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Abstract: We aim at enhancing personal identity security on mobile touch-screen sensors by
augmenting handwritten signatures with specific additional information at the enrollment phase. Our
former works on several available and private data sets acquired on different sensors demonstrated
that there are different categories of signatures that emerge automatically with clustering techniques,
based on an entropy-based data quality measure. The behavior of such categories is totally different
when confronted to automatic verification systems in terms of vulnerability to attacks. In this
paper, we propose a novel and original strategy to reinforce identity security by enhancing signature
resistance to attacks, assessed per signature category, both in terms of data quality and verification
performance. This strategy operates upstream from the verification system, at the sensor level, by
enriching the information content of signatures with personal handwritten inputs of different types.
We study this strategy on different signature types of 74 users, acquired in uncontrolled mobile
conditions on a largely deployed mobile touch-screen sensor. Our analysis per writer category
revealed that adding alphanumeric (date) and handwriting (place) information to the usual signature
is the most powerful augmented signature type in terms of verification performance. The relative
improvement for all user categories is of at least 93% compared to the usual signature.

Keywords: automatic signature verification; touch-screen sensor; data quality; enrollment phase;
performance assessment; augmented signature; security enhancement; mobile conditions

1. Introduction

The handwritten signature has been for a long time a usual mean to establish personal consent,
with legal value for administrative and financial institutions. With the impressive proliferation of
mobile devices having embedded sensors (smartphones, tablets), added to the development of online
services, signing on digital platforms has become a reality in different sectors for identity security
(banking, legal transactions, e-commerce among other). This reality has signified a turning point in the
field of online signature biometrics.

In the last forty years, research studies were focused on online signatures captured on high quality
sensors such as Wacom digitizing tablets, in controlled office-like scenarios, with a devoted ad-hoc pen
stylus. Impedovo and Pirlo [1] published an article giving a detailed overview on the state-of-the-art
techniques. Diaz et al. [2] presented a recent update on automatic signature verification (ASV). The
research community made significant efforts for acquiring several online signature corpora [1–11] and
conducting international evaluations of ASV systems [2,6,12–16].

Recent research studies have focused on signature verification in mobile conditions, using
touch-screen sensors largely deployed nowadays. Nevertheless, the mobile scenario implies much
more variability of acquisition conditions, like posture, writing tool (stylus or finger), screen size,
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sensor technology, interoperability, setting several new challenging issues that impact verification
performance [2,17].

Usually, for improving verification performance, different strategies were exploited in the literature:
(i) acquiring signatures in controlled conditions [1–16]; (ii) using a high quality sensor (such as a Wacom
tablet) with high temporal and spatial resolution, and able to capture other time functions than pen
coordinates, as pen pressure and pen inclination angles [18]; (iii) selecting reference signatures in order
to control intra-personal variability [19–21]; (iv) extracting several features for signature description
(as pressure, speed, and acceleration, etc.) [1–16] or by means of a deep neural network [2,22–25].

However, some of these strategies are no longer possible in the mobile scenario: as pointed out
by [17], the sensors are not of the same quality, in terms of temporal resolution in particular, acquisition
conditions are highly variable, and some sensors are limited to the capture of only pen coordinates.
In the so-called “cloud scenario” [17], users acquire their signatures as they want, standing, sitting
or moving, handling the device on the hand at different angles or orientations, or placing it on any
support. A smartphone is usually handheld, while a tablet may be placed on the desktop or sustained
by the left arm if the writer is right-handed. The consequence is that verification performance is
strongly degraded in mobile conditions [2,15,16,26–39].

In the present paper, we study the online signature biometrics in the framework of uncontrolled
mobile conditions. The challenging question then is how to improve verification performance in
uncontrolled mobile conditions? To respond to this question, we propose a novel and original scheme
for enhancing signature information content at the enrollment phase and reinforce its resistance to
attacks, on a largely deployed touch-screen sensor technology. To this end, we propose different
enrollment strategies for signature enrichment and assess them in terms of data quality and verification
system performance.

The enrollment phase is critical for any biometric system since it determines the genuine signatures
that will represent the user at the verification step. These signatures are called “Reference signatures”.
In our previous works on signature quality assessment, we have shown that a signature’s resistance to
attacks depends on its information content, quantified by an entropy-based measure, called personal
entropy [28,40–43]. We identified automatically different risk levels in signatures related to three user
categories, and in particular a “problematic” population, characterized by simple and highly variable
signatures, very vulnerable to attacks.

Based on these findings, we propose in this paper, since the enrollment phase on a touch screen
sensor, a novel strategy that turns any signature with a “high risk” into a “low risk” one. For signature
enrichment, we use complementary personal handwritten information, as initials, name-surname,
date and place of birth. We choose these information since a person is familiarized to append it for
expressing her consent in administrative or legal frameworks. For this study, we consider different
types of signatures (the usual signature, initials, name-surname, date and place of birth) and hybrid
types as well (some combinations of the already mentioned types), and analyze the impact of each in
terms of information content and resistance to attacks (skilled forgeries).

This paper is organized as follows: in Section 2, we present previous works of the literature
related to online signature analysis on mobile devices. In Section 3, we describe the signature database
and recall the personal entropy concept and the verification system used. In Section 4, we report
the obtained results later summarized and discussed in Section 5. Finally, Section 6 presents the
conclusions and future perspectives of our study.

2. Related Works

Different works of the literature pointed out the diversity of acquisition conditions and the
subsequent degradation of verification performance in the mobile context [2,15,16,26–39]. The majority
of these works focused on assessing and improving verification performance in several ways.

Martinez-Diaz et al. [26] indicated that ASV systems traditionally used on signatures acquired
with Wacom digitizing tablets in an office-like scenario should be adapted in the context of handheld
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touch-screen devices. Indeed, the Wacom digitizing tablet used needs to be connected to a personal
computer and thus leads to an office-like scenario. The authors exploited the BioSecure datasets DS2
and DS3 that contain signatures of the same 120 persons acquired, respectively, on a Wacom digitizing
tablet following an office-like scenario and on a mobile touch-screen sensor (PDA) while holding it in
the hand. Based on a feature selection algorithm and a hidden markov model (HMM) classifier, they
observed the low discriminative power of dynamic features and the high consistency of geometric
features in the mobile scenario.

Houmani et al. [27] evaluated an HMM-based classifier on two different databases both acquired
on a PDA, namely PDA-64 containing online signatures of 64 persons, and BioSecure DS3 dataset
(DS3-210) containing online signatures of 210 persons. Experiments showed significant performance
degradation in mobile conditions: an average Equal Error Rate (EER) of 3.5% is obtained on the
Wacom digitizer with skilled forgeries, while on PDA-64 and DS3-210, the EER is of 16.02% and
9.95% respectively.

In the context of the international online signature competition BSEC’2009 [15], different ASV
systems were assessed on two large BioSecure datasets containing signatures of the same 382 persons
acquired in a controlled scenario on a Wacom digitizer, namely DS2-382, and on a mobile device
(PDA), namely DS3-382. Results showed a clear degradation of systems’ performance when signing in
mobile conditions.

Another work on BioSecure databases was conducted by Houmani and Garcia-Salicetti [28] to
quantify the quality of signatures of the same 104 persons when captured in office-like conditions
(DS2-104, captured on a Wacom digitizer) and in the mobile context (DS3-104, captured on a PDA).
Results showed that signatures’ quality degrades in mobile conditions and especially signature
complexity decreases.

Blanco-Gonzalo et al. [29] evaluated an ASV system based on dynamic time warping (DTW), on
seven mobile devices (using stylus and finger): two Wacom tablets, a tactile laptop, a Samsung Galaxy
Note, an iPad, a Samsung Galaxy Tab and a Blackberry Playbook. They confronted the system with
different acquisition conditions, such as sensor technology, interoperability, visual feedback, and screen
size. Experiments showed that the best system performance is obtained when signing on a small
screen, using a stylus instead of the finger. However, this study is of limited scope because only 11
writers were considered. In [31], Blanco-Gonzalo et al. exploited a DTW-based classifier on a database
containing signatures of 43 users acquired on different mobile platforms. However, performance
assessment was carried out only on random forgeries.

Martinez-Diaz et al. [32] presented the first publicly available database collected on a touch-screen
sensor embedded in a mobile phone, namely the DooDB database. The database contains finger-drawn
doodles and pseudo-signatures from 100 persons and skilled forgeries for all of them. To create
pseudo-signatures, participants were asked to draw a simplified version of their signature, for example
signing with their initials or part of their signature flourish, which could be used as a graphical
password. Using a DTW-based classifier, the authors obtained an EER of around 26.9% on skilled
forgeries considering time variability and 19.8% when the system was evaluated on only one session.

Sae-Bae and Memon [34] collected a new database that contains finger-drawn signatures from 180
persons captured in uncontrolled mobile conditions, on user owned iOS mobile devices. The authors
proposed a histogram-based feature set for representing an online signature. They pointed out the
importance of updating reference signatures to reduce the intra-class variability and thus improve
systems’ performance. The authors claimed that personalized feature selection is necessary to attain
an acceptable performance level; they obtained an EER of 3.18% on random forgeries.

Antal et al. [36] introduced the MOBISIG database that contains finger-drawn pseudo-signatures
from 83 persons, captured on a capacitive touch-screen sensor embedded in a mobile device. Participants
were asked to create a signature for a given family name and were instructed on how to produce
signatures with their finger. For performance assessment, the authors used a personalized threshold;
they obtained an EER of 8.56% with a DTW classifier (vs. 25.45% with a global threshold), considering
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skilled forgeries and five reference signatures in the enrollment phase. Then, when considering 15
samples for enrollment, they improved verification performance, reaching an EER of 5.81% with a
DTW classifier and a personalized threshold (vs. 20.82% with a global threshold).

Tolosana et al. [37] showed that performance is much better with the stylus than with the finger,
on 65 persons of the e-BioSign database, using signatures captured with both Wacom tablets and
Samsung mobile devices. Based on a DTW classifier, the authors obtained an EER of 22.1% with the
finger versus roughly 7.9% with the stylus, considering skilled forgeries. This performance is obtained
on 35 persons of the evaluation dataset; the 30 remaining persons were used as a development dataset
to select 23 relevant parameters among the whole set of 117 features.

Zareen and Jabin [38] used a publicly available database [33] that contains 500 signatures from 25
persons, acquired on a Samsung Galaxy Note. As no skilled forgeries were acquired, the verification
system based on a feed-forward multilayer neural network was evaluated only on random forgeries.
The authors obtained an EER of 0.12% on random forgeries. These results seem preliminary since only
25 persons were considered and no skilled forgeries were used for performance assessment.

Nam et al. [39] used a private database that contains real finger-drawn signatures of only 20
persons, collected on a Samsung Galaxy S3. The authors proposed convolutional neural networks
(CNN) for feature extraction, trained with genuine and forged signatures. Then, using an autoencoder
for classification, they obtained an EER of 4.4% on skilled forgeries. However, this study is of limited
scope because only 20 writers were considered.

All the above-mentioned works pointed out the degradation of systems’ performance in the mobile
context. However, in most of them, the data corpora presented do not contain signatures acquired in
totally uncontrolled mobile conditions. This specific point is sometimes not even mentioned in the
description of the acquisition protocol used, mainly focused on the sensor characteristics (technology,
resolution, sampling rate), the writing tool, the design of the interface for acquisition, and the number
of captured genuine signatures and forgeries. In addition, some works [32,36] evaluated the impact of
mobile conditions based on pseudo-signatures, which are not exploited in real-world usages. Other
studies evaluated ASV systems only on random forgeries because of the burden of acquiring skilled
forgeries [34,38]. Finally, some works considered new challenging scenarios for ASV system assessment
in terms of interoperability, as enrolling the person with a given writing tool and testing the system
with another one [37].

In conclusion, we notice significant efforts in the literature for assessing verification performance in
mobile conditions with different sensors, scenarios and classification strategies. Most works focused on
the development of algorithms for biometric verification to enhance user authentication: DTW, HMM,
neural networks and more recently some deep architectures. However, none of these works addressed
quality-driven signature verification since the enrollment step, by quantifying and enhancing the
information content of input data given to the sensor.

3. Materials and Methods

In this section, we first describe the signature database acquired for this study in mobile conditions
and the signature types considered for enhancing the information content of the data given as input to
the sensor. Then, we recall how Personal Entropy is quantified considering each signature type, and
the classifier used for assessing the impact of our strategy in terms of verification performance.

3.1. Signature Data Acquisition

For this study, we captured online signatures from 74 persons on an iPad tablet with a capacitive
touch-screen of 2048 × 1536 pixels. The signatures were sampled at 63 Hz and stored as a sequence of
discrete values [xt, yt], where xt and yt are the coordinate values and t is the time stamp.

Each person signed 25 times with their usual signatures. No instructions were given to participants
when they signed, letting them acquire their signatures naturally, freely in terms of posture and position



Sensors 2020, 20, 933 5 of 21

of the device, so that they would feel comfortable with the mobile device when signing. This leads to
different acquisition conditions according to persons, exactly like it would be in real mobile usages.

Additionally to their usual signatures, we asked participants to append other types of signatures
separately: name-surname, initials, date and place of birth. We considered these signature types
because: (i) in terms of usages, they are traditionally reported by persons in legal and administrative
documents; (ii) they convey complementary handwritten information on the user’s identity. Each type
of signature was done by the person 25 times. This dataset thus contains 9250 (74 × 25 × 5) genuine
signatures of different types.

Figure 1 displays an example of one person’s usual signature and the associated place of birth.
We plot below in Figure 2 the velocity temporal function for both handwritten information.

Figure 1. Examples of (a) a usual signature and (b) the associated place information of a user who
authorized their publication.

Figure 2. Velocity profile of (a) the usual signature and (b) the associated place information displayed
in Figure 1.

In order to assess signature vulnerability to attacks, we acquired 10 skilled forgeries per signature
type after displaying on the screen the shape and kinematics of the target signature. This type of
forgery is considered in the literature as being the best attacks [3,43,44]. We thus obtain 3700 skilled
forgeries (74 × 10 × 5) done by different forgers. Figure 3 shows an example of skilled forgeries of the
usual signature and the associated place of birth displayed in Figure 1. We also display in Figure 4 the
velocity temporal function for both handwritten information forgeries.
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Figure 3. Examples of skilled forgeries of (a) the usual signature and (b) the associated place information
displayed in Figure 1.

Figure 4. Velocity profile of (a) the forged usual signature and (b) the forged place information
displayed in Figure 3.

3.2. Signature Types

We considered the five types of signatures separately: the usual signature (S), the initials (I), the
name-surname (N), the date of birth (D), and the place of birth (P). From these five simple types, we
constructed 7 hybrid signature types by combining:

• the usual signature with initials (SI);
• the usual signature with name-surname (SN);
• the usual signature with date (SD);
• the usual signature with place (SP);
• the usual signature with date and place (SDP);
• the usual signature with initials, date and place (SIDP);
• the name-surname with date and place (NDP).

