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Abstract: Steady-state visual evoked potentials (SSVEPs) have been extensively utilized to
develop brain—computer interfaces (BCls) due to the advantages of robustness, large number
of commands, high classification accuracies, and information transfer rates (ITRs). However, the
use of several simultaneous flickering stimuli often causes high levels of user discomfort, tiredness,
annoyingness, and fatigue. Here we propose to design a stimuli-responsive hybrid speller by
using electroencephalography (EEG) and video-based eye-tracking to increase user comfortability
levels when presented with large numbers of simultaneously flickering stimuli. Interestingly,
a canonical correlation analysis (CCA)-based framework was useful to identify target frequency
with a 1 s duration of flickering signal. Our proposed BCI-speller uses only six frequencies to
classify forty-eight targets, thus achieve greatly increased ITR, whereas basic SSVEP BCl-spellers
use an equal number of frequencies to the number of targets. Using this speller, we obtained an
average classification accuracy of 90.35 + 3.597% with an average ITR of 184.06 + 12.761 bits per
minute in a cued-spelling task and an ITR of 190.73 + 17.849 bits per minute in a free-spelling task.
Consequently, our proposed speller is superior to the other spellers in terms of targets classified,
classification accuracy, and ITR, while producing less fatigue, annoyingness, tiredness and discomfort.
Together, our proposed hybrid eye tracking and SSVEP BCl-based system will ultimately enable a
truly high-speed communication channel.

Keywords: Brain—computer interface; electroencephalography; eye tracker; hybrid BCI; canonical
correlation analysis; steady-state visual evoked potentials; information transfer rate

1. Introduction

A brain—computer interface (BCI) provides a direct line of communication between a human
brain and a computer by converting physiological signals into commands for the control of external
devices [1-5]. BCIs are designed mainly to provide an alternative means of communication for people
with severe motor disabilities [6-9]. Among a number of techniques, electroencephalography (EEG)
is the most popular brain-imaging method for BCI implementation due to its noninvasive nature,
low cost, portability and high temporal resolution [9-13]. In the literature, several BCI systems have
been developed by using EEG signals, including [14] event-related desynchronization/synchronization
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(ERD/ERS) [3], steady-state visually evoked potentials (SSVEPs) [8,15], event-related potentials
(ERPs) [16,17], and slow cortical potentials (SCPs) [18]. Among these, SSVEP-based BCls are the
most practical, because they support a large number of output commands and require little training
time [19-27]. Recently, the SSVEP-based BCI has attracted increasing attention due to its high
rate of communication and lack of any significant training requirement compared with other BCI
systems [28-31]. Users of an SSVEP-based BCI are presented with a set of visual targets that are
associated with possible characters, each of which flickers at a different, fixed frequency [32]. In an
SSVEP B(J, target character/command where user is looking at is decoded by using corresponding
SSVEP responses.

The use of various SSVEP-based BCI spellers for high classification accuracy as well as high
communication rates has been proposed. Bin et al. reported, based on a six-target system, an
information transfer rate (ITR) of 58 bits/min with an average accuracy of 95.3% [33], while Nakanishi et
al. achieved an average accuracy and ITR of 92.78% and 91.68 bits/min with a 12-target system [34] and
91.35% and 166.91 bits/min with a 32-target system [35]. Yin et al., utilizing a 36-target SSVEP-based
BCI speller, reported an ITR of 41.08 bits/min with an accuracy greater than 85% [36]; later on, by
using hybrid P300 and SSVEP scores, they were able to achieve an average accuracy of 95.18% with an
ITR of 50.41 bits/min [22]. Chen et al. reported an ITR of 105 bits/min for a 45-target BCI speller [27];
more recently, they introduced a high-speed spelling system with an average ITR of 267 bits/min and
an average accuracy of 91.04% [28]. Nakanishi et al. developed a task-related component analysis
technique to develop a high speed speller with an average accuracy of 89.93% and an average ITR of
325.33 bits/min [29]. In a recent study, Maye et al. proposed a multi-target SSVEP-based BCI system
that only uses single flickering stimulus [37].

