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Abstract: A wireless sensor network (WSN) deploys hundreds or thousands of nodes that may
introduce large-scale data over time. Dealing with such an amount of collected data is a real challenge
for energy-constraint sensor nodes. Therefore, numerous research works have been carried out
to design efficient data clustering techniques in WSNs to eliminate the amount of redundant data
before transmitting them to the sink while preserving their fundamental properties. This paper
develops a new error-aware data clustering (EDC) technique at the cluster-heads (CHs) for in-network
data reduction. The proposed EDC consists of three adaptive modules that allow users to choose
the module that suits their requirements and the quality of the data. The histogram-based data
clustering (HDC) module groups temporal correlated data into clusters and eliminates correlated
data from each cluster. Recursive outlier detection and smoothing (RODS) with HDC module provides
error-aware data clustering, which detects random outliers using temporal correlation of data to
maintain data reduction errors within a predefined threshold. Verification of RODS (V-RODS) with
HDC module detects not only random outliers but also frequent outliers simultaneously based
on both the temporal and spatial correlations of the data. The simulation results show that the
proposed EDC is computationally cheap, able to reduce a significant amount of redundant data with
minimum error, and provides efficient error-aware data clustering solutions for remote monitoring
environmental applications.

Keywords: wireless sensor network; environmental monitoring; time-series clustering; partitional
clustering; outlier detection; k-means; k-medoids; in-network data reduction

1. Introduction

Wireless sensor networks (WSNs) have been utilized for various applications such as facility
monitoring, environmental monitoring, and military surveillance. Typically, these applications
deploy plenty of sensor nodes, which are capable of communicating among themselves and to a
base-station or external sink in WSNs [1]. The sensor nodes could be scattered in harsh environments,
including battlefields, or deterministically placed at specified locations randomly, and coordinate
among themselves to build a communication network. In WSNs, data can be sensed periodically and
non-periodically (e.g., event driven). In the event-driven scenario, the sensor nodes sense data only
when an event is invoked. For example, the sensor nodes wake up and report the event when they
detect the presence of intruders. On the other hand, periodic data monitoring is used for applications
where certain conditions or processes need to be monitored continuously, such as temperature or
pressure. It monitors a given phenomenon and sends data measurements and notifications to the sink
at a regular time interval. This systematic collection of sensed data from periodic applications can be
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defined as time-series [2]. The features of time-series data are continuous data update, it contains high
dimensions and has a large data size.

The transmission of a high volume of time-series data from a source sensor to the sink is inefficient
for energy-constraint sensor nodes [3]. In addition, the amount of collected data from a dense sensor
network is typically huge for the sink to process. Furthermore, these types of data are often redundant
because the environmental data has small variation over time [4], thus the sensor nodes contain similar
data in their consecutive readings. Meanwhile, the cluster-head nodes receive redundant readings
from neighbour nodes at the same time. As a result, in-network data reduction is needed to aggregate
a large number of data into lower-representation. The in-network data reduction refers to the process
of eliminating correlated or unnecessary data by either sensor nodes or CHs before transmitting the
data to the sink [5]. The main objective of in-network data reduction is to increase the network lifetime
and speed-up data analysis in order to make quick decisions. One way to improve the power efficiency
is to eliminate the redundant or correlated data before transmitting them to the sink without any
large degradation of the accuracy. Unfortunately, the collection of real-world data is usually messy,
incomplete, inconsistent, and rarely clean [5]. There can be many reasons for the noisy data, ranging
from the environmental obstacle and sensors malfunctioning to human errors during data recording.
Thereby, the in-network data reduction is becoming a challenging issue for researchers to handle the
noisy sensor data. The data clustering technique is one of the solutions for in-network data reduction.
This technique classifies the homogeneous data, removes the redundant data and then forwards the
distinct data to the sink.

Data clustering is mostly utilized to reduce correlated data for achieving energy conservation in
WSNs [6–9]. In particular, several data clustering techniques have been explored including principal
component analysis based aggregation (PCAg) [10], multiple-PCA [11], candid covariance-free
incremental PCA (CCIPCA) [5], data aggregative window function (DAWF) [12], projection basis
PCA [13], distributed PCA [14], K-means [15], enhanced K-means [9], K-medoids [16], singular value
decomposition (SVD) [17], auto-regressive moving average (ARMA) [18], and least mean square
(LMS) [19]. Various applications of these techniques are available in existing literature [20–28].
However, current data clustering techniques lead to a myriad of problems including error-control for
in-network data reduction, time-intensiveness and complex computation. Apart from this, existing
techniques in [9,15,16] are computationally time-intensive due to random initialization process. Indeed,
it is challenging to reduce the data, especially with the rapid increase in the amount of data collected
by the sensor nodes.

In this paper, a new error-aware data clustering (EDC) technique has been introduced and
incorporated at the CHs in WSNs. The EDC is divided into three modules. The first module
is histogram-based data clustering (HDC), which aggregates similar data into clusters based on
the temporal correlation and provides a systematic data clustering for reducing data redundancy.
The second module is recursive outlier detection and smoothing (RODS) with HDC module, which
provides the error-bound guaranteed data clustering. This module is capable of detecting random
outliers (sudden changes and those that lie outside of the regular data pattern) based on the temporal
correlation and replaces them by the normal data. The final module is verification of RODS (V-RODS)
with HDC module, which detects not only the random outliers but also frequent outliers (frequent
changes and those that lie outside of the regular data pattern of the neighbour nodes) simultaneously.
This module considers both the temporal and spatial correlations to detect outliers and replace
the outliers with the normal data in order to provide more robust error-aware data clustering.
The performance of the proposed EDC has been simulated using real-world sensor data.

The rest of the paper is organized as follows: Section 2 covers various clustering techniques for
in-network data reduction in WSNs. Section 3 explains the concepts and definitions related to data
clustering. Section 4 introduces a new error-aware data clustering technique for in-network data
reduction for WSNs. Section 5 explains the implementation of the proposed technique. Section 6
presents the results and analyses of the proposed technique. Finally, Section 7 concludes the paper.
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2. Background Works

Data clustering has been considered as a useful technique, especially for applications that require
scalability to handle a large amount of data collected from the sensor nodes. It also supports data
aggregation by removing data redundancy before transmitting them to the sink to gain energy
conservation. Recently, in [6,8,29,30], the authors have presented a comprehensive overview of
various data clustering techniques for in-network data reduction in periodic WSNs. Generally, these
techniques can be classified into three different categories as presented in Figure 1, which are feature
extraction-based, model-based and feature selection-based data clustering.

Data clustering techniques

Feature extraction-

based
Model-based Feature selection-based

Figure 1. Classification of data clustering techniques for in-network data reduction.

Feature extraction-based technique transforms the original data into a set of data with a reduced
number of variables, which contain the most discriminatory information. Usually, this technique
is used to reduce data dimensionality by eliminating redundant or irrelevant information. Several
feature extraction-based techniques have been explored in [5,13,17,28,31–34] to handle a large volume
of data. These techniques are mostly implemented at the CHs in WSNs, in which the CHs collect
data from sensor nodes and transform them into a set of reduced features to remove data redundancy.
However, they transform data from the original space into a new space with lower representations,
which later cannot be linked to the features in the original space. Therefore, further analysis of the
new space is difficult since there is no physical meaning of the transformed features obtained from
feature extraction-based techniques. Moreover, feature extraction-based techniques reduce amount of
data by selecting the most important feature components from the feature space, thereby the accuracy
of these techniques is strongly influenced by the cumulative variance of the selected components.
Furthermore, they require extensive computations to transform data to the subspace resulting in an
expensive time computation.

Model-based techniques perform data prediction on the collected data and generate a model based
on the historical data to reduce the volume of data. These techniques predict the actual reading at the
source sensor based on historical recordings and compare predicted reading with the actual reading.
If the error between the predicted and actual readings is less than the predefined threshold error, the
predicted reading will not be sent to the CHs or sink and vice-versa. Some of the most recent techniques
in [18,19,35–41] are utilized to predict data for in-network data reduction in WSNs, which are simpler,
easy to implement and provide acceptable accuracy. Since, the model-based techniques predict data
based on historical data, these techniques may not be capable of providing correct prediction when
the historical data are noisy and highly inconsistent. Thus, the model-based techniques trade-off the
accuracy with data reduction percentage.

Feature selection-based technique is a process to select independent, informative and
discriminating features (individual measurable properties or characteristics of a phenomenon being
observed [42]) for preprocessing learning algorithms. By using these features, the partitioning data
clustering can be performed to eliminate data redundancy as well as improving the learning accuracy,
reducing learning time, and simplifying learning results [43]. In machine learning, the feature selection
procedure is widely utilized for reducing dimensions of data, especially when dealing with high
dimensional space of data [44]. Some of the feature selection-based data clustering techniques are
reviewed below, which are mostly related to our proposed technique in this paper.



Sensors 2020, 20, 1011 4 of 37

In [45], the authors propose a distributed K-mean clustering (DKC) procedure for aggregating
data at the parent nodes in WSNs. Using DKC, the authors construct a tree-based network to aggregate
data from child nodes to parent nodes based on an adaptive weighted allocation. Then, the parent
nodes send the reduced data to the sink node. In [46], the authors propose a transmission-efficient
technique dedicated to periodic data clustering for underwater WSNs. An enhanced version of
K-means algorithm is applied at the CHs to group homogeneous data into clusters for reducing the
redundant data. Then, it adopts a one-way ANOVA model with three statistical tests for evaluating the
data reduction performance. In [9], an enhanced two-fold EK-means algorithm has been developed to
reduce data redundancy, which is the extended version of the previous work in [46]. The first module is
executed at the sensor node level, where data are collected in temporal order over time to group similar
data into clusters based on the Euclidean distance. The second one is applied at an intermediate node
level to aggregate data collected from the neighbour nodes. This module groups spatially correlated
data into clusters for reducing data redundancy among neighbour nodes. Furthermore, the work
in [47] proposes an algorithm called CluStream, which adopts a k-means procedure to combine similar
data in the evolving data streams into clusters.

Apart from these, there are some other similar partitional clustering techniques in the literature,
including K-medoids [16], and partitioning around medoids (PAM) [48]. They are introduced to
determine the centroids of the clusters in order to reduce redundant data. For example, K-medoids
(discrete median ) is a prototype that determines the central value that is an original entity of the input
data stream in which the number of data points is odd. If the number of data points is even, it computes
the average value of two middle data points of that particular data stream. Another prototype is PAM
performing similar to k-mediods. Both prototypes partition data stream into homogeneous groups or
clusters based on the sum-of-squared of differences or sum-of-absolute differences. These methods
are more robust to noise or outliers as compared to k-means because they reduce the sum-of-pairwise
dissimilarities instead of sum-of-squared Euclidean distances. However, its time complexity is higher
than the time complexity of k-means in the case of a large data stream.

Furthermore, a hierarchical clustering technique forms a hierarchy or tree of the clusters. There
are two types of hierarchical processes: (i) Agglomerative and (ii) divisive. In the agglomerative
procedure, a bottom-up strategy is implemented that initially considers data points into a group based
on the temporal correlation of the data then the clustering process progresses upwards successively.
Similarly, the top-down approach is a divisive process that initially collects all the data points into one
group. Then, the algorithm progresses recursively based on similarity measure among the data points
to partition the data into the groups. Balanced iterative reducing and clustering utilizing hierarchies
(BIRCH) [49] is another popular algorithm for partitioning clustering. This algorithm first summarizes
the information of the distribution and performs clustering on the summarized data instead of the
original data.

Another technique named histogram-based data clustering has been incorporated in different
field of applications [50–52] to group similar data into clusters in order to reduce redundant data.
The data points of each cluster have been assigned in a systematic way where the random initialization
to determine centroids and iteration to converge individual cluster are not required. This technique
partitions arranged data into clusters based on the ratio between the range of a data stream and
predefined number of clusters. The histogram-based technique is relatively simpler for implementation,
and very less execution time is consumed in comparison with other existing techniques [9,16,46].

However, the main constraint of the partitioning data clustering is the determination of the
number of clusters without any prior knowledge about the data. Thereby, the performance of
many existing partitioning data clustering techniques are highly affected by the quality of data.
The inconsistent, irregular and noisy, data can change the range of a data stream and influence the
clustering accuracy. Most of the existing techniques only focus on clustering data that are falling
within the user-defined threshold value instead of repairing the data, which are outbound of the
predefined threshold. Moreover, the current partitional clustering algorithms [9,16,46] may not be
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suitable for in-network data reduction due to the random initialization in determining centroids of
the clusters. Furthermore, the formation of hierarchical tree structure in the hierarchical clustering
algorithms is computationally expensive and may not be appropriate for a large dataset. Moreover,
none of the current data clustering techniques focuses on the improvement of data reduction rate and
data reduction accuracy simultaneously. Therefore, this paper develops the partitioning data clustering
technique and considers noisy data in order to achieve maximum data reduction and minimum
reduction errors.

3. Concepts and Definitions

The basic concepts and definitions utilized in this work are provided in this section. The key
notations used in this paper are presented in Table 1.

Table 1. A list of the utilized mathematical notations and their definitions.

Notations Definitions Notations Definitions

Xi A specific data stream t A discrete time point
T Whole period ∆d The range of a data stream
D A set of data streams from different

sensors
C A set of spatial clusters

Cj A spatial data cluster SCj A temporal data cluster
B A set of temporal clusters K A number of clusters
W Constant width of an individual cluster ak Individual cluster edge
µk Mean value of a cluster Mk Median value of a cluster
MADk Mean absolute deviation of each cluster X′ Aggregated data stream
di Discrete element of a cluster MADB Mean absolute deviation of all clusters
ξi (l) A set of standardized scores ηi A maximum standard score
M̄i Median value of a standardized scores Xi A de-standardized data stream

∆u Range of updated data stream
_

Xm×n A data matrix
MD Median value of a data matrix Mi Median value of a data stream
⇀

ξ i (l) A set of modified standardized scores X̂i De-standardized a detected outlier
score

Di Absolute deviation between X̂i and MD Ψi A user-defined threshold value

Definition 1. (A Time-Series): A time-series is a set of numerical values that indicates the temporal
characteristics of sensor node i (i = 1, 2, 3, · · · , m) at any specific time point (t) of the total lifetime T [53] as
given in Equation (1):

Xi = [xi,1 (t) , xi,2 (t) , xi,3 (t) · · · xi,n (t)]
T , (1)

where n is the total number of time points.

Definition 2. (Range): The range ∆d is a numerical indication of the span of a set of data in a distribution or
data stream where subscript d indicates “data stream". To specify the range, we simply identify the min and
max values of that particular set of data in a data stream and then subtract the min from max. The range of a
set of data can be formulated as in Equation (2):

∆d = (max (Xi)−min (Xi)) . (2)

Definition 3. (Mean): Mean is a central value of a collection of data in a distribution [54]. For example, Xi
is a collection of numerical observations of distribution, then the mean µ of this particular distribution can be
expressed as in Equation (3):

µ =
1
n

(
n

∑
i=1

Xi

)
, (3)
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where Xi ∈ X.

Definition 4. (Median): The median is the middle or central value of a collection of arranged data [54]. If the
number of observations of a collection of data is odd, then the median value is set as the middle data point in
the collection of arranged observations. Otherwise, the mean of two values is computed and set as the median.
The median M can be formulated as in Equation (4):

M =


(

n+1
2

)th
element, Odd

1
2

(( n
2
)th

+
( n

2 + 1
)th
)

element, Even

, (4)

where n is the number of possible arranged elements or values of a given distribution.

Definition 5. (Standard Deviation): The standard deviation is a measure that is used to quantify the amount
of variation or dispersion of a set of data values [54]. It is also useful in comparing sets of data that may have the
same mean but a different range. For example, the mean of the following two sets is the same: 15, 15, 15, 14,
16 and 2, 7, 14, 22, 30. However, the possible values of the first set are mostly redundant and less spread out
compared to the second set. The standard deviation can be defined by σ and computed as in Equation (5):

σ =

√√√√ 1
n

(
n

∑
i=1

(Xi − µ)2

)
. (5)

Definition 6. (Data Redundancy): Redundancy is the provision of additional or duplicate resources, which
can produce similar results. Usually, improving the consistency of observations provided by WSNs is to increase
the redundancy, by either obtaining observations for a specific location from multiple neighbouring sensor nodes
in a particular time (spatial redundancy), or by obtaining several observations for a specific location from the
same sensor node over time (temporal redundancy) [55].

Definition 7. (Spatial Data Clustering): A set of data streams D is collected from the m sensor nodes hence,
D = {X1, X2, X3, · · · · · · , Xm} where Xi (i = 1, 2, 3, ..., m). The unsupervised clustering process of D into
C =

{
C1, C2, C3, · · · · · · , Cp

}
, occurs such that homogeneous neighbour sensor nodes are grouped together

based on the application requirements, a group that is called spatial data clustering. Cj is then called a cluster,
where C =

⋃p
j=1 Cj and Cj ∩ C f = ∅ for 1 ≤ j 6= f ≤ p.

Definition 8. (Temporal Data Clustering): A temporal data cluster SCj is a set of individual time-series
data that are similar in time collected from a sensor node. Time-series data are considered to a new cluster
based on their contiguous non-overlapping interval, which is a constant partition of the range of a set of data
in a distribution. Hence, B = {SC1, SC2, SC3, · · · · · · , SCk} is the set of clusters, where B =

⋃k
j=1 SCj and

SCj ∩ SC f = ∅ for 1 ≤ j 6= f ≤ k and k < p << m.

4. The Proposed Error-Aware Data Clustering (EDC) Technique

A new error-bound guaranteed data clustering technique has been proposed to reduce the data
redundancy by keeping the data reduction error within the user-defined threshold. This technique is
mainly divided into three adaptive modules, namely histogram-based data clustering (HDC), recursive
outlier detection and smoothing (RODS) with HDC, and verification of RODS (V-RODS) with HDC.
The users are allowed to choose any of these modules for performing data clustering based on their
requirements and quality of data. The proposed EDC technique has been implemented at each
cluster-head (CH) of WSNs and data clustering is performed simultaneously to achieve in-network
data reduction effectively. An example of a WSN scenario has been presented in Figure 2 where the
source sensors, CHs, gateway, base station and other communication links are highlighted.
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Source sensors

Figure 2. A scenario of a periodic wireless sensor network (WSN) for a long-term monitoring
application.

The sensor nodes with limited computational capacity and power supply are designed to be
responsible for sampling the application surroundings and transmitting the sampled sensor data
to their CH. However, we assume that CH is equipped with the powerful hardware capabilities to
aggregate the data from multiple sensor nodes. In WSNs, each CH in a cluster collect the sensor
readings from sensor nodes in a constant time interval τ. The collected readings can be arranged in

the form of a data matrix for every constant time interval. The data matrix
_

Xm×n can be expressed
mathematically as in Equation (6):

_

Xm×n =


_
x1,1
_
x2,1

...
_
xm,1

_
x1,2
_
x2,2

...
_
xm,2

· · ·
· · ·
. . .
· · ·

_
x1,n
_
x2,n

...
_
xm,n

 , (6)

where m and n are the total number of sensor nodes of a cluster and the total number of readings,
respectively.

During the collection of data, missing values can occur in periodic WSNs due to a variety of causes
such as malfunctioning of sensor nodes, communication failure, interference, and unsynchronized
sampling of the sensors. The missing values in a dataset could be appeared as: ‘NaN’, ‘Na’, ‘N123’,

‘empty string’ and ‘in f initive values’. If there is any missing data in
_

Xm×n, then it will be detected and

replaced by the computed median MD (as in Equation (4)) value of the particular data matrix
_

Xm×n in
order to maintain the full sample size for further analysis, where subscript D indicates "data matrix".
Each collected reading of the sensor node i at time instant t (t = 1, 2, 3, · · · , T) in a continuous-time

series data stream of a data matrix
_

Xm×n, is expressed as in Equation (7):

Xi [t] = X∗i [t] + ωi [t] , (7)

where i is the spatial location identifier and t is the discrete-time identifier.
Consequently, all sensor nodes are assumed to be synchronized according to the discrete-time

model [56] where m is the number of spatial locations, which is equal to the number of sensor nodes
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(i.e., each location is covered by a single sensor). X∗i [t] is the noiseless physical phenomenon value
(e.g., a temperature reading value), and the noise values

{
ωi [t] ˜N

(
0, σ2

ω

)}m
i=1 are independent and

identically distributed (i.i.d) random Gaussian variables with zero mean and variance σ2
ω that depend

on the hardware accuracy [56]. Furthermore, we assume that ϕ1 < Xi [t] < ϕ2 as the dynamic sensing
range of the sensor nodes with ϕ1 and ϕ2 as constant values that are usually given in hardware
datasheets. Thereby, any sample value that falls outside this sensing range is considered as an invalid
reading (e.g., generated by a defective sensor). For example, the temperature monitoring sensor
(model Mica2Dot) [57] measures the temperature in the range of −10 to 70 ◦C. Therefore, any reading
beyond this range is considered as invalid data and have been replaced with the median Mi value
of the particular data stream. The mean value is highly sensitive to noise [58], thereby median
value has been selected instead. The further details of the proposed technique are explained in the
following subsections.

4.1. Histrogram-Based Data Clustering (HDC)

The HDC is a partitional-based data clustering technique broadly used in data mining to discretize
continuous time-series variables [50,52,59]. Another work in [51], initially introduced the concept of
HDC as a sampling algorithm for periodic WSNs. This algorithm partitions similar sensor data into
clusters to minimize data redundancy by sampling random or central elements of each cluster. In this
paper, the HDC is implemented in low-power periodic WSNs to monitor long-term environmental
applications and tested with the real-world sensor data. The main objective of the HDC is to provide
in-network data reduction facility with limited discretization error. The HDC technique is listed in
Algorithm 1, which can be divided into three major phases: (i) Initialization determines the number
of clusters and the range of a data stream, computes the constant cluster interval and updates the all
clusters intervals recursively according to the lines 1–3. (ii) Data clustering phase assigns data elements
from a data stream into the clusters based on the given intervals and reforms the empty clusters if
any as shown in lines 5–7. (iii) Data centring and aggregation determines the central value of each
cluster using different prototypes (e.g., mean, medoids) for representing that particular cluster. Then, it
computes the mean deviation error of all clusters and aggregates the discretized data stream according
to the lines 8–10 . The detail procedures are explained mathematically in the following sub-sections.

Algorithm 1: Histogram-based data clustering and aggregation
Input: Xi-Original data stream
parameter : K {K ← 1, 2, 3, · · · , k} −Number of clusters
Output: X′-Reduced data stream at CH

1 Determine the K using “square root” or “Sturge’s” rule and the range ∆d of Xi;
2 Determine the discretization step W, which is the ratio of ∆d and K;
3 Update all cluster edges ak and set the limit of constant cluster intervals recursively;
4 for i← 0, 1, 2, 3, · · · · ·, Xi − 1 do
5 Compute Histogram based on the limits of each cluster interval;
6 Discretize the data of Xi into different bins SCk based on the given intervals;
7 Find the empty SCk if any and replace them by median Mi of Xi;
8 Find the centers of each SCk based on µk or Mk;
9 Calculate the mean absolute deviation MADk of each SCk;

10 end
11 Aggregate the discretized data stream X′, where X′ < Xi;

4.1.1. Initialization Phase

In this phase, parameters in HDC are initialized and computed. The number of bins or clusters K
(K = 1, 2, 3, · · · , k, where k is defined as an individual cluster) is an important parameter that is defined
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initially for HDC using two different rules, namely the square-root rule [54] and Sturge’s rule [60].
These rules are mostly used for normal or Gaussian distribution. Using these rules, the optimum
number of clusters is defined by Ksqrt and KSturge′s, respectively, and its constant interval-width W
(W = w1, w2, · · · · · · , wn) are calculated as in Equations (8) and (9):

Ksqrt =

(⌈√
|Xi|

⌉)
and w1 =

(
max Xi −min Xi

Ksqrt

)
, (8)

KSturge′s = (d1 + 3.322 (log2|Xi|)e) and w2 =

(
max Xi −min Xi

KSturge′s

)
. (9)

4.1.2. Data Clustering Phase

The sequence of edges of the clusters is calculated according to the arithmetic or linear sequence.
In a sequence of computed edges, each new term is calculated by adding a constant interval-width W
to the previous term. For example, the difference between any two adjacent edges is W. The recursive
definition is therefore as in Equation (10):

ak = ak−1 + W, a1 = a0 + W, (10)

where the term ak = a1, a2, a3, · · · ak and a0 = min (Xi) is defined as the lower bound of edges as well
as the clusters K constant intervals (a0, a1] , (a1, a2] , (a2, a3] , · · · , (ak−1, ak]. The data elements that fall
between the lower-bound edge and upper-bound edge (e.g., a0 and a1) of a cluster, then they are
considered for that particular cluster. If there is no element (i.e., empty cluster) in any cluster SCk, then
that empty cluster will be detected and replaced with the computed median Mk value of the particular
data stream Xi. This replacement is done in order to maintain the equal length of the aggregated data
with respect to the aggregated data from other data streams.

4.1.3. Centering and Aggregation Phase

In this phase, we determine the central value of each cluster using two different prototypes
including averaging and medoids as well as computing the absolute deviation error of each data point
of each cluster. Here, we consider two clusters of datasets as an example to calculate central values and
absolute deviation errors. The clusters of datasets can be expressed as SC1 = {d0, d1, d2, · · · , dL} and
SC2 = {dL+1, dL+2, dL+3, · · · , dR−1}, whereas the central values of the clusters have been computed
based on Equations (3) and (4).

The absolute deviation error (ADE) is a distance between a particular data point and the central
value, which can be calculated for each data point of each cluster as in Equation (11):

ADEi = (|di − µk|) or ADEi = (|di −Mk|) . (11)

The mean absolute deviation of an individual cluster, as well as all clusters of a data stream, are
computed as in Equations (12) and (13), respectively:

MADk =
1
L

L

∑
i=0

ADEi, (12)

MADB =
1
k

k

∑
i=0

(|MADk − µK|). (13)

The main advantage of the HDC technique is its ability to perform data clustering in a systematic
way. There is no random initialization to determine the initial centroids for the number of clusters of
a dataset as like existing data clustering techniques in [9,46]. However, in the HDC as well as other
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partitioning data clustering techniques [9,46], the number of clusters is required to be predefined
without any prior knowledge about the datasets. Thus, the main constraint of these techniques is
to decide an optimum number of clusters based on the variation of the data. Even though the HDC
works well in the case of “normal” data streams (the consecutive data proximity are very high in
temporal order) as shown in Figure 3a, the issue emerges at the presence of “outliers” (the sudden
change between the consecutive readings called noisy data streams) as presented in Figure 3b.
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(a) HDC for a normal data stream

(b) HDC for a noisy data stream
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Figure 3. A graphical representation of the histogram-based data clustering (HDC) technique. (a) The
HDC performs clustering for a “normal” data stream; (b) The HDC performs clustering for a “noisy”
data stream.

In WSNs, outliers can be defined as the sensor readings that significantly deviate from the normal
pattern of the sensed dataset [61]. The outliers can be caused by the sensor malfunction, faulty
sensor nodes, noise, and error readings. Two types of outliers might be generated, namely randomly
generated outliers and frequently generated outliers. Generally, outliers can dramatically change the
normal data pattern and affect the overall data analysis [62]. For example, in Figure 3b, when outliers
occur in a data stream Xi, the range ∆d of Xi, increases significantly, as well as cluster width W. As a
result, the data proximity may be reduced, the central values of the clusters may be shifted, and the
deviation error may be increased. Therefore, in this paper, the RODS technique has been introduced
with HDC to handle outliers to facilitate the process of determining the number of clusters.

4.2. Recursive Outlier Detection and Smoothing (RODS) with HDC

The main purpose of introducing the RODS with HDC is to consider noisy data during clustering
in order to achieve error-aware data reduction. The proposed RODS processes the data stream
according to Algorithm 2 for detecting and smoothing the outlier data points that exist in the data
stream recursively. The RODS can be divided into two major phases, including initialization and
recursion. In the initialization phase, the noisy data stream is detected and re-scaled by the standard
score (z_score) method. Then, the standardized scores are initialized to determine outlier data points
according to the lines 1–4. In recursion phase, if the outlier data point is detected, then it is replaced
with the median value of that particular standardized scores. Finally, the updated standardized scores
are reconstructed and the process is repeated recursively until the user requirements are fulfilled as
shown in lines 6–11. Otherwise, the Algorithm 1 is run to perform data clustering and aggregation for
reducing the redundancy of a given data stream. The mathematical explanations of the RODS and its
different phases are discussed below:
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Algorithm 2: Recursive outlier detection and smoothing (RODS) with HDC
Input: Xi-Original data stream
parameter : K {K ← 1, 2, 3, · · · , k} −Number of clusters

1 Compute the range ∆d of Xi;
2 if ∆u > K then
3 Noisy data stream Xi is detected;
4 Re-scale Xi by standard score ξi (l) calculation and initialize ξi (l);
5 Recursion:;
6 while ηi = max (|ξi (l) |) > 3 do
7 ηi is detected as outlier;
8 Replace ηi by M̄i of ξi (l) to update ξi (l);

9 Reconstruct updated ξi (l) by Xi;

10 Compute range ∆u of Xi and assign ∆d = ∆u;
11 Repeate the recursion proceses until ∆d ≤ K or ηi ≤ 3;
12 end
13 Call algorithm 1;
14 else
15 Call algorithm 1;
16 end

In the RODS technique, a data stream Xi is detected as noisy data based on the comparison
between the computed range ∆d of a particular data stream as in Equation (2) and the predefined
number of clusters K. If ∆d of Xi is higher than K, then the Xi is considered as “noisy”, otherwise it is
detected as “normal” as in Equation (14):{

if ∆d > K Noisy data stream
if ∆d ≤ K Normal data stream

. (14)

4.2.1. Initialization Phase

The raw sensor data stream Xi, which has been detected as “noisy”, is re-scaled based on the
standard score method where the mean is 0, and the standard deviation is 1 (i.e., normal distribution).
The standardization of a data stream is carried out to avoid influence of different raw data scales as in
Equation (15):

ξi (l) =
Xi (l)− µi

σi
, l = 1, 2, 3, · · · , n, (15)

where µi and σi are the mean and standard deviation of Xi.

4.2.2. Recursion Phase

In this phase, the maximum absolute standard score ηi in ξi (l) is determined by ηi =

max (|ξi (l) |). Based on the empirical rule, if the maximum absolute score ηi > 3 then it is considered
as outlier. According to this rule, it is proven that almost all of the data (99.7%) should fall within
three standard deviations from the mean [63]. Afterwards, the recursion processes are performed as
follows: (i) The detected outlier ηi is replaced with the computed median M̄i of ξi (l) to update the
standardized data stream ξi (l); (ii) the updated ξi (l) is de-standardized by Xi = (ξi (l)× σi) + µi; (iii)
the range ∆u of the updated de-standardized data stream Xi where subscript u indicates “updated
data stream” is computed; (iv) it is assigned to ∆d (∆d = ∆u); (v) the updated ∆d is compared with
K. These processes are repeated recursively until the ∆d value is less than K or ηi ≤ 3. If there is no
outlier in the data stream then the HDC technique is used to perform data clustering and aggregation.
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The RODS with HDC provides an error-bound guaranteed data clustering facility to reduce
in-network data redundancy for the periodical sensing data in WSNs. However, the RODS detects
outliers only by examining an individual data stream of a sensor node and performed outlier detection
based on temporal correlation [58]. Temporal correlation refers to the proximity of data collected over
time from a specific sensor node. The RODS therefore can only detect the random outliers but not the
frequently generated outliers because it has no knowledge of the spatial correlation of the data stream.
Spatial correlation refers to the similarity of data among different sensor nodes at a specific time point
or period. Besides, the RODS detects outliers based on the standard score method, which relies on
the mean and standard deviation of a data stream to measure central tendency and dispersion. This
method may not be robust due to the mean value being highly affected by the frequently generated
outliers. Figure 4 presents two different types of outliers in a data stream.
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Normal data

Central value of each cluster

Figure 4. Error-aware data clustering technique by considering noisy data stream. (a) Recursive outlier
detection and smoothing (RODS) applies for detecting random outliers; (b) RODS applies for detecting
frequent outliers.

Figure 4a shows a noisy data stream where the random outliers are present in fewer numbers
compared to normal data points. The proposed RODS detects random outliers correctly based on the
temporal correlation among data in a data stream. On the other hand, Figure 4b presents the noisy data
stream where the frequent outliers exist in larger numbers in contrast to normal data points. In this
case, the RODS detects the outliers wrongly due to the temporal correlation-based detection. Therefore,
the V-RODS has been proposed in this paper to detect both the random and frequent outliers effectively.
This technique utilizes both temporal and spatial correlations of the data stream for outlier detection.

4.3. Verification of Recursive Outlier Detection and Smoothing (V-RODS) with HDC

The V-RODS uses a modified standard score method where mean value is replaced with the
median value of an outlier in data stream. Moreover, it considers the data of neighbouring nodes
in a CH and utilizes the spatial correlation of the sensing data streams instead of only the temporal
correlation of that particular data stream. Hence, the V-RODS in Algorithm 3 is able to detect and
replace both types of outliers of a data stream more precisely. After detecting noisy data stream
based on the Equation in (14), the V-RODS is initiated to detect and repair both types of outliers in
the data stream. This technique is separated into two phases, including initialization and recursion.
In the initialization phase, the noisy data stream is detected and re-scaled using the modified standard
score method. Then, the V-RODS is utilized for detecting outlier data points from the standardized
scores according to the lines 1–4. In the recursion phase, the outlier data point is detected from the
standardized scores based on the temporal correlation and then de-standardized the detected outlier.
Later on, the de-standardized data point is compared to the median value of the neighbouring data
streams for verification, to check whether it is false detection or not. Here, the neighbouring data
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streams have similar length and same period as to the detected noisy data stream. When outlier is
verified as a false detection, then we consider that outlier as frequent outlier and the data stream is
marked as invalid. After that, the modified standardized scores are de-standardized for replacing the
actual outliers with the valid data recursively according to the lines 8–15. Otherwise, Algorithm 2 is
executed to handle the detected outlier from the data stream. Afterwards, the recursion process is
repeated until the user requirements meet lines 6–17. Finally, the HDC is executed to perform data
clustering for the noise-free data stream in order to achieve error-bound guaranteed data reduction.
The mathematical explanations are explained in detail below:

Algorithm 3: Verification of RODS (V-RODS) with HDC

Input:
_

Xm×n and Xi-Original data matrix and stream
parameter : K {K ← 1, 2, 3, · · · , k} −Number of clusters

1 Compute the range ∆d of Xi;
2 if ∆d > K then
3 Noisy data stream Xi is detected;

4 Re-scale Xi by modified standard score
⇀

ξ i (l) calculation and initialize
⇀

ξ i (l);
5 Recursion:;
6 if ηi = max (|ξi (l) |) > 3 then
7 ηi is detected as outlier;
8 Reconstruct ηi by X̂i and compute absolute deviation Di to validate outlier detection;

9 while Di < Ψi

{
Ψi =

(|X̂i−Md |)
2

}
do

10 False outlier is detected;
11 Label the outlier existing data stream as invalid;

12 Reconstruct
⇀

ξ i (l) of Xi by
^

Xi;

13 Replace median MD of
_

Xm×n in
^

Xi where
^

Xi < Ψi &&
^

Xi > MD + Ψi recursively;

14 Compute range ∆u of updated
^

Xi and assign Di = ∆u;
15 Repeate the recursion proceses until Di ≤ K or ηi ≤ 3;
16 end
17 Call Algorithm 2 (lines 6–11);
18 end
19 Call Algorithm 1;
20 else
21 Call Algorithm 1;
22 end

4.3.1. Initialization Phase

In this phase, initially outliers existing data stream Xi is given, and then the median value Mi of

the Xi as well as the median value MD of the particular data matrix
_

Xm×n where i = 1, 2, 3, · · · , m is
calculated. After that, the modified standard score of the Xi is calculated using the computed Mi as in
Equation (16):

⇀

ξ i (l) =
Xi (l)−Mi

σi
, l = 1, 2, 3, · · · , n. (16)

Then, an outlier of the Xi is detected by ηi = max
(
|
⇀

ξ i (l) |
)

while ηi > 3. To validate the correct
outlier, the detected outlier is de-standardized based on Equation (17):
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X̂i = (ηi × σi) + Mi, (17)

where X̂i is a de-standardized outlier data point.
The absolute deviation Di between the de-standardized outlier X̂i and the computed median

value MD is calculated by Di =
(
|X̂i −MD|

)
to examine the data proximity between the detected

outlier X̂i and the central value of the particular data matrix. The final decision on the correct outlier
detection is examined in the recursion phase.

4.3.2. Recursion Phase

In the recursion phase, the absolute deviation Di is compared to the user-defined threshold value

Ψi, which is calculated by Ψi =
(|X̂i−Md |)

2 where Md is the median value of the particular data stream
Xi. Now, it can be examined that the former detected outlier is either actual or false outlier based on
Equation (18): {

if Di < Ψi False outlier
if Di ≥ Ψi Actual outlier

. (18)

If the former outlier detection is examined as false detection, then we label the false outlier
detected data stream Xi as invalid. The invalid data stream can be excluded or repaired for further
analysis, depending on the basis of the availability of computational resources. In this paper, the

invalid data stream has been repaired by reconstructing the standardized scores
⇀

ξ i (l) of Xi using
Equation (19):

^

Xi =
(⇀

ξ i (l)× σi

)
+ Mi, (19)

where
^

Xi is the de-standardized data stream of the modified standardized scores
⇀

ξ i (l).
After de-standardization, the data points of the de-standardized data stream are replaced with

the MD where
^

Xi < Ψi &&
^

Xi > MD + Ψi recursively. However, if the former outlier detection is
examined as actual outlier, then the same procedures of the RODS in Section 4.2.2 are repeated .

5. Implementation of the Proposed EDC

The proposed EDC has been implemented at CH to reduce the temporal correlated data points that
are generated from the connected sensor nodes in each cluster. For example, X1×n [T] is the collected
data points from a sensor node at the CH within a certain period where n is the number of observations
of the stated phenomenon. The EDC is executed by the multiple CHs running simultaneously where
all CHs are connected with a sink node, either in direct or multi-hop connection. For simplicity, each
CH in each cluster is assumed to have equal number of sensor nodes connected to it. Figure 5 presents
the flowchart of EDC technique, which provides the histogram-based data clustering and error-bound
guaranteed data reduction. As mentioned earlier, the EDC consists of three main modules, the flow of
operations for first HDC module is highlighted in Figure 5 and the rest of two modules are presented
in Figure 6. The HDC module groups similar data into clusters based on temporal correlation and
the data of each cluster are represented by the central value of that particular cluster for in-network
data reduction. Thus, the overall changes in environment variables can be monitored efficiently from
the remote server by transmitting the reduced set of data instead of a large data stream. However,
the closeness between the reduced set of data and original data stream is measured by the deviations
between the central value of each cluster and the all data points of that cluster. If the average deviation
is too high, then the changes in the trend of the variables might be significant and abnormal. Otherwise,
the variables follow the normal trend even after significant data reduction. Afterwards, the RODS
module in Figure 6a is implemented to maintain the deviation error within the user-defined threshold
before clustering the data. This module detects the random outliers (noisy data) based on the temporal
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similarity of the input data stream because the presence of these outliers may introduce high deviation
error during data clustering. Then, the detected outliers are replaced with the normal data recursively
until the average deviation error meets the predefined threshold. Finally, the detected outliers are
verified by the V-RODS module, which is presented in Figure 6b. The V-RODS module utilizes both
the temporal and spatial correlations to handle random and frequent outliers. The frequent outliers
are classified according to the neighbour knowledge of a CH and then they are replaced by the valid
data points.
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Is false outlier 
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Figure 5. Execution flowchart of the proposed error-aware data clustering (EDC) technique.
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Figure 6. Execution flowcharts of the two modules of the EDC technique. (a) RODS with HDC;
(b) V-RODS with HDC.

5.1. Dataset

The Intel Berkeley Research Lab (IBRL) dataset [57] has been utilized to evaluate the performance
of our proposed EDC technique. This dataset was commonly used to evaluate the performance
of many existing data clustering techniques in order to gain in-network data reduction in
WSNs [5,13,15,22,23,32,64]. The IBRL dataset was collected using a WSN deployed in Intel Laboratory
at the University of Berkeley. The WSN consists of 54 Mica2Dot sensor nodes that were deployed in
a duration of 38 days from 28 February to 5 April in 2004. There were four types of measurements
(temperature, humidity, light, and voltage), which were recorded in every 31 s interval using this
network. The IBRL dataset is considered as a type of static dataset because it is deployed inside the
lab, and thus its variables have very little changes over time.

Our proposed EDC technique has been implemented in six cluster-based structures, namely
C1–C6. Each cluster consists of eight sensor nodes, and thereby a total of 48 out of 54 sensors are
chosen to evaluate the performance of the proposed technique. Figure 7 shows the locations of six
clusters and the deployed sensor nodes of each cluster as well as the excluded sensors, which are out
of the clusters’ range. For simplicity, we assume there is a single CH in each cluster, and the rest of the
nodes are the sensor nodes connected to CH.



Sensors 2020, 20, 1011 17 of 37

C6
C2

C1

C5
C4

C3

50

49

51

47

48

52

54

53

46

45

44

43

42 41

40

39

38 36

35

34

33

32

31

30

29

1

2

3

4

6

7

10

9 12

13
14

15
16

18

19

17

21
20

22

23

27

26

25 24

28

37

5

8
11

LAB

SERVER

Figure 7. The cluster structure of deployed sensors [57].

In our work, the simulations on IBRL dataset have been carried out on only the temperature
data from 28 February to 8 March (10 days) collected by 48 sensor nodes. The collected data are in
a matrix form at the CHs and all CHs contain a total of 1,382,400 measurements where each CH has
230,400 measurements. The missing values and invalid readings in the observations are replaced by
the median value of the collected observations during data preprocessing stage for the continuity.
To be realistic, measurements of each CH are segmented into 240 segments or time-interval where an
individual segment has 960 measurements. The measurements of each segment are used as an input to
our proposed algorithms to evaluate the performance of the proposed technique for each time-interval.
Two different rules, namely square-root and Sturge’s, have been considered to specify the number of
partitions or clusters for input measurements.

Apart from this, the temperature data in the real world at two consecutive time points have a high
degree of similarity, as mentioned in [64]. This type of correlation is normally referred to as temporal
similarity or correlation. The calculation of the reading difference of any two consecutive time points
of three different sensors is highlighted [64]. The results show only 10% reading difference is greater
than 0.1. Hence, strong temporal similarities could be observed in our simulated data due to the same
dataset is considered for the performance evaluation of our proposed EDC technique.

5.2. Performance Metrics

The performance evaluation of our proposed EDC technique has been accomplished using several
performance metrics. The metrics are mainly mean absolute deviation, mean absolute percent error,
accuracy, and data reduction percentage. The listed performance metrics are defined as follows:

• Mean absolute deviation (MAD) measures the average deviation of each data point in a data
stream from its central value. It describes the variability of a data stream and can be formulated
as in Equation (20):

MAD =
1

(m× T)

m

∑
i=0

T

∑
t=1
|X (i, t)− µ (i, T) |, (20)

where X (i, t) is a discrete data point for a specific sensor node and µ (i, T) is a central value of the
whole data stream in a given period of that particular sensor node.

• Mean absolute percent error (MAPE) measures the mean absolute percentage deviation between
each data point and the central value, which can be expressed as in Equation (21):

MAPE =

{
1

(m× T)

m

∑
i=0

T

∑
t=0

(
|X (i, t)− µ (i, T)

X (i, t)
|
)}
× 100. (21)
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• Accuracy measures the retained originality of the real data after applying our proposed technique
for data reduction. It is calculated by subtracting the mean absolute percentage error of a given
dataset from the 100 percent and is defined as in Equation (22):

Accuracy = (100−MAPE)%. (22)

• Data reduction percentage (DRP) measures the difference between the original data do and the
reduced data dr then the difference is divided by the do and finally the obtained result is multiplied
by 100. The DRP can be computed as in Equation (23):

DRP =

(
do − dr

do

)
× 100. (23)

6. Results and Analysis

The proposed EDC technique presented in Section 4 has been implemented using the Python
environment and simulated with real-world temperature measurement data collected from IBRL. We
investigate how much data reduction is achieved and also the accuracy of the proposed technique.
Basically, the accuracy describes how much the reduced data retains the fundamental properties of the
original data, and it is inversely proportional to the data reduction error. If the reduction error is high,
then the accuracy is low and vice-versa. Therefore, the associated errors of the proposed technique were
investigated prior to the accuracy calculation. Afterwards, the accuracy of the proposed technique,
including three modules (HDC, RODS, and V-RODS) were computed and compared to the most
popular conventional techniques named K-means and K-medoids [9,15,46]. These algorithms were
mainly used for data clustering and reduction of the time-series data. The K-means and K-medoids
have been implemented based on the following basic steps.

1. Declaration of predefined number of clusters K.
2. Initialization of number of K randomly as the initial cluster centroids.
3. Assignment of data points to their closest cluster centroid according to the Euclidean

distance function.
4. Computation of the centroids using the mean or median of all data points in each cluster.
5. Repetition of steps 2–4 until the same data points are assigned to each cluster in

consecutive rounds.

6.1. Impact of the Variation of the Number of Clusters on the In-Network Data Reduction Percentage

In terms of in-network data reduction, a large number of data has been chosen as mentioned
earlier, which were used to evaluate the reduction performance of the conventional and proposed
techniques. It is presumed that the DRP is highly influenced by the variation of the number of clusters
K values. Whereas, the data reduction accuracy is highly affected by regulating the K values in order
to maximize the DRP. Thereby, two different K values were set based on two different rules such
as square-root (K = 11) and Sturge’s (K = 8) for all evaluated techniques. Therefore, two different
data reduction percentages were observed for two different rules. DRP values for all techniques are
computed based on Equation (23) and plotted in Figure 8. It can be observed that when the number of
clusters decreases, the DRP increases. Hence, the investigation was carried out for the performance of
our proposed technique, especially in terms of data reduction accuracy varying two different K values.
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Figure 8. Performance of all evaluated techniques in DRP using two different rules when the K values
are set to 11 and 8 accordingly.

6.2. Performance Evaluation of the Proposed HDC on Data Reduction Accuracy

In this section, the HDC technique has been evaluated based on different criteria such as DRP,
MAD and accuracy in order to provide in-network data reduction. The cluster C1 consisting of eight
sensor nodes has been taken into account for identifying the factors that affect the data reduction
accuracy of the proposed technique. Impact of the number of clusters on data reduction performance
has been illustrated in Figure 9, where the variation of the temperatures is highlighted over time for
original and HDC-based reduced data. It can be observed that the number of partitions or clusters
has a great influence on performance. For simplicity, we have chosen 100 (from 1 to 100) segments
equivalent to 12,000 real data points to evaluate the performance when the number of clusters K is set
to 11 and 8 according to the square-root and Sturge’s rules, respectively, for each segment. In the HDC
technique, the real number of data (12,000) is reduced to 1100 and 800, respectively, which are plotted
at the top horizontal lines in Figure 9a,b. It can be observed that when the number of clusters decreases,
the deviation of the reduced data increases along with the DRP. From Figure 9a, it can be clearly seen
that the reduced data maintains a trend similar to the real data when the number of clusters is set
to 11. On the other hand, when it is set to 8 (in order to increase the DRP further), the reduced data
curve deviates from the real data curve as presented in Figure 9b. Hence, it can be concluded that the
number of clusters is inversely proportional to the MAD and DRP, thus determining the number of
clusters is an important factor for reducing in-network redundant data.

In Figure 10, the obtained MAD represents the data reduction error for the proposed and
conventional techniques, which has been investigated using two different K values. The obtained MAD
comparison between the proposed HDC-based and conventional technique is depicted in Figure 10.
The K-means and K-medoids are considered as two prototypes of the conventional technique, and
the HDC-based B-means and B-medoids are considered as two prototypes of the proposed technique.
Moreover, the variation of the obtained MAD is shown in the vertical lines, which changes over time,
and the number of data segments or period is represented in the horizontal lines. From the plotted
data in Figure 10, it can be observed that the MAD changes over time for both techniques due to two
main factors including determining the number of clusters K values for a segment and the temporal
correlation among data within a cluster. For example, when the K value is larger and temporal data
correlation of a cluster is higher, the associated MAD is lesser for both techniques and vice-versa.
However, the obtained MAD from K-means and K-medoids is mostly higher than the HDC-based
B-means and B-medoids in the case of both rules or K values in Figure 10a,b because the temporal
correlation among data of each cluster is less. Apart from this, although our proposed technique
obtains less MAD and outperforms the conventional techniques, it exceeds the standard maximum
error threshold, i.e., Te = ±0.5 ◦C where subscript e indicates “error”. This threshold value has been
reported in [5,28] for environmental temperature data. The investigation on the minimization of the
exceeded MAD has been covered in the subsequent analysis.
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Figure 9. Performance comparison of HDC-based reduced data with real data using two different
numbers of clusters. (a) The square-root rule (K = 11 when DRP = 90.83%); (b) Sturge’s rule (K = 8
when DRP = 93.33%).
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(b) Sturge's rule based MAD performance

Figure 10. Performance comparison of proposed HDC-based B-means and B-medoids with
conventional K-means and K-medoids versus the number of data segments. (a) Mean absolute deviation
(MAD) versus square-root rule (K = 11); (b) MAD versus Sturge’s rule (K = 8).
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In Figure 11a,b, the percentage of accuracy over time is presented based on two different K values
and is computed from the obtained MAD in Figure 10 using Equations (21) and (22). This computation
is carried out due to the inversely proportional relation between accuracy and the obtained MAD as
mentioned earlier. Thereby, the final accuracy is computed by subtracting the computed percentage of
MAD of each segment from the maximum accuracy of that particular segment. The plotted data show
that the accuracy of the proposed technique maintains stable condition over time except for certain
periods. The reason for this discrepancy can be the noisy data collection at those particular periods.
Accuracy is severely influenced by the noisy data collection, which is observed in the cases of both
rules from Figure 11a,b.

(a) Sqrt-root rule based accuracy performance

(b) Sturge's rule based accuracy performance
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Figure 11. Performance comparison of proposed B-means and B-medoids with conventional K-means
and K-medoids versus the number of data segments. (a) Accuracy versus square-root rule (K = 11);
(b) accuracy versus Sturge’s rule (K = 8).

Indeed, it is claimed that accuracy is influenced not only by the number of K values but also by
some other factors, especially in the case of the conventional techniques. In particular, the quality of
the collected data can be one of those critical factors that can affect accuracy as well as the MAD. The
following sections deal with the outcome of the investigation on the different quality of data collected
from different sensor nodes.

6.3. Performance Evaluation of Proposed HDC on Data Reduction for Normal Data

In this section, we choose 100 (from 140 to 240) segments of data from “sensor node 9” in C1
for simplicity, where the total number of data samples is 12,000. The data reduction performance is
evaluated based on Sturge’s rule (K = 8). The selected samples are assumed as normal real data due to
the closeness among their consecutive readings and because the overall data trend maintains stability
over time. Afterwards, the proposed technique is applied to 12,000 real data samples, reduced them to
800 data samples and compared the performance of reduced data with normal real data.

Figure 12a,b shows the originality between the real and reduced data pattern after the redundancy
reduction using conventional and proposed techniques. The results show that the originality of the
reduced data samples is almost equal to the real data samples for both techniques because the deviation
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of the reduced data of both techniques from the real data is less. Hence, according to the obtained
results, it can be claimed that the real data from a normal sensor node has a strong temporal correlation
and thus both techniques performed well in terms of accuracy during normal sensor data collection
even after a significant amount of data reduction. However, the reduced data by the conventional
techniques have slightly deviated from the real normal data at the end for its high sensitivity to
data variation.

(a) Real data versus reduced data using the benchmark techniques   
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(b) Real data versus reduced data using the proposed techniques   
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Figure 12. Performance comparison of normal real data with reduced data using the proposed
and conventional techniques versus time. (a) Temperature versus normal real and reduced data
based on conventional techniques; (b) temperature versus real and reduced data based on the
proposed technique.

6.4. Performance Evaluation of Proposed HDC on Data Reduction for Noisy Data

In this section, the same number of data samples are taken at the same time period as Section 6.3,
but from a different sensor node (“sensor node 6”) of the C1. This node is considered as a faulty
sensor node as the sensor readings are changing frequently over time. Figure 13 depicts the real data
stream associated with faulty sensor readings where the normal readings are assumed less than the
faulty sensor readings in a particular period. However, in the normal real data, the temperature range
in between 19 and 25

◦
C is considered as “normal” according to the obtained data from a normal

sensor node shown in Figure 12 within the same period. Apart from this, some collected data are far
away from the normal data (i.e., between 0 and 5 ◦C) and that are considered as “noisy” sensor data
or outliers.



Sensors 2020, 20, 1011 23 of 37

(a) Real data versus reduced data using the benchmark techniques   

(b) Real data versus reduced data using the proposed techniques   
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Figure 13. Performance comparison of real noisy data with reduced data using the proposed and
conventional techniques versus time. (a) Temperature versus noisy real and reduced data based
on conventional techniques; (b) temperature versus noisy real and reduced data based on the
proposed technique.

Figure 13a illustrates the comparison of real data with the reduced data obtained from the
conventional techniques based on two different prototypes. The results show that some of the data
samples obtained from K-means have shifted away from the real data after reducing redundant
data. Moreover, the reduced data attained from the K-medoids prototype have not deviated much
from the normal readings but it is maintaining both data pattern (normal and faulty) rigorously over
time. Thereby, the overall pattern of the original data may be changed and degraded the accuracy by
introducing large MAD.

Figure 13b depicts the results of the HDC-based proposed technique and compares the obtained
results with the real data. The plot shows most of the faulty data samples has deviated from the noisy
data pattern to the normal data pattern but they are still away from the normal data trend in the cases
of both prototypes. As a result, the accuracy may decrease of the proposed technique while collecting
noisy data from faulty sensor node.

Hence, the data collection from faulty sensor nodes is considered as another critical factor, and
will be investigated in this paper. The investigation will be carried out on the noisy data to improve
the overall accuracy with the minimum deviation errors in the subsequent sections.

6.5. Performance Evaluation of the Proposed Error-Aware Technique (RODS-HDC) on Data
Reduction Accuracy

This section discusses the performance of error-bound guaranteed proposed RODS with
HDC-based technique based on two different rules. According to Equation (14), the data stream
was classified into noisy and normal by the range of the particular stream. The width of each cluster
depends on the range of a particular data stream. Thereby, the width value of a cluster has been set
to 1 as a threshold point. When the cluster-width becomes larger than the predefined threshold, the
data stream will be counted as noisy and vice-versa. Afterwards, outlier detection will take place
from the selected noisy data stream. Hence, the detected outliers will be replaced by the computed
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median value of that particular noisy data stream. In order to reduce the cluster-width, this detection
and replacement phase continues until the value of cluster-width becomes less than or equal to the
threshold point. Thus, the data of each cluster deviates from the central value to maximum ±0.5 ◦C of
that particular cluster. Therefore, the cluster width has been considered as an important factor as it can
influence the MAD and accuracy of the proposed technique

Figure 14 shows the performance of the proposed RODS with HDC using the square-root and
Sturge’s rules for all segments of C1 by defining the maximum average deviation error ±0.5 ◦C.
The results in Figure 14a highlight the MAD of our proposed RODS with HDC when K value
is set to 11. From the plot, it can be clearly observed that the MAD was maintained below the
predefined maximum deviation error due to outliers consideration. Therefore, it can be claimed that
the error-bound guaranteed RODS with HDC technique performs better than the without error-bound
guaranteed conventional techniques as well as HDC-based proposed technique.

However, the RODS with HDC-based B-means prototype generates a slight higher deviation error
than the B-medoids during a certain period, but it still remains within the predefined threshold value.
This increment of MAD (B-means) can be occurred by the remaining outliers because the mean value
is highly affected by the outliers [58].

Figure 14b presents the performance of the proposed error-bounded technique, where the
number of clusters was 8, i.e., K = 8 for increasing the percentage of data reduction. Afterwards,
the obtained MAD using both RODS with HDC-based prototypes was investigated and compared
with the conventional techniques. From Figure 14b, it can be seen that the generated MAD is slightly
higher for both prototypes than the obtained MAD in Figure 14a over time but still lower than the
predefined threshold error.

(a) Sqrt-root rule based MAD performance

(b) Sturge's rule based MAD performance
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Figure 14. Performance comparison of proposed RODS with HDC-based B-means and B-medoids with
conventional K-means versus the number of data segments over time. (a) MAD versus square-root
rule (K = 11); (b) MAD versus Sturge’s rule (K = 8).

On the other hand, the accuracy of the proposed RODS with HDC-based technique was compared
with the conventional techniques and shown in Figure 15a,b. The outcomes show that the obtained
accuracy from the proposed technique is significantly improved compared to conventional technique
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and retained the almost similar outcomes over time by varying the K values between 11 and 8. This
improved of the proposed technique in accuracy has retained above 99% originality of the C1 dataset
even after reducing a significant amount of the data.

(a) Sqrt-root rule based accuracy performance

(b) Sturge's rule based accuracy performance
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Figure 15. Performance comparison of proposed RODS with HDC-based B-means and B-medoids with
conventional K-means versus the number of data segments over time. (a) Accuracy versus square-root
rule (K = 11); (b) accuracy versus Sturge’s rule (K = 8).

6.6. Performance Evaluation of Proposed RODS with HDC on Data Reduction for Normal and Noisy Data

This section highlights the data reduction performance between the original and reduced data
using the proposed RODS with HDC-based technique for the normal and noisy sensor data. The
selected data streams for these two types of data and other selected parameters are kept the same as
Sections 6.3 and 6.4. Followed by, the performance of both prototypes of the proposed technique was
evaluated and compared with the original real-world data.

In Figure 16a, a normal data stream was evaluated where most of the consecutive data points
were close to each other except the one residing at the right corner of the plot. This data point can
be defined as a random outlier because of the sudden change, which is away from the original data
trend. However, our error-bound guaranteed RODS with HDC-based technique successfully detected
that outlier and replaced it with the normal data point. This outlier was unable to be detected by the
conventional as well as our HDC-based proposed techniques shown in Figure 12a,b, respectively. As a
result, the retained originality of the error-bound guaranteed technique has improved by handling the
outliers and outperformed the existing techniques.

In contrast, the reduced data stream obtained from the proposed RODS with HDC-based technique
as depicted in Figure 16b, where the originality between the proposed RODS with HDC and real
data was compared. The plot shows that severe outliers exist in the real noisy data stream where
the temperature was recorded between 0 and 5, which are considered as outliers. Therefore, most of
the random outliers were detected and replaced with the normal data by both the prototypes of our
proposed technique.

However, two more uncovered factors are yet to be addressed. The first one is the reduced data
of the RODS with HDC-based B-means prototype, which deviated from the normal data pattern of the
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real data. This deviation proves that the reduced data stream of the mean prototype is still affected
by the outliers. Secondly, both the prototypes of the proposed RODS with HDC-based technique
detect false outliers that can be discovered from Figure 16b, where reduced data samples of the
proposed technique are still maintaining the noisy data trend within the certain periods. In this case,
the proposed technique considers normal data as outliers and replaces them with the actual outliers.
As a result, the real data pattern shifted towards the outliers data pattern. Thereby, the real noisy
data stream was analyzed and observed where the number of outliers data points within a certain
period were found even higher than the normal data points. These types of outliers can be defined
as frequent outliers that are generally handled by both the temporal and spatial knowledge of the
particular data stream.

(a) Real data versus reduced data during normal sensor readings  

(b) Real data versus reduced data during faulty sensor readings   
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Figure 16. Performance comparison of real normal and noisy data with reduced data using the
proposed RODS with HDC-based technique versus time. (a) Temperature versus real normal and
reduced data based on the proposed RODS with HDC-based technique; (b) temperature versus real
noisy and reduced data based on the proposed RODS with HDC-based technique.

6.7. Performance Evaluation of Proposed V-RODS with HDC on Data Reduction for Noisy Data

This section discusses the performance of proposed V-RODS with HDC-based technique during
severe noisy data collection that was extracted from a faulty “sensor node 6”. Figure 17 depicts the
results of the proposed technique and shows a comparison between the original and reduced noisy
data stream. It can be observed that both prototypes of the proposed technique maintain an almost
similar trend as compared to the actual trend of the original data stream. This is due to the utilization
of both temporal and spatial knowledge of the data stream while detecting and handling outliers
(random and frequent) effectively. Thereby, no outlier was retained in the data stream that might
deviate the reduced data trend from the actual trend. Hence, the proposed V-RODS with HDC-based
technique shows more robustness for detecting and handling both types of outliers.
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Figure 17. Performance comparison of real noisy data with reduced data using the proposed V-RODS
with HDC-based technique versus time.

6.8. Impact of the V-RODS with HDC-Based Technique on Data Reduction Accuracy for Noisy Data

This section shows the outcome comparison of the MAD and accuracy between the error-bounded
RODS with HDC and the false outliers handling V-RODS with HDC-based technique.

The MAD was kept below ±0.30 ◦C for both prototypes of V-RODS with HDC that can be seen
in Figure 18a. Furthermore, it can be observed that the error-bound guaranteed V-RODS technique
outperformed the RODS with HDC technique throughout the period because of handling both types
of outliers properly before data clustering. Whereas, only the error-bound guaranteed RODS with
HDC-based technique performed well at the beginning. However, it is incompetent at the end while
handling the faulty sensor readings, and thus the MAD increased more than ±0.35 ◦C for RODS with
HDC technique.

According to the obtained MAD of the V-RODS with HDC-based technique, the accuracy was
computed and presented in Figure 18b. The plot shows that the accuracy of the V-RODS with
HDC-based technique is further improved as compared to another proposed RODS with HDC
technique even for the severe noisy data collection from a faulty sensor node.

6.9. Impact of the Variation of DRP on MAD after Utilizing the Proposed Technique

This section discusses the changes of MAD with respect to the DRP variation, which can be seen
from Figure 19. Figure 19a shows the performance of the existing (K-means) technique for the variation
of DRP using two different rules where K = 11 for DRP = 90.83% and K = 8 for DRP = 93.33%. The
relation between MAD and DRP can be found as proportional for the existing K-means technique.

However, the error-bound guaranteed proposed RODS with HDC and V-RODS with HDC
techniques have proved the simultaneous improvement for both the MAD and DRP while eliminating
the redundant data from the data streams. Figure 19b presents the comparison of the benchmark
(K-means), the proposed HDC-based (B-means), RODS with HDC-based (B-means) and V-RODS
with HDC-based (B-means) techniques. The DRP of benchmark and HDC-based techniques were set
to 90.83%, whereas for RODS with HDC and V-RODS with HDC techniques were set to 93.33% to
observe the MAD. Thus, it can be clearly seen from the Figure 19b that the RODS with HDC and
V-RODS with HDC-based techniques improved MAD along with the DRP significantly. Although the
obtained MAD of our proposed RODS with HDC-based technique has a slight increase due to the
frequent outliers, it still remains within the predefined threshold and lower than the benchmark and
our HDC-based techniques.
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(a) Sturge’s rule based MAD performance (K=8)

(b) Sturge’s rule based accuracy performance (K=8)
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6.10. Statistical Data Analysis of the Proposed EDC Technique for C1 (Faulty Sensor Node 6)

The statistical properties of the original, outlier-free and redundancy reduced data are illustrated
in this section to evaluate the performance of our proposed technique. Figure 20 shows the statistical
properties of the data distribution for different groups of data and the spread of data over the boxplot.
In this simulation, 28,560 measurements were collected from the most faulty “sensor node 6” to
evaluate the performance of our proposed EDC technique. Five different statistical properties are
mainly highlighted in the boxplot: (i) Median is the middle point of the range of data; (ii) lower quartile
(Q1) is a lower percentile of the interquartile range (IQR), which represents the 25th percentile data
below the median (Q2) and displays the potential outliers apart from those below the lower quartile;
(iii) upper quartile (Q3) is an upper percentile of the IQR, which represents the 25th percentile data
above from the median (Q2) and displays the potential outliers that are far from above the upper
quartile; (iv) minimum and maximum data values are usually highlighted at below Q1 and above Q3;
(v) the spreading out or distribution of data over time. Figure 20a represents the distribution of the
original data where the median value of the distribution is about 22 ◦C.

Moreover, it can be seen that the minimum and maximum data of the distribution are far away
from Q1 and Q3, respectively; thereby, these data can be considered as the outliers. However, Figure 20b
displays the distribution of the outlier-free data collected by utilizing the V-RODS module of the
proposed technique. In this boxplot, it can be observed that the median value of the distribution
maintained almost the same as the original dataset. In addition, the minimum and maximum values
of the distribution reached close enough to Q1 and Q3. Thus it can be claimed that the error-bound
guaranteed proposed technique maintains outliers accurately and hence there exist no outliers in the
distribution. Figure 20c depicts the distribution of the reduced data achieved by utilizing our proposed
V-RODS with HDC techniques. The data distribution of this boxplot proved that our proposed
technique only removes the redundant data by maintaining almost similar statistical properties as
compared to Figure 20a,b.

(a) (c)(b)

Figure 20. A comparison among original data, outlier-free data by the proposed EDC and the reduced
data by the EDC technique versus temperature. (a) Original data (1 × 28,800); (b) outlier-free data
(1 × 28,800) with the V-RODS algorithm; (c) reduced data (1× 1920) with the EDC technique.

The average results of all segments collected from C1 (all sensor nodes of C1) are computed based
on different statistical parameters for all evaluated techniques as well as real data and represented
in Table 2. The results show that the proposed “V-RODS with HDC-based B-means and B-Medoids”
techniques performs better than all other evaluated proposed and conventional techniques in terms of
all statistical parameters. The main reason is that it detects and smooths both the random and frequent
outliers effectively before performing data clustering for data reduction.
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Table 2. A comparison table of average values of all segments collected from C1 based on various
evaluation metrics when Sturge’s rule was applied for data reduction (K = 8 and DRP = 93.33%).

Techniques
Evaluation Metrics

Mean Median Std. Dev. Variance MAD Accuracy

Real Data 21.54 21.81 4.36 19.01 0 100
K-Means 21.52 21.66 3.88 18.08 0.50 97.74
HDC-Based B-Means 21.58 21.53 3.53 13.95 0.18 99.16
RODS with HDC-Based B-Means 21.61 21.63 3.37 13.77 0.09 99.57
V-RODS with HDC-Based B-Means 21.88 21.74 3.13 9.80 0.08 99.67
K-Medoids 21.51 21.66 3.87 18.02 0.56 97.42
HDC-Based B-Medoids 21.60 21.67 3.74 16.48 0.17 99.22
RODS with HDC-Based B-Medoids 21.61 21.69 3.45 14.90 0.06 99.70
V-RODS with HDC-Based B-Medoids 21.88 21.75 3.14 9.85 0.06 99.70

6.11. Performance Evaluation of the Proposed Technique on the MAD and Accuracy for all CHs (C1–C6)

The performance evaluation of the proposed technique was carried out for all the CHs, which is
highlighted in Figure 7. The number of connected sensor nodes at each cluster, number of segments,
and other parameters are selected the same as C1. Then, the HDC and RODS with HDC-based
proposed techniques were evaluated using two different number of K values in terms of accuracy and
DRP. Finally, the obtained results of the proposed technique were compared with the results of the
conventional techniques and original dataset.

The mean absolute deviation of the original data was considered 0 as there was no data reduction
and error. However, the MAD was introduced when the data reduction was achieved, which
consequently increased the DRP. The MAD of all CHs was computed for all selected techniques
by averaging of MAD obtained from each CH of all segments and then plotted in Figure 21 based
on two different DRPs. Figure 21a shows the MAD in terms of reduction ratio of 10.90:1, where each
bar represents an individual CH for each technique. From the plot, it can be clearly seen that both
modules of the proposed technique maintained the average MAD to below ±0.2 ◦C, which is much
lower than the evaluated conventional techniques. Furthermore, the significant reduction of MAD in
all CHs was observed after applying our error-bound guaranteed module of the proposed technique
to below ±0.08 ◦C.

In Figure 21b, the data reduction ratio was set to 15:1 to observe the associated MAD and it can be
seen that the conventional technique performs very poorly as compared to our proposed technique.
Whereas, even after increasing the data reduction ratio, the error-bound guaranteed based proposed
technique still maintained the MAD below ±0.08 ◦C.

On the other hand, the obtained accuracy for all techniques has been plotted in Figure 22, which
has an inversely proportional relationship with MAD as observed earlier. From the plotted data in
Figure 22a,b, it can be further observed that the accuracy of both modules of the proposed technique
has improved significantly above 99% compared to the conventional techniques, specifically after
utilizing the error-bound guaranteed technique.

The error-bound guaranteed RODS with HDC technique retains more than 99% originality, which
is almost equal to the obtained results of our third proposed V-RODS with HDC-based technique. The
main reason is the absence of frequent outliers in the rest of the CHs over time.
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(a) Sqrt-root rule based MAD performance

(b) Sturge's rule based MAD performance
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Figure 21. Performance comparison of all evaluated techniques in all selected clusters versus two
different rules. (a) MAD versus all selected clusters based on the square-root rule; (b) MAD versus all
selected clusters based on Sturge’s rule.

(a) Sqrt-root rule based accuracy performance

(b) Sturge's rule based accuracy performance

Real Data K-Means
HDC Based

B-Means

RODS with

HDC Based

B-Means

K-Medoids
HDC Based

B-Medoids

RODS with

HDC Based

B-Medoids

C1 100 98.24 99.54 99.74 98.25 99.56 99.83

C2 100 98.74 99.77 99.81 98.64 99.78 99.83

C3 100 98.15 99.49 99.70 97.81 99.51 99.72

C4 100 97.44 99.73 99.69 97.21 99.75 99.70

C5 100 97.98 99.80 99.68 97.98 99.81 99.73

C6 100 98.26 99.49 99.70 98.39 99.52 99.72

90
91
92
93
94
95
96
97
98
99

100

A
cc

u
ra

cy
 (

%
)

Real Data K-Means
HDC Based

B-Means

RODS with

HDC Based

B-Means

K-Medoids
HDC Based

B-Medoids

RODS with

HDC Based

B-Medoids

C1 100 97.74 99.16 99.57 97.42 99.22 99.70

C2 100 98.41 99.56 99.66 98.25 99.59 99.69

C3 100 97.43 98.97 99.52 97.10 99.01 99.54

C4 100 96.40 99.49 99.47 96.40 99.52 99.49

C5 100 97.12 99.62 99.44 97.05 99.64 99.51

C6 100 97.65 99.03 99.46 97.86 99.10 99.50

90
91
92
93
94
95
96
97
98
99

100

A
cc

u
ra

cy
 (

%
)

Figure 22. Performance comparison of all evaluated techniques in all selected clusters versus two
different rules. (a) Accuracy versus all selected clusters based on the square-root rule; (b) accuracy
versus all selected clusters based on Sturge’s rule.
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6.12. Complexity Analysis

In this section, two types of complexity, including space and computational, have been analyzed.
The estimated space complexity of EDC technique is O (MN) in the worst case where M is the number
of sensors, and N is the number of data points. In contrast, the evaluated K-means algorithm is
required higher than the proposed EDC as it is O (MK + MN) where K is the number of clusters or
randomly initialized centroids for each sensor.

In the proposed technique, the computational complexity has computed in three phases
individually. In the first phase, the complexity is required for data clustering, which can be estimated
based on Algorithm 1. The cost is O (NK) where N is the number of data points in each cluster, and K
is the number of clusters. In the second phase, the RODS is implemented for detecting and smoothing
outliers (if any) in the data stream before performing data clustering. The cost for RODS is O (d)
where d is the computational cost for detecting outliers and it is d � NK . Therefore, the overall
computational complexity for Algorithm 2 is O (NK + d) in the worst case, whereas it is O (NK) for
the ideal case . For the third phase, proposed V-RODS computational cost also can be considered
as O (d) for actual outlier detection and replacement. Thereby, the computational complexity of
V-RODS Algorithm 3 can be computed for two cases. Case 1, the ideal case cost is O (NK). Case
2, data clustering while the outlier is detected, validated as an actual or false outlier and repaired
them that is considered as the worst case and the cost is O (NK + d). On the other hand, the required
computational time for the benchmark algorithm is O (NKI) in the best case where I is the number of
iteration required for convergence.

Figure 23 depicts the average run-time for data clustering at the CHs using two different K
values, which was observed in the evaluation of the proposed as well as the benchmark techniques.
The specifications of the system are Intel core i7 processor, 3.40 GHz, with 8 GB of RAM where the
algorithms were run. From the graph, it can be clearly observed that the proposed EDC technique was
largely outperformed the conventional techniques.
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Figure 23. Run-time analysis for square-root and Sturge’s rules.
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6.13. Summary

The proposed technique consists of three modules and the main advantage is that the user can
select any of the three modules based on the user’s requirement and data quality. The parameters,
namely MAD, accuracy and DRP, vary with the changes of the K value. Hence, the selection of the
K value can be made based on the desired level of any of these parameters. The main claims of the
proposed work are summarized as follows:

Firstly, the investigation on the performance of the HDC-based technique was carried out by
varying the number of clusters of the K value. At this stage, the MAD increases when the K value
decreases and vice-versa. Based on our investigation, the HDC-based technique performs better than
conventional techniques in Figure 10 because there is no random initialization to determine centroids
and it is less sensitive to the noisy data.

Secondly, the RODS with the HDC technique has been introduced to provide error-aware
data clustering by handling the noisy data. One of the most important benefits of this technique
is to provide error-bound guaranteed redundancy reduction by maintaining the MAD within the
predefined threshold error even under severe noisy data. Furthermore, in our prototypes (B-means
and B-medoids), the MAD values are always maintained below the predefined threshold error as
indicated by Figure 14a.

Thirdly, our proposed technique V-RODS with HDC can detect the false outlier and deviation of
the reduced data in Figure 16b. This technique detects not only random outliers but also distinguishes
frequent outliers by utilizing both the temporal and spatial correlations of the data. Thus, both
prototypes of our proposed technique exhibit the similar data pattern as in real data.

Finally, the complexity of our proposed three algorithms is analyzed in two different aspects and
compared with the most adopted conventional algorithm [9]. In the first aspect, the proposed three
algorithms have the same space complexity of O (MN), whereas the complexity is O (MK + MN) for
the conventional technique. In another aspect, the computational cost of our proposed technique is
O (NK + d) for the worst case, which is lesser than the best-case computational cost (O (NKI)) of the
conventional algorithm.

7. Conclusions

Our findings and analysis confirm the fact that data clustering is very useful for reducing
in-network data transmission for energy conservation in large-scale periodic WSNs. The EDC was
proposed to achieve error-bound guaranteed data clustering for in-network data reduction, hence
making it useful for large-scale data generated applications in WSNs.

Our HDC-based technique provides a systematic data clustering to minimize data redundancy. It
does not require any random initialization for determining the cluster centroids and it converges the
clusters without iteration. One of the most significant contributions of this paper is the development
of error-aware data clustering (RODS with HDC) technique. In this technique, the data reduction error
(MAD) is maintained below the predefined threshold value by diagnosing the random outliers instead
of decreasing the DRP. The implementation of V-RODS with HDC on the other hand contributes to the
error-bound guaranteed data clustering for minimizing the in-network redundant data in the case of
both random and frequent outliers.

Apart from this, the simulation results of our proposed EDC technique have proven that the
data reduction error (MAD) is maintained below the predefined threshold over time. Moreover, it
decreases further when the DRP increases. Furthermore, the proposed EDC diagnoses outliers correctly
and reduces the data redundancy effectively without affecting the original properties of the data. In
addition, the complexity analysis of our proposed EDC shows that both space and computational
complexity are lower than the complexity of conventional techniques.

In the future, an extensive performance evaluation of the V-RODS module with HDC will be
tested on real-world data that are highly inconsistent, messy and noisy. Recent WSNs usually monitor
multivariate data such as temperature, humidity, light and voltage. However, developing a data
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clustering technique for multivariate data is more challenging than for univariate data. Thus, we
intend to conduct further study on multivariate data. Moreover, the energy-efficiency and latency of
the proposed EDC technique will be analyzed in the extension of this paper.
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