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Abstract: An H-shaped photonic crystal fiber (PCF)-based surface plasmon resonance (SPR) sensor is
proposed for detecting large refractive index (RI) range which can either be higher or lower than
the RI of the fiber material used. The grooves of the H-shaped PCF as the sensing channels are
coated with gold film and then brought into direct contact with the analyte, which not only reduces
the complexity of the fabrication but also provides reusable capacity compared with other designs.
The sensing performance of the proposed sensor is investigated by using the finite element method.
Numerical results show that the sensor can work normally in the large analyte RI (na) range from
1.33 to 1.49, and reach the maximum sensitivity of 25,900 nm/RIU (RI units) at the na range 1.47–1.48.
Moreover, the sensor shows good stability in the tolerances of ±10% of the gold-film thickness.

Keywords: fiber optics sensors; photonic crystal fiber; refractive index sensor; surface
plasmon resonance

1. Introduction

The surface plasmon resonance (SPR) phenomenon has been widely studied and applied in
medical diagnostics, environmental monitoring, and biochemical research due to its high sensitivity,
real-time and label-free monitoring [1–6]. Most commercial SPR sensors are based on a prism
structure. However, because these structures require optical and mechanical components, they have
the disadvantages of bulky configuration and high cost, which limits their practical application [1–4].
Using optical fiber-based SPR instead of a bulky prism can improve the integration degree. In these
fiber-based designs, the fiber jacket is physically or chemically removed to expose the core to the
sensing region in order to enhance the coupling between the core mode and the surface plasmon
polariton (SPP) modes [1–6]. The laborious process will make the sensor more fragile. In recent
years, many researchers have focused on different types of photonic crystal fiber (PCF)-based SPR
sensor [7–24]. By introducing air holes in the core area of the PCF, the effective refractive index (neff)
of the core mode can be reduced, thus easily realizing the phase matching between the core mode
and the SPP modes [14–18]. These PCF-based SPR sensors have the advantages of miniaturization,
high sensitivity and multi-parameter measurement, which make them more competitive in SPR
sensing applications [7–24]. However, currently, PCF-based SPR sensors have two principal challenges:
the first problem is the difficult process of the sensor’s fabrication, such as metal coating and analyte
filling. In practice, the holes in these sensors are very small in size, generally in the order of
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micrometers [8,11,13–17,20,21,24]. Therefore, it is difficult to coat them with metal film uniformly and
to fill them with liquid analyte within the predetermined parameters. Furthermore, these processing
methods make it difficult to reuse for the replacement of analyte; Another problem is the narrow
refractive index (RI) range of the sensor detection, either employing low RI or high RI PCF-SPR
sensors [14–23]. In these sensors, in order to meet the total reflection condition, the highest RI value
detected by the low RI PCF-SPR sensors is lower than that of the fiber materials [14–19], whereas the
lowest RI value detected by the high RI PCF-SPR sensors must be higher than that of the fiber
materials [20–23].

In this paper, we propose an open structure PCF-SPR sensor design that not only solves the
problem of sensor fabrication but also can detect the RI over a larger range, either higher or lower than
that of the fiber materials. The basic geometry of the PCF follows the H-shaped structure as shown in
Figure 1. This open structure avoids coating in the holes with metal film and can be in direct contact
with the analyte, thus reducing the manufacturing complexity and offering reusable capability. We use
the finite element method based commercial COMSOL software to analysis the electromagnetic modes
and the sensing performance of the sensor.
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Figure 1. (a) Schematic diagram of the proposed H-shaped photonic crystal fiber-based surface plasmon
resonance (PCF-SPR) sensor; (b) cross-section of the SPR sensor; (c) experimental setup of the SPR
sensor for refractive index (RI) detection.

2. Structure Design and Principle

The schematic diagram of the proposed H-shaped PCF-SPR sensor is shown in Figure 1. The three
layers of air holes are arranged in a hexagonal geometry, forming an H-shaped structure with
symmetrical grooves. The gold film as a plasmonic material is placed on the internal surface of the
grooves. These grooves are particularly advantageous for metal coating, and have the characteristics of
good accessibility and easy replacement of analyte. The special structure can be made by femtosecond
laser micromachining [25], focused ion-beam milling [26,27], or chemical etching of the original
side-hole PCF [28,29].

In our simulation, the distance between the holes is Λ = 8 µm and the diameters of the cladding
holes is 0.5Λ, respectively. The opening depth is set to h = 3Λ, the widths of the two grooves are both
0.5Λ, and the thickness of gold film is m1 = m2 = 40 nm. The RI of air is 1, and the RI of the fiber
materials is fixed at 1.45 in order to clearly show that the RI of the analyte can either be higher or lower
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than that of the fiber materials. In addition, the complex dielectric constant (ε(ω)) of gold is defined by
using the Drude–Lorentz model [30]:

ε(ω) = ε∞ −
ω2

D

ω(ω+ jγD)
+

∆ε ·Ω2
L(

ω2 −Ω2
L

)
+ jΓLω

(1)

where ωD represents the plasma frequency, γD is the damping frequency. ΩL, ΓL and ∆ε can be
interpreted as the oscillator strength, spectral width of the Lorentz oscillators, and weighting factor [30].
In addition, we use the artificial boundary condition of the outermost perfect matching layer (PML) to
absorb the radiant energy as shown in Figure 1b [13,19,31].

Because the core mode with the electric field predominantly orthogonal to the metal surface can
be more readily coupled to the SPP modes on the metal surface [8,9,18,22,32–34], in this design the
y-polarized core mode has a better SPR phenomenon than the x-polarized core mode, thus providing a
better sensing performance. In what follows, we mainly investigate the sensing performance of the
y-polarized core mode. In Figure 2a, we plot the real part of the neff (Re(neff)) curves of the y-polarized
core mode and SPP modes when the RI of the analyte (na) is 1.43, 1.45, and 1.47, respectively, to indicate
that the proposed sensor has potential for RI sensing that can be higher or lower than the RI of fiber
materials. The black solid line represents the Re(neff) of y-polarized core mode, whereas the red solid,
red dashed and red dotted lines respectively represent the Re(neff) of y-polarized SPP modes at na =

1.43, 1.45, and 1.47, as shown in Figure 2a. Take the case of na at 1.43; the core mode and SPP mode
are coupled where their neff curves intersect (C point in Figure 2a). Losses of the core mode increase
sharply near this intersection (resonance wavelength) as shown in Figure 2b, because the energy of
the core mode transfers to SPP modes which can be observed from the inset C in Figure 2c. Similar
processes of this energy transfer also occur at the intersections D and E when the na is 1.45 and 1.47,
respectively, which can be seen from Figure 2b and the insets D and E in Figure 2c. In Figure 2a,b,
we also observed that the wavelength of resonance peak is 1006 nm, 1367 nm, and 1791 nm when
na is 1.43, 1.45, and 1.47, respectively. That is, as na increases, the resonance peak shifts to longer
wavelengths. This peak behavior can be used to measure the change of the analyte RI.
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plasmon polariton (SPP) mode at na = 1.43, 1.45, and 1.47 (red solid, red dashed and red dotted 

curves); (b) loss spectra of the y-polarized core mode at na = 1.43, 1.45, and 1.47; (c) y-polarized 
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Figure 2. (a) Re (neff) curves of the y-polarized core mode (black solid curve) and y-polarized surface
plasmon polariton (SPP) mode at na = 1.43, 1.45, and 1.47 (red solid, red dashed and red dotted curves);
(b) loss spectra of the y-polarized core mode at na = 1.43, 1.45, and 1.47; (c) y-polarized electric field
distributions of core mode and SPP mode at specific wavelengths (A for core mode at 800 nm with
na = 1.43, B for SPP mode at 992 nm with na = 1.43, C for core mode at 1006 nm with na = 1.43, D for
core mode at 1367 nm with na = 1.45 and E for core mode at 1791 nm with na = 1.47), arrows indicate
polarized direction of electric fields.
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3. Results and Discussion

3.1. Sensing Performance

By measuring the shift of the peak wavelength, the change in na can be determined. The sensitivity
of the sensor is given by [8,9,12,14–22,24]:

Sλ = (nm/RIU) =
∆λpeak

∆na
(2)

where, ∆λpeak denote the shift of peak wavelength and ∆na is the change of na. To give an example in
Figure 2b, na changes from 1.45 to 1.47, and the corresponding peak wavelength shifts ∆λpeak = 424 nm,
which means that the sensitivity of the sensor is 21,200 nm/RIU (RI units). Figure 3b,d respectively
depict the peak wavelengths and sensitivities curves of the sensor when the na changes from 1.33
to 1.49. On the whole, as na increases with the same ∆na, the ∆λpeak of the peak wavelength also
becomes larger, according to Equation (2), the sensitivity of the sensor also increases correspondingly,
reaching a maximum value of 25,900 nm/RIU when the na range of 1.47–1.48 as shown in Figure 3d.
This sensing performance make it very suitable to measure some high RI organic chemical analytes,
such as chloroform toluene or benzene [35].
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30 nm,40 nm, and 50 nm; (b) peak wavelengths, (c) peak loss and (d) sensitivities of the SPR sensor at
various na when the thickness of gold film (m1 = m2) is 30 nm, 40 nm, and 50 nm.

3.2. Gold-Film Thickness

The thickness of the metal film is a significant parameter affecting the resonance coupling between
the core mode and the SPP modes [14–16]. Figure 3a shows the loss spectra of the y-polarized core
mode at na = 1.43 for various thicknesses of gold film (m1 = m2) 30 nm, 40 nm, and 50 nm. As can be
seen from the figure, with the thickness of the gold film becoming thicker, the corresponding peak
wavelength shifts towards longer wavelengths and, meanwhile, the peak loss shows a downward
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trend. This peak behavior is also consistent with that at the other na, as shown in Figure 3b,c. The main
reason for these phenomena is that the increase of gold-film thickness increases the distance between
the core area and the gold surface, and only at longer wavelengths can the electric field of the core
mode penetrate the gold film, coupling with the SPP modes on the gold surface. The increase of
gold-film thickness also reduces the coupling intensity between the core mode and the SPP modes,
thus reducing the peak loss. Note that the curves of peak loss appear to significantly decline in the
vicinity of 1.45. This is due to the fact that the na is not very different from the RI of the background
material, the confinement of the core mode becomes weaker and more energy of the core mode leaks
out to the analyte region. To further study the effect of gold-film thickness on sensing performance,
we also present the sensitivities of the sensor at different na with gold-film thickness at 30 nm, 40 nm,
and 50 nm in Figure 3d. In general, the sensor shows a higher sensitivity with the thicker gold film,
especially at the larger na range.

3.3. Fabrication Tolerance

Coating with gold film on surfaces of such grooves in this design is much simpler than that on
inner surfaces of the air holes in the other designs [13–17,20,24]. In actual manufacturing, however,
it is difficult to accurately deposit the gold film on the surface of the two grooves under the same
thickness. It is necessary to investigate the effect of the fabrication tolerances of the gold film on the
sensing performance of the sensor. Due to the symmetry of its structure, we only consider the case in
which the variation of ±10% of m2 affects the sensing performance of the proposed sensor when the
m1 is fixed to 40 nm. Figure 4 shows the loss spectra with slight variation of ±10% of m2 at na = 1.47.
When m2 varies from -10% to +10%, the loss spectra present a slight change.
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Figure 4. Loss spectra of y-polarized core mode at na = 1.47 when m1 is fixed at 40 nm and m2 changes
in the range of ±10%.

In order to further investigate the effect of the m2 on sensing performance of the proposed sensor,
we summarize the peak wavelengths, peak losses and sensitivities for variation of ±10% of m2 in
Table 1 when m1 is fixed at 40 nm and na changes from 1.33 to 1.49. In general, as m2 changes from
−10% to +10%, the peak wavelength shows a slight decrease in the low na range and then follows an
opposite trend in the high na range, and the peak loss shows a small decrease in the whole na range.
Those slight changes have negligible influence on the sensitivities of the sensor as shown in Table 1,
which indicates that the sensor has good stability within the variation of ±10% fabrication tolerances
for the thickness of the gold film and low requirements of manufacturing precision.
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Table 1. Summary of peak wavelengths, peak losses and sensitivities of y-polarized core mode at the
na range of 1.33–1.49, when m1 is fixed at 40 nm and m2 changes in the range of ±10%.

Peak Wavelength(µm) Peak Loss (dB/cm) Sensitivities (µm/RIU)

na
m2 −10% −5% 40nm 5% 10% −10% −5% 40nm 5% 10% −10% −5% 40nm 5% 10%

1.33 0.578 0.581 0.583 0.585 0.586 14.851 14.819 14.337 13.565 12.675 1.4 1.2 1.2 1.2 1.2
1.34 0.592 0.593 0.595 0.597 0.598 18.086 18.128 17.519 16.495 15.298 1.2 1.4 1.5 1.5 1.5
1.35 0.604 0.607 0.610 0.612 0.613 22.082 22.278 21.509 20.126 18.534 1.6 1.8 1.7 1.7 1.7
1.36 0.62 0.625 0.627 0.629 0.630 27.026 27.416 26.461 26.298 22.492 2.1 2.1 2.2 2.1 2.2
1.37 0.641 0.646 0.649 0.65 0.652 33.132 33.740 32.525 32.204 27.305 2.5 2.6 2.6 2.7 2.6
1.38 0.666 0.672 0.675 0.677 0.678 40.562 41.374 39.819 36.646 33.059 3.3 3.3 3.3 3.4 3.4
1.39 0.699 0.705 0.708 0.711 0.712 49.647 50.440 48.404 44.363 44.066 4.1 4.2 4.3 4.2 4.2
1.40 0.740 0.747 0.751 0.753 0.754 60.516 61.043 58.133 53.303 48.008 5.6 5.4 5.3 5.6 5.6
1.41 0.796 0.801 0.804 0.809 0.810 72.820 72.826 68.803 63.328 57.383 7.9 7.3 7.7 7.4 7.3
1.42 0.875 0.874 0.881 0.883 0.883 88.037 83.011 84.088 73.576 68.881 10.4 10.6 12.5 12.3 12.4
1.43 0.979 0.980 1.006 1.006 1.007 159.55 90.628 82.598 86.326 86.312 15.1 16.8 16.9 17.1 17.0
1.44 1.130 1.148 1.175 1.177 1.177 133.42 152.06 89.12 141.24 110.87 20.3 20.9 19.2 19.8 19.8
1.45 1.333 1.357 1.367 1.375 1.375 61.504 75.280 78.673 84.268 55.715 23.8 21.4 20.3 19.4 19.4
1.46 1.571 1.571 1.570 1.569 1.569 60.016 68.644 63.983 44.704 40.176 22.2 22.2 22.1 22.0 22.1
1.47 1.793 1.793 1.791 1.789 1.790 171.65 167.58 170.16 173.26 179.64 26.2 26.0 25.9 25.9 25.8
1.48 2.055 2.053 2.050 2.048 2.048 242.29 253.29 263.00 254.08 244.21 23.8 23.8 23.9 23.8 23.7
1.49 2.293 2.291 2.289 2.286 2.285 304.38 302.30 282.80 299.62 283.39

4. Conclusions

In this paper, we propose a novel design of an open structure H-shaped PCF with a capability
of a wide RI-detection range. The gold film and the analyte are placed on the surface of the grooves
in the H-shaped PCF, making the fabrication of the sensor much easier than traditional PCF-SPR
sensors in which the gold film and the analyte are placed in the air holes. The results demonstrate
that the proposed sensor can work well in a large na range, and has good stability within tolerances of
±10% of the gold-film thickness. Compared with the other types of SPR sensor, our proposed SPR
sensor has the advantages of convenient operation, simple fabrication, good stability, large detection
range, high sensitivity, and is reusable, which make it more competitive in physical-, biological- and
chemical-sensing fields.
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