framework. The damage scenarios were introduced into the benchmark structure in 
terms of 10% stiffness reduction of a single brace. Because there were 32 braces in this structure, a 
total of 32 damage scenarios and one non-damage scenario were taken into account. Considering the 
symmetry of the structure, damage associated with the braces on the same side of the same layer, 
such as that marked in red on the first layer shown in Figure 8, was considered equivalent.  

Acceleration responses were extracted from the structure, where two reference responses were 
extracted at the midpoint of the top floor along the x and y directions, respectively, as shown in  
Figure 9a. The non-reference responses were extracted at four points on each floor, at the positions 
shown in Figure 9b. The non-reference and reference responses along the same (x or y) direction were 
used to calculate the TF signals. Therefore, 16 TF signals could be constructed under a given excitation. 

 
Figure 8. Equivalent damage scenarios in terms of damage in two braces on the same side of a layer. 
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(a) 

 
(b) 

Figure 9. The locations at which (a) reference and (b) non-reference acceleration dynamic responses 
were captured from the structure along the x and y directions. 

To construct a massive TF dataset, one hundred sets of white Gaussian noise excitations were 
applied on the structure. Each set of excitations was applied in all the 32 damage scenarios and the 
non-damage scenario. Acceleration dynamic responses were extracted from the structure. In total, 
3300 data samples were generated by combinations of the 100 excitations and 33 damage  
(non-damage) scenarios. It can be calculated that each sample included 2 reference responses and 16 
non-reference responses, on which basis 16 TF signals could be calculated. The total number of TF 
signals was 52,800, included in the 3300 samples to be used in subsequent analysis. Because the 
damage in two braces on the same side of a given layer was equivalent, as already explained, only 16 
damage scenarios and the non-damage scenario were labeled. Moreover, 50% of the data in the 
dataset was used as the training set for the 1D CNN model and the other 50% was used as the testing 
set to examine the accuracy of the model.  

Next, the 1D CNN model was trained and tested using the constructed TF dataset. The accuracy 
of damage identification as examined using the test set was calculated to be 100%. One of the key 
reasons for the high accuracy of damage identification was that the 1D CNN model could perform 
adaptive extraction of the features in the TF signals that characterized structural damage. The output 
layer (fully connected layer 2) played the role of a classifier, and thus the feature vector (defined as 
Y) obtained from fully connected layer 1 was regarded as the extracted feature from the TFs by the 
1D CNN model. Y was then by treated by t-Distributed Stochastic Neighbor Embedding (t-SNE) 
technology, which visualizes high-dimensional data by giving each datapoint a location in a two- or 
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three-dimensional map [48]. The visualization results are shown in Figure 10, where each color 
represents a damage (or non-damage) scenario. It can be seen that the features extracted from TFs by 
using 1D CNN show a significant tendency to cluster and can be easily distinguished to be associated 
accurately with their corresponding structural health states. It can be concluded from the 
visualization results that significant damage-associated features were included in the TF signals and, 
on the other hand, the 1D CNN is capable of extracting damage features contained in a TF signal with 
high accuracy and efficiency. 

 
(a) 

 
(b) 

Figure 10. Visualization results of the damage features in the TF signals extracted by the 1D CNN 
model: (a) two- and (b) three- dimensional maps (different damage scenarios are labeled in the figure 
from 1 to 16). 
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4.4. Noise Effect Analysis  

To verify the robustness of the TF-1D CNN method under the influence of noise, different noise 
levels were added to the acceleration responses in the test set. The noisy TFs were then input into the 
1D CNN model to examine the accuracy of damage identification. The noise level was estimated 
according to the signal-to-noise ratio (SNR), defined by the formula: 

 SNR(dB) = 20 log 𝐴𝐴 , (10) 

where 𝐴  and 𝐴  are the root mean squares of clean acceleration response and noise, 
respectively. In accordance with Equation (10), it should be noted that smaller SNR values correspond 
to larger noise levels. The noise immunity was tested using eight SNR levels equal to 10, 15, 20, 25, 30, 
35, 40, and 50 dB, respectively. The accuracy of damage identification under different noise levels is 
presented in Table 1. Similarly, the feature vectors extracted by 1D CNN from data containing different 
noise levels were visualized by applying the t-SNE technique, as shown in Figure 11. It can be seen that 
with SNR exceeding 35 dB, the features extracted from the noisy data are well clustered and can be 
distinguished to indicate corresponding structural health states correctly. Under a SNR of 30 dB, a small 
number of features are classified in incorrect categories, implying the occurrence of possibly false 
alarms of the damage scenarios. Under SNRs equal to 25 and 20 dB, the difficulty in distinguishing 
categories of samples increases. However, the identification accuracy shows satisfactory stability under 
different noise levels and exhibits strong resistance to the influence of a large level of noise influence. 
Further analysis is provided in the comparison study shown subsequently. 

Table 1. Accuracy of damage identification using the transmissibility function (TF)-one-dimensional 
convolutional neural network (1D CNN) framework under noise influence. Signal-to-noise ratio (SNR). 

Noise 
SNR (dB) 

50 40 35 30 25 20 15 10 

Accuracy 

(%) 
100.00 100.00 100.00 97.70 83.03 70.42 60.91 41.27 

 

 
Figure 11. Cont.(a) 
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(c) 

 
Figure 11. Cont.(d) 
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(e) 

 
(f) 

 
Figure 11. Cont.(g) 
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(h) 

Figure 11. Visualization results of the damage features in the TFs extracted by the 1D CNN model, 
under the noise levels of the signal-to-noise ratio (SNR) = (a) 50, (b) 40, (c) 35, (d) 30, (e) 25, (f) 20, (g) 
15, and (h) 10 dB. 

5. Comparison Study 

5.1. Comparison of TS- and FFT-based 1D CNN Methods 

To compare the performance of different response types in damage identification, TS- and  
FFT-based responses were captured from the structure at the positions where the non-reference 
responses for the TF signals were captured. Thus, both TS and FFT datasets, including a great number 
of signals, could be obtained and treated as inputs of the constructed 1D CNN model. Under a  
noise-free environment, the damage recognition accuracy of the TS-1D CNN and FFT-1D CNN 
frameworks were 11.33% and 45.70%, respectively. The t-SNE [48] technique was used to visualize 
the feature extraction results, as shown in Figure 12. 

 
Figure 12. Cont.(a) 
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(b) 

Figure 12. Visualization results of signal features in the (a) TS and (b) FFT-based signals extracted by 
the 1D CNN model. 

Subject to different noise levels, the damage identification accuracy of the TS-1D CNN and  
FFT-1D CNN frameworks are shown in Table 2. The results were visualized as shown in  
Figures 13 and 14, respectively. 

By referring to the damage identification results based on the TF-1D CCN framework, as shown 
in Section 4, the TS- and FFT-1D CNN frameworks were not able to produce comparative accuracy 
in damage identification, with or without the influence of noise. This finding could be attributed to 
the low damage sensitivity and high vulnerability to excitation interference of both the TS and FFT 
signals. From the presented results, the unique advantages of the TF signals in damage identification 
can be clearly seen.  

Table 2. Accuracy of damage identification based on time series (TS)- and fast Fourier transform 
(FFT)-1D CNN frameworks under different noise levels. 

Noise 
SNR (dB) 

50 40 35 30 25 20 15 10 

Accuracy 

(%) 

TS- 

1D CNN 
11.33 11.45 11.27 11.58 11.88 10.73 10.79 11.33 

FFT- 

1D CNN 
45.33 45.27 45.27 45.45 45.21 44.97 44.85 45.45 
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(a) 

 

(b) 

 

(c) 

 

(e) 

 

(d) 

 

                    (f) 

Figure 13. Cont.  
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(g) 

 

(h) 

Figure 13. Visualization results of signal features in the TSs extracted by the 1D CNN model under 
the noise levels of SNR = (a) 50, (b) 40, (c) 35, (d) 30, (e) 25, (f) 20, (g) 15, and (h) 10 dB. 
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Figure 14. Visualization results of the features in the FFT-based signals extracted by the 1D CNN 
model under the noise levels of SNR = (a) 50, (b) 40, (c) 35, (d) 30, (e) 25, (f) 20, (g) 15, and (h) 10 dB. 

5.2. Comparison with the TF-ANN Method 

Subsequently, comparisons of different intelligent algorithms in damage identification were 
conducted. A traditional three-layer ANN was constructed as a counterpart to the 1D CNN model to 
conduct damage identification based on the TF datasets, defined as the TF-ANN framework. In detail, 
note that each TF signal was a one-dimensional vector with the length of 1000 and the 16 TF signals 
in each sample were connected end to end to constitute a one-dimensional vector (with the length of 
16,000) used as the input data of the ANN. The hidden layer of the ANN was composed of 1024 
neurons and the output layer was the same as that of the 1D CNN, where a one-dimensional vector 
was used to label different damage scenarios.  

The damage identification accuracy of the TF-1D CNN and TF-ANN frameworks, both under 
noisy environments, were compared, as presented in Table 3. It can be seen that the 1D CNN had 
clearly stronger accuracy and robustness in damage identification than the traditional ANN. More 
specifically, under conditions with relatively low levels of noise interference, the accuracy of the  
TF-ANN was considered high and stable, though the TF-1D CNN exhibits even higher accuracy in 
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feature extraction. With the increase in the noise level, particularly under a SNR smaller than 35 dB, 
the accuracy of both the CNN and ANN decreased. However, the accuracy of the ANN decreased in 
a much more drastic way that could easily lead to the failure of damage identification. On the other 
hand, 1D CNN well maintained its high accuracy of damage recognition well, with satisfactory 
immunity to noise influence, until a significantly large noise level was encountered. 

Table 3. Comparison between the TF-1D CNN and TF-artificial neural network (ANN) framework in 
noisy environments under different noise levels. 

Noise 
SNR (dB) 

50 40 35 30 25 20 15 10 

Accuracy 

(%) 

TF- 

1D CNN 
100.00 100.00 100.00 97.70 83.03 70.42 60.91 41.27 

TF- 

ANN 
96.36 95.15 90.18 71.88 43.21 30.91 23.52 18.91 

6. Conclusions 

A vibration-based data-driven structural damage identification framework was established by 
integrating massive datasets composed of TFs and a 1D CNN model. By performing damage 
identification tasks in the ASCE structural health monitoring benchmark structure, the effectiveness 
and efficiency of the proposed method was demonstrated. The strong capacity of the method in 
damage identification is attributed mainly to the following. 

Compared with traditional TS and FFT-based data, the TF data contains more significant 
damage-associated features, and, more importantly, the TF data shows inherent independence from 
the influence of excitation, giving rise to high stability of the method in damage identification, 
especially under random excitation conditions. That advantage can be clearly observed from the 
comparison results obtained based on the TF-, TS- and FFT-1D CNN frameworks. 

The 1D CNN model is capable of extracting damage features in massive TF datasets in an 
adaptive manner, with high efficiency and strong noise immunity. Compared with the traditional 
ANN, the 1D CNN is able to learn more robust signal features and possesses stronger generalization 
ability. This conclusion is supported by the comparison results based on the TF-1D CNN and  
TF-ANN frameworks. 

A future study would be valuable to validate the reliability of the proposed damage 
identification framework by considering various factors, for example, more complex structural forms, 
the impact of the number and locations of the captured dynamic responses, and possible 
improvement of the 1D CNN model for enhanced feature extraction and noise suppression. In 
particular, intelligent optimization methods, such as Bayesian optimization, could be used in 
hyperparameter selection for the 1D CNN model to achieve further improved damage identification 
results. Further, more comprehensive comparison studies considering other types of feature- or  
Artificial Intelligence (AI)-based methods can be conducted in future work. 
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