These instances of hybrid types were constructed by concatenating the sequences of the
corresponding simple signature types, resulting in a single time sequence. The identity of the
user is thus expressed through several signature types of different length, which convey different
complementary information to strengthen the user’s identity.

3.3. Quantifying Quality of Signature Types

To assess information enrichment at the enrollment phase, we quantify the information content of
other simple signature types than the usual signature (initials, name-surname, date and place), and
also of the 7 hybrid types mentioned in Section 3.2.
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The concept of entropy is a good alternative for quantifying the information content or the disorder
in signatures. In [28,40–43], we proposed the concept of personal entropy (PE), an entropy-based
quality measure that quantifies simultaneously both the complexity and variability of a person’s
signatures. In fact, complexity and variability are related to disorder at two different levels: complexity
corresponds to the intrinsic disorder in a signature sample; variability corresponds to the intra-class
disorder in a set of signatures belonging to a given user.

A user’s PE is measured by exploiting the local probability densities estimated when training the
user’s HMM on a set of 10 genuine signatures described only by x and y attributes. Indeed, the HMM
automatically generates portions by the Viterbi algorithm and estimates a mixture of Gaussian densities
on each portion [28]. Figure 5 illustrates how PE is computed locally, on the segments generated by the
user’s HMM.

Figure 5. Personal entropy computation on portions of a signature.

Therefore, a random variable Z can be associated to each stationary portion i of the signature,
generated by the Viterbi algorithm by the user’s HMM. The number of portions N is the number of
states of the HMM. The entropy H(Zi) of a portion i is computed as follows:

H(Zi) = −
∑
z∈Si

p(z).log2(p(z)), (1)

where z corresponds to a given point in the signature described by its coordinates (x,y), belonging to
the current portion i, and p(z) is the probability of observing z.

We studied the number of genuine samples necessary for a good HMM estimation and showed
that 10 instances lead to stable PE values [28]. The local probability distribution function is estimated
using all the sample points belonging to each portion, across the 10 genuine samples. After that, the
entropy of each genuine signature H∗(Z) is the average of entropy values H(Zi) on all the N portions
of the signature, divided by the signing time T:

H∗(Z) =
1

N ∗ T

N∑
i=1

H(Zi) , (2)

Finally, by averaging H∗(Z) across the 10 user’s genuine samples, we obtain a user’s PE for each
signature type. We demonstrated that PE allows obtaining three categories of signatures, coherent
across several databases, spanning from short and highly variable signatures (high PE category) to
stable, longer and complex signatures (low PE category). Moreover, we showed that for different
classifiers, persons with low PE are the most robust to skilled forgeries. Persons with high PE
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are considered being “problematic” users in the literature [28,43,45]. These results were obtained
considering the usual signature of each person [28,40–43].

3.4. Signature Verification System

As our aim is to assess the impact of our strategy in a mobile scenario, we used a statistical
verification system that has already been evaluated on large databases acquired on mobile sensors [9,12,
15,16,27,46], and has shown to maintain good performance on well-known databases in interoperability
scenarios [47], as reported in Table 1. Indeed, Table 1 presents our system’s performance on several
online signature databases, some acquired in an office-like scenario using a Wacom digitizer with
an inking pen, and other in a mobile scenario on different touch-screen sensors (PDA, iPad, iPhone).
We report the EER values on skilled forgeries only, since it is the most challenging configuration for
signature verification. The system has been evaluated in BSEC’2009 and ESRA’2011 competitions on
very large databases of 382 persons [15,16] that signed both on a Wacom digitizer and on a PDA device.
We observe that in the mobile context, the verification performance of our system is clearly better on
recent capacitive touch-screen sensors (iPad and iPhone) compared to the results obtained on the PDA
device (DS3-210, PDA-64, DS3-382).

Table 1. Performance of our HMM-based ASV system on several online signature databases acquired
in office-like (Wacom device) and mobile scenarios (touch-screen sensors), considering skilled forgeries.

Databases Evaluation Campaigns Year Devices Users EER (in %)

DS2-382 [15] BSEC’2009 2012 Wacom tablet 382 4.47
DS3-382 [15] BSEC’2009 2012 PDA (stylus) 382 11.27
DS2-382 [16] ESRA’2011 2011 Wacom tablet 382 2.73–4.04
DS3-382 [16] ESRA’2011 2011 PDA (stylus) 382 8.13–10.92
DS3-210 [27] - 2010 PDA (stylus) 210 9.95
PDA-64 [27] - 2010 PDA (stylus) 64 16.02
iPad-74 [46] - 2019 iPad (stylus) 74 7.04

iPhone-74 [46] - 2019 iPhone (stylus) 74 4.95
BIOMET [47] - 2007 Wacom tablet 84 2.33
PHILIPS [47] - 2007 Digitizing tablet 51 3.25
SVC2004 [47] - 2007 Digitizing tablet 40 4.83

MCYT-100 [47] - 2007 Wacom tablet 100 3.37
MCYT-330 [48] - 2009 Wacom tablet 330 3.91

Table 2 summarizes the state-of-the-art of online signature verification systems on mobile sensors,
when considering skilled forgeries. We observe that in some publications, performance is not reported
on skilled forgeries, which is the most challenging case for ASV systems. When comparing the results
on mobile sensors in Tables 1 and 2, we note that our system shows good performance compared to the
state-of-the art. Indeed, on iPad and iPhone mobile sensors, an EER of 7.04% and 4.95% respectively is
reached on signatures of the same 74 users. Compared to e-Biosign database containing real signatures
of 65 users acquired with a stylus on two mobile devices, we notice that our HMM-based system shows
slightly better performance on the iPad device (7.04% vs. 7.9% in the best case, or vs. 10.7% on the
other mobile device) and much better performance on the iPhone device (4.95% vs. 7.9% in the best
case, or vs. 10.7% on the other mobile device).

Our system behaves well in mobile conditions because it is based on a statistical model, namely
a continuous left-to-right HMM with four Gaussian components per state [47–49]. In other words,
each writer’s signature is modeled through a double stochastic process, characterized by a given
number of states with an associated set of transition probabilities among them, and in each state, a
continuous density, a multivariate Gaussian mixture is used to model the emission probability density.
This model has the advantage of absorbing the intra-personal variability of signatures [47], which
increases significantly in mobile conditions.
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Table 2. Performance of ASV systems of the literature on several online signature databases acquired
in mobile scenarios with touch-screen sensors, considering skilled forgeries.

Databases Year Users Sensor EER (in %)

ATVS-DooDB [32] 2013 100 HTC Touch HD
(Pseudo-signatures) Finger: 26.9

Blanco-Gonzalo
et al. [31] 2013 43

Asus Eee PC Touch (stylus)
Samsung Gal. Note (stylus/finger)

BlackBerry Playbook (finger)
Apple Ipad2 (finger)

Samsung Gal. Tab (finger)

-

e-Biosign [37] 2016 65 Samsung ATIV7
Samsung Gal. Note

Stylus: 7.9
Finger: 22.1
Stylus: 10.7
Finger: 26.4

Zareen and Jabin [38] 2016 25 Samsung Gal. Note -

MOBISIG [36] 2018 83 Nexus 9 tablet capacitive
(Finger-drawn pseudo-signatures)

Personalized vs.
global threshold:
8.56% vs. 25.45%

Nam et al. [39] 2018 20 Samsung Gal. S3 Finger: 4.4%

A personalized number of states is determined according to the total number Ttotal of sampled
points available in the genuine signatures of the HMM’s training set. We consider that in average 30
sampled points are enough to estimate the mean vector and the covariance matrix of each Gaussian [47].
The number of states N is computed as:

N =
[ Ttotal
M ∗ 30

]
, (3)

where M = 4 is the number of Gaussian densities per state and brackets denote the integer part.
Nineteen dynamic features are extracted point-wise for all signature types. These features are

described in detail in the Appendix A. The usual information extracted from an HMM is the likelihood
of the input signature given the user’s model. We have noticed that the information coming from the
segmentation of the test signature by the target user’s model is complementary to that of the likelihood,
especially for forgery detection. Indeed, we have shown in [47] that the segmentations made by the
target model on forgeries differ from those obtained on genuine signatures. For this reason, in the
verification phase, the classifier performs a score fusion combining two levels of signature analysis:
one based on a local point-wise analysis of each signature by the HMM (log-Likelihood score), the
other on the analysis of the signature at the level of portions, automatically segmented by the same
HMM (Viterbi score) [47–49]. At the first level (log-Likelihood score), on a particular test signature,
a distance is computed between its log-Likelihood and the average log-Likelihood obtained on the
training signatures; then it is shifted to a similarity value—called “Log-Likelihood score”—between
0 and 1, by the use of an exponential function [47]. At the second level of analysis (Viterbi score),
the user’s HMM automatically performs by the Viterbi algorithm, a segmentation of each training
signature into portions, according to the most likely path displayed in Figure 6. A “segmentation
vector” can then be associated to each signature: the N-components segmentation vector, N being
the number of states in the claimed identity’s HMM has in the i-th position the number of points
(observations) associated to state i by the Viterbi path, as illustrated in Figure 6. Each training signature
is then characterized by a Reference segmentation vector. In the verification phase, on a particular test
signature, a distance between its corresponding segmentation vector and each Reference segmentation
vector is computed, and such distances are averaged to compute the final distance. It is then shifted to
a similarity measure between 0 and 1 (Viterbi score) by an exponential function [47].
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Figure 6. Computation of a signature’s segmentation vector generated by the user’s HMM. Feature
vectors describing the signature are on the x-axis and the left-to-right HMM on the y-axis.

Finally, the similarity score for a given test signature is thus the fusion by a simple arithmetic
mean of the log-Likelihood score and the Viterbi score. If the final score is higher than the value of the
decision threshold the claimed identity is accepted, otherwise it is rejected.

In this work, for simple signature types, we train an HMM per person and per signature type. For
hybrid types, we train an HMM for each person considering the whole time sequence constructed
by concatenating the time sequences of the concerned simple types. As example, for the SDP type,
we train an HMM on the complete sequence composed of the usual signature, the date and the place.
Note that according to signature types, the length of the complete signature sequence will vary: for
simple signature types, it will tend to increase when considering name-surname and to decrease when
considering initials. For hybrid types, the length of the signature will be even higher. This will impact
the number of states of the user’s HMM.

4. Results

4.1. Quality Measure of Usual Signatures

In a first step, we quantify the quality of usual signatures of the 74 persons available in our dataset.
To this end, we trained for each person, an HMM on 10 genuine signatures to measure the user’s
PE. Then, a hierarchical clustering was performed on the obtained PE values, resulting in three user
categories displayed in Figure 7.

Figure 7. Examples of signatures captured in uncontrolled mobile conditions with (a) high, (b) medium
and (c) low PE.

In Figure 7a, we observe three examples of signatures with high PE: they are the shortest and
the simplest signatures, having the aspect of a flourish, and are the most variable (see Figure 8).
Such signatures are considered as being “problematic” in the literature [28,43,45]. On the other hand,
Figure 7c shows three examples of signatures with low PE: they are longer, the most complex and
the most stable (see Figure 8). In between, there is a transition category in terms of complexity and
stability, the category of medium PE (see Figures 7b and 8).
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Figure 8. Boxplots of PE values for all 74 persons clustered into high, medium and low PE.

4.2. Quality Measure of All Signature Types

Figure 9 displays two examples of each simple signature type, captured separately on the iPad:
usual signature, initials, name-surname, date and place of birth.

Figure 9. Examples of the simple signature types: (a) usual signature; (b) initials; (c) name-surname,
(d) date of birth, and (e) place of birth. These signatures belong to persons who have authorized
their publication.

For each person, we compute PE values for the five simple signature types separately, and for the
seven hybrid signature types: SI, SD, SP, SN, SDP, NDP and SIDP. Figure 10 presents the boxplots of
the obtained PE values for the 12 signature types.

Figure 10. Boxplots of PE values for the 74 persons per signature type.

We first notice that initials have the highest PE values. This result is coherent since initials are
the most simple and variable type of signature. We also notice a strong spread out of their boxplot in
Figure 10. Moreover, we observe that some initials have a comparable PE to that of usual signatures:
indeed, for initials, some entropy values are below the first quartile. This can be explained by the fact
that some persons appended their initials into two, three and even four letters, sometimes linking them
as usually done when producing a short signature. In this case, the initials show a higher complexity
and stability.

Furthermore, we notice that the more the signature is enriched (name-surname, SI, SD, SP, SN,
SDP, NDP, SIDP), the lower PE becomes: the complexity of signatures is higher and variability is lower.
The hybrid types SDP, NDP and SIDP are those showing the lowest PE values and the lowest variance
between persons in the boxplots displayed in Figure 10.
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In the sequel, we study the relationship between information content quantified by PE and
verification performance. Our objective is to identify which types of signatures are more resistant to
attacks in uncontrolled mobile conditions.

4.3. Evaluation of the Proposed Scheme

As we have proven in former works the significant difference in verification performance between
PE categories [28,40–43], we naturally adopted a methodology assessing the impact of our strategy
on each PE category separately. This methodology consists in the following steps: first we computed
PE values of the 74 persons considering only their usual signatures. Then, we generated three user
categories based on the obtained PE values, by a Hierarchical Clustering (as explained in Section 4.1).
Finally, we assessed, per user category, verification performance on usual signatures, and compared it
to performance when considering the other signature types: initials, name-surname, SI, SN, NDP, SDP,
and SIDP.

For performance assessment, we considered, for each person and each signature type, the
remaining 15 genuine signatures (the other 10 genuine signatures were used for PE computation) and
the 10 available skilled forgeries. For each person, the HMM classifier was trained on five genuine
signatures among the 15, and tested on the remaining 10 genuine instances and the 10 skilled forgeries.
The same signature type is considered in the training and testing phases.

Five random samplings were carried out on the training signatures. The false acceptance rate
(FAR) and false rejection rate (FRR) are computed relying on the total number of false rejections and
false acceptances obtained on all the five random samplings.

4.3.1. Results on High PE Category

We analyze in this section the results obtained on the so-called “problematic” users in the
literature [28,43,45], which are the main target of our strategy for enhancing signature security in
uncontrolled mobile conditions.

Figure 11 and Table 3 display the system performance on problematic users, those with the highest
PE. The EER reaches 7.17% when considering their usual signature (see Table 3 and the blue curve
in Figure 11). We first notice a significant degradation of performance when persons sign with their
initials (green curve in Figure 11). A relative degradation of 93% at the EER is observed even if the
usual signature is already simple and variable. This highlights the importance of the ballistic aspect
of the signing process in terms of resistance to attacks. Note that the vulnerability of initials is also
predictable by their very high PE values observed in Figure 12.

Figure 11. System performance on users of the highest PE category considering the 8 signature types.
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Table 3. System performance on users of the highest PE category in terms of EER.

Type of Signatures EER

Usual signature 7.17%
Initials 13.83%

Name-surname 4.33%
SN 2.67%
SI 5.45%

NDP 1.7%
SDP 0.17%
SIDP 0.17%

Figure 12. Boxplots of PE values per signature type for users of the highest PE category.

Moreover, we notice a significant improvement in performance when persons sign with their
name-surname (red curve in Figure 11). The FAR is in this case bounded around 10%. Also, the hybrid
type SN, which combines the usual signature and name-surname, improves significantly performance
(black curve in Figure 11): at the EER, the relative improvement is of 63% compared to the usual
signature. This result confirms the robustness of this hybrid type to attacks, predictable by its low PE
values displayed in its corresponding boxplot in Figure 12.

Besides, adding the date and place information clearly enhances performance. Indeed, the NDP
type (magenta curve in Figure 11) improves performance of 83.68% at the EER when compared to
the usual signature. But the SDP type outperforms the NDP: the relative improvement is of 98% at
the EER, when compared to the usual signature (see Table 3 and black dotted curve in Figure 11).
Moreover, it leads to a bounded FAR at 0.2% and a bounded FRR at 0.5%. Interestingly, we notice that
this could not be predicted by PE since SDP type has higher PE values than NDP (see Figure 12). This
result shows that the ballistic gesture inherent to the usual signature remains more discriminant than
the name-surname, when being combined to an alphanumeric information (the date) and handwriting
(the place), even in the case of a very simple problematic signature.

Finally, the SIDP type does not perform significantly better than the SDP type. This may be
explained by the fact that in this particular category of users, the usual signature is simple and variable,
and thus close to initials in terms of information content.

4.3.2. Results on Low PE Category

Figure 13 and Table 4 show system performance on persons with low PE, whose signatures are the
most complex and stable, and the most robust to attacks. The EER reaches 6.93% (see Table 4) when
considering their usual signature (blue curve in Figure 13).
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Figure 13. System performance on users of the lowest PE category considering the 8 signature types.

Table 4. System performance on users of the lowest PE category in terms of EER.

Type of Signatures EER

Usual signature 6.93%
Initials 15%

Name-surname 7.07%
SN 2.91%
SI 4.06%

NDP 0%
SDP 0%
SIDP 0%

Some trends observed on problematic users in the previous section are here confirmed. First, a
significant degradation of 116% is obtained at the EER with initials relatively to the usual signatures.
PE predicts this trend in Figure 14 (higher PE values for initials). Besides, as expected, this relative
degradation of 116% is higher in the case of complex signatures of this category, compared to problematic
users (relative degradation of 98% as reported in Section 4.3.1). Figure 14 shows the significant gap
between initials and usual signatures for the low PE category, compared to that obtained on problematic
users (high PE category).

Figure 14. Boxplots of PE for users with highest (left) and lowest (right) PE values, considering their
usual signature and initials.
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Moreover, the hybrid types SI, SN, NDP, SDP and SIDP outperform significantly the usual
signature; we note a relative improvement of 100% at the EER for NDP, SDP and SIDP types. For
this reason, the three associated DET-curves are not visible in Figure 13. This confirms again their
resistance to attacks, predictable by their low PE values, as shown in Figure 14.

On the other hand, some trends differ from those observed on problematic users. We notice that
the name-surname type (red curve in Figure 13) gives similar performance to that of the usual signature
(blue curve in Figure 13); while for problematic users, the name-surname outperforms by 40% the
usual signature (see Figure 11 and Table 3). This means that in this category of persons, if we consider
the name-surname as a possible signature for identity verification, although it has higher complexity
(low PE in Figure 15), performance would not be improved relatively to the usual signature.

Figure 15. Boxplots of PE values per signature type for users of the lowest PE category.

In conclusion, this result shows on one hand that the complexity criterion is not sufficient to
enhance the security of a signature. On the other hand, it highlights the importance of the ballistic
process for identity verification.

4.3.3. Results on Medium PE Category

Figure 16 and Table 5 display system performance on persons belonging to the category of medium
PE. The obtained results on this category show an intermediate behavior compared to that observed
on high and low PE categories. More precisely, the initials are the worst type in terms of performance.

Figure 16. System performance on users of the medium PE category considering the 8 signature types.
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Table 5. System performance on users of the medium PE category in terms of EER.

Type of Signatures EER

Usual signature 5.93%
Initials 16.07%

Name-surname 5.97%
SN 2.3%
SI 3.33%

NDP 0.47%
SDP 0.4%
SIDP 0.5%

Moreover, the DET-curves corresponding to name-surname and usual signature types intersect at
the EER value and get closer compared to problematic users. Also, the hybrid types including
alphanumeric and handwriting information enhance significantly verification performance in
uncontrolled mobile conditions. The SDP type in particular leads to a significant relative improvement
of 93% at the EER compared to the usual signature; besides we note that the FAR and FRR are both
bounded at 1.2% and 2%, respectively.

5. Discussion

In this paper, we have proposed a novel strategy for securing personal identity on a touch-screen
sensor embedded in a mobile device, largely used nowadays. This strategy operates upstream from
the verification system, at the sensor level, by enriching the information content of handwritten inputs.
Specific additional inputs then reinforce the usual signature with alphanumeric and handwritten
personal information, frequently used in public and legal usages.

We quantified information enrichment with PE measure that characterizes both signature
complexity and stability. Several simple and hybrid signature types were proposed for our
experimental study.

We assessed the effectiveness of our proposal across three well-established user categories in terms
of signature complexity, signature stability and verification performance. This allowed highlighting
inside categories, subtle differences in terms of relative performance enhancement, depending on
the signature type. This methodology allows understanding which characteristics are relevant in the
signing process to reinforce the digital identity for all persons.

Experiments were performed on 74 writers that signed on a tablet with a stylus in uncontrolled
mobile conditions. Our analysis per writer category revealed a common trend to all: adding
alphanumeric (date) and handwriting (place) information to the usual signature is the most powerful
hybrid type in terms of verification performance. This can be explained by the fact that this hybrid type
combines complementary information, and keeps the ballistic aspect of the signature, so important for
identity verification. The relative improvement for all user categories is of at least 93% compared to
the usual signature.

6. Conclusions and Future Work

The important outcome of our study is the possibility of extending the concept of handwritten
identity to other personal information than the usual signature. Actually, by combining the usual
signature with alphanumeric (date) and handwritten (place) personal information, personal identity
security is significantly enhanced for all persons in uncontrolled mobile conditions. Moreover, with
our strategy, the concept of user categories even disappears because all persons become very robust
to attacks.

Another interesting outcome is that the complexity criterion is not sufficient to enhance the
security of a signature. This is clearly observed on persons with the most complex signatures (low PE
category): although the name-surname type is more complex than the usual signature, it is not more
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reliable in terms of resistance to attacks. This is because the usual signature conveys specific ballistic
information about identity; this information can be completed by other handwritten information but
cannot be removed and replaced for robust identity verification.

The finding of combining signature, date and place for enhancing identity security is in total
accordance with public and legal usages in which identity information is requested. This may facilitate
the implementation of the proposed enrollment strategy at a large scale.

In future work, we envisage implementing our strategy by developing an application on different
mobile devices to study the practical usage of the proposed enrollment strategy, in terms of acquisition
time during enrollment, user HMM training when acquiring signature followed by date and place in
one shot, accuracy in mobility, and user acceptability and comfort. This will be conducted considering
challenging mobile scenarios in terms of interoperability and time variability. Also, since our study
demonstrates that augmenting the usual signature with alphanumeric and handwritten personal
information enhances significantly verification performance, it would be interesting to study the impact
of reducing the number of enrollment inputs. Furthermore, we will investigate the effectiveness of our
strategy in terms of relative performance improvement when confronted to other classifiers.
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Appendix A

Table A1. The 19 dynamic features extracted point-wise on all signature types.

N◦ Feature Name

Gesture related
features

1–2 Normalized coordinates (x(t)−xg, y(t)−yg) relative to the gravity center (xg, yg) of
the signature

3–4 Speed in x and y
5 Absolute speed
6 Ratio of the minimum over the maximum speed on a window of 5 points

7–8 Acceleration in x and y
9 Absolute acceleration
10 Tangential acceleration

Local shape
related features

11 Angle α between the absolute speed vector and the x axis
12–13 Sine(α) and Cosine(α)

14 Variation of the α angle: Φ
15–16 Sine(Φ) and Cosine(Φ)

17 Log(1 + r) where r is the curvature radius of the signature at the present point
18 Length to width ratio on windows of size of 5 points
19 Length to width ratio on windows of size of 7 points

For computing the derivatives of a parameter x(t), we used the regression equation as follows:

x′(t) = reg(x(t), Z) =
∑Z

z=1 z ∗ (x(t + z) − x(t− z))

2
∑Z

z=1 z2

where z = 2, in order to obtain soft derivative curves.
Accordingly,
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• Speed in x and y (N◦ 3–4 in Table A1):

vx(t) = reg(x(t), 2) vy(t) = reg(y(t), 2)

• The absolute speed (N◦ 5 in Table A1):

v(t) =
√

v2
x (t) + v2

y (t)

• Acceleration in x and y (N◦ 7–8 in Table A1):

ax(t) = reg(vx(t), 2) ay(t) = reg
(
vy(t), 2

)
• The absolute acceleration (N◦ 9 in Table A1):

a(t) =
√

a2
x (t) + a2

y (t)

• The tangential acceleration (N◦ 10 in Table A1):

at(t) = reg(v(t), 2)

• Angle α between the absolute speed vector and the x axis (N◦ 11 in Table A1):

α(t) = arcsin
(

vy(t)

v(t)

)
• Sine and cosine of angle α (N◦ 12–13 in Table A1):

Sin(α(t)) =
(

vy(t)

v(t)

)
Cos(α(t)) =

(
vx(t)
v(t)

)
• Variation φ of the angle α angle (N◦ 14 in Table A1):

φ(t) = reg(α(t), 2)

• Sine and cosine of angle φ (N◦ 15–16 in Table A1):

sin(φ(t)) cos(φ(t))

• log(1 + r(t)) (N◦ 17 in Table A1), where r is the curvature radius of the signature at the present
point t:

lr(t) = log(1 + r(t)) = log
(
1 +

vt(t)
φ(t)

)
• Length to width ratio on windows of size of 5 points centered on the current point t (N◦ 18 in

Table A1).
• Length to width ratio on windows of size of 7 points centered on the current point t (N◦ 19 in

Table A1).
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