The stimulation frequencies ranging between 5 and 90 Hz could be used to elicit SSVEPs, but
only few frequencies could be used due to the technological constraints of the current systems [38].
For instance, the conventional frequency coding method can only generate specific frequencies due
to the limitation posed by the monitor refresh rate [39]. For example, a 60 Hz refresh rate monitor
can only generate frequencies that are integer divisible of 60, e.g., 60/2 = 30, 60/3 = 20, and 60/4 = 15.
Furthermore, Muller and co-authors showed that the detection of SSVEPs can be enhanced by
using the harmonic components of the fundamental frequencies that are used to elicit SSVEPs, and,
therefore, the use of harmonic frequencies should be avoided while designing SSVEP BCls [40]. This
further limit the available frequencies for a practical BCI system. For example, using 10 Hz as a
fundamental stimulus frequency restricts the use of 20 and 30 Hz frequencies, since these are the
harmonic components of 10 Hz. Moreover, many studies have shown that low frequency stimuli’s
(4-12 Hz) can elicit strongest SSVEP responses; therefore, for high detection rates, stimulus frequencies
should be selected from a low frequency range [41-43]. In the past, many researchers have proposed
different stimuli designs to tackle these limitations and restrictions [28,44-46]. These methods include
phase coding techniques [44,45], dual frequency stimuli [47,48], variable frame rate stimuli [49],
multiple frequency sequential coding [50], amplitude modulation techniques [51,52], intermodulation
frequencies [38,53,54], varying duty cycles [41,55], interpolation techniques [39], and joint frequency
and phase modulation [28], but these techniques also have limitations. For instance, the number of
phase lags are also dependent on the number of frames of the stimulus frequency in the phase tagging
method, consequently resulting in a limited number of targets [38]. In the case of multiple frequency
coding techniques, the number of targets increases as the cycle period increases, and the classification
time window is proportional to the amount of stimulation frequencies that further decreases the overall
BCI performance [38,50]. Furthermore, it has also been shown that low-frequency stimuli can cause
photosensitivity-based epileptic seizures and high-levels of visual fatigue and discomfort, especially
when presented with large number of targets and longer periods [21,43]. Many studies have used
high-frequency stimuli and variable duty cycles to reduce visual fatigue and discomfort but at the cost
of a decrease in the performance of SSVEP-based BClIs [21,43,56-58]. A few authors have also combined
other EEG signals, e.g., P300, with SSVEP to overcome these limitations [22,59-63]. For instance, a
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64 target BCI system was developed by using eight SSVEP frequencies and the P300 paradigm [22].
Though the number of targets can be increased by using only few frequencies, the incorporation
of P300 increases the complexity of the task, which can also cause fatigue and a reduction in the
classification accuracies.

On the other hand, researchers are combing several other modalities with EEG to enhance the
performances of the current techniques. Recently, a bimodal approach that combined SSVEP with
Electromyography (EMG) was developed to generate a 60 target speller with only 15 frequencies [64].
The speller was divided into four equal sections. The researchers instructed subjects to make fists (0-3)
to identify the target section (1-4) and SSVEPs to detect target frequency. The data in this paper showed
an average accuracy of 85.8% and an average ITR of 90.9 bits/min. Furthermore, eye tracking-based
assistive technologies are emerging as an alternative tool to BCIs [65,66]. The development of modern
camera systems and the increase of computing power has enabled the gathering of eye tracking
data in real time, enabling the use of gaze as a control method for people with disabilities [67-73].
A comparison study of BCI, eye tracking, and electrooculography interfaces reported that participants
found the BCI to be the easiest to use and eye tracking to be the least tiring [65]. They also showed that
an SSVEP-based BCI performed better than an eye tracking-based speller when targets are densely
located and small in size. Recently, eye tracking has been combined with EEG to remove ocular artifacts
from EEG signals [74,75] and to develop hybrid BCI systems [65,76-81]. All these studies have shown
improved performance as compared to EEG only, as well as the feasibility of combining EEG with
eye tracking.

This paper proposes a combined EEG/eye tracking system for high-speed speller implementation
in order to overcome the limitations described above; specifically (a) to improve practicality, especially
on a computer screen (where only a limited number of flickering targets could be reliably implemented),
and (b) a better user experience. Furthermore, the proposed speller identifies forty-eight targets by
using only six frequencies by dividing speller into eight sub-matrices with six targets each and does
so with an improved classification accuracy and an increased ITR. Eye-tracker data are employed
to identify the target sub-matrix, while EEG data are used to identify the target frequency of the
SSVEP. Moreover, the proposed speller reduces users’ visual discomfort, tiredness, annoyingness and
fatigue, allowing for longer-duration use of the speller without any performance decrement; in contrast,
a conventional BCI-speller (from now on referred to as a basic SSVEP speller) causes high fatigue
and tiredness, which is a major problem that is responsible for performance decrement [43,52,82,83].
The proposed system is superior to basic SSVEP BCI-speller performances in terms of items classified,
classification accuracy, and ITR. The comparison in the performances of the proposed, basic, and
hybrid speller reveals the improved performance of the proposed hybrid approach. The significance
of the performance improvement is statistically validated. In this study, a canonical correlation
analysis (CCA)-based method is used to identify the target SSVEP frequency. In contrast to previous
studies [34,83-85], the probability of misclassification of the targets with CCA is largely decreased
by using six frequencies in the proposed hybrid approach. The methodological framework of the
proposed system makes a truly high-speed communication channel possible.

2. Materials and Methods
2.1. Materials

2.1.1. Proposed Hybrid SSVEP- and Eye-Tracking-Based Speller

The proposed hybrid eye-tracking and SSVEP BCl-based communication system operates as
follows. While the user gazes at a target character flickering at a certain frequency, the SSVEP responses
of the recorded EEG data are estimated and used as feature vectors. The target character that the user
gazes at is identified by using the proposed framework illustrated in Figure 1a, which simply finds the
frequency with the largest SSVEP response and locates the target box with the help of eye-tracking
data. Once the target frequency and box are identified, the target letter is typed.
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Figure 1. (a) Schematic diagram of the proposed framework. (b) Schematic diagram of the proposed
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speller with frequency of each target. Sizes were described in pixels. (¢) Experimental paradigm.

2.1.2. Participants

Twenty healthy participants (male: 16, female: 4, aged 2446 years) participated in this study.
All had normal or corrected-to-normal vision. Only four had previous experience with an SSVEP-based
BCI; the others were naive to it. The experimental protocol was approved by the Institutional
Review Board of Pusan National University. The experiment was conducted in accordance with the
ethical guidelines established by the Institutional Review Board of Pusan National University and
the Declaration of Helsinki. Each participant was asked to sign a written informed consent after
being completely informed about the nature and purpose of the study. Each participant completed
an offline experiment before performing the online experiments. To analyze and compare the effect
of fatigue, tiredness, annoyingness, and discomfort, each participant performed experiments for a
basic SSVEP speller on different days with a minimum gap of three days. During the experiments,
all of the participants were seated in a comfortable armchair at a viewing distance of about 70 cm
from the monitor. The experiment was conducted in a confined room with dim lighting to avoid
environmental disturbance.



Sensors 2020, 20, 891 5 of 20

2.1.3. Experimental Procedure

The new 48-target BCI speller, the core of the proposed high-speed communication system, uses
only six frequencies. As shown in Figure 1b, the user interface is a 6 X 8 stimulation matrix containing
48 characters including the 26-letter Roman alphabet, 10 digits, and 12 other symbols. The matrix
speller is divided into eight equal 3 X 2 sub-matrices, each containing six characters. Each character
in each sub-matrix is assigned a different, fixed frequency. The eye tracker is used to identify the
corresponding sub-matrix, specifically by tracking the user gaze, while EEG data are analyzed to
identify the target frequency. A 24-inch LCD monitor (Asus, 144 Hz refresh rate) with a resolution
of 1920 x 1080 pixels was used to present the speller. In this study, the frequencies used to flicker
the targets were integer divisors of the monitor refresh rate, i.e., 144/11 = 13.0909, 144/10 = 14.40,
144/9 = 16.00, 144/8 = 18.00, 144/7 = 20.5714 and 144/6 = 24.00 Hz. A stimulus program was developed
by using Psychophysics Toolbox Version 3 with MATLAB to generate visual stimuli. Event triggers
were sent from the parallel port of the computer to the both EEG and eye tracking systems.

2.1.4. Offline Experiment

For each participant, the offline experiment with the 48-key speller consisted of three blocks.
In each block, all 48 targets were presented randomly. Thus, each participant had three trials per
character for a total of 144 (3 x 48) trials. Each trial, of 6s duration, started with a visual cue (a red
square indicating a target stimulus) appearing on the screen for 0.5 s. The participants were advised
to move their gaze to the target character as quickly as possible within the cue period. All the target
characters started to flicker for 5 s right after the cue offset. Before the next stimulus, the screen was
blank for 0.5 s after each trial. The subjects were instructed to avoid blinks during flickering periods.
There was a rest for few minutes after each block. Figure 1c describes the experimental paradigm for
the offline and online experiments.

2.1.5. Online Experiment

In the online experiment, each trial was of only 1.50 s duration, including 0.5 s for gaze shifting and
1 s for stimulus flickering. The experiment was conducted in two stages, i.e., training and testing stage.
There were three blocks in the training stage, each consisting of 48 trials to familiarize the subjects with
online layout of the system. The testing stage included a cued-spelling task and a free-spelling task
with three blocks each. In the cued-spelling task, targets were presented with a red box indicating
a cue for the target character, whereas no cue was used in the free-spelling task. Each block in the
cued-spelling task consisted of 48 trials. Auditory (a sound beep at the start of trial) and visual (red
box on target stimuli) feedback was provided to the participants in real time. As soon as the target
was classified by the online data analysis program, the identified target was typed into the text input
field. In the free-spelling task, all participants were asked to input a 15-character sentence (“I LIVE IN
KOREA”) without any cues. There was a 3 to 5-min break between two consecutive blocks.

2.1.6. Control Conditions

After completing the experiments with the proposed speller, each participant performed
experiments with basic and hybrid spellers from the literature. Each participant was given break of at
least three days between each experiment.

Basic Speller

In this study, a forty-eight-target conventional speller with only SSVEPs was also implemented to
compare the performance of the proposed system. The speller was developed by using Psychophysics
Toolbox Version 3 with MATLAB. A conventional sinusoidal frequency coding scheme was used to
generate flickering stimuli [86]. The frequency range for basic speller was 7-16.4 Hz (around alpha
band) with a step size of 0.2 Hz.
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Hybrid EEG-Eye Tacking

In this study, the proposed hybrid approach was also compared with a previously developed
hybrid mental spelling system [81]. The basic idea of [81] was to divide the speller into three parts, i.e.,
left, middle, and right. In this sense, the misclassification of the SSVEPs could be reduced to improve
the classification accuracies and ITR of the system. The number of frequencies that were used in this
speller were equal to the number of targets. We implemented this speller with forty-eight targets with
frequencies ranging from 7 to 16.4 Hz (around alpha band) with a step size of 0.2 Hz.

2.1.7. Questionnaire

In addition to conventional comparison of classification accuracies and ITR, each subject also
completed a questionnaire about how they felt after the experiment. The questionnaire included
questions about the previous experience with BClIs, as well as their discomfort, fatigue and tiredness
after the experiment. For each participant, the experiments with proposed and control conditions were
performed on different days to counterbalance the settings.

2.1.8. EEG Recordings

EEG data were recorded using a gUSBAmp with a 16-channel active electrode system that was
developed by g.tec Medical Engineering, GmbH (Austria). Eight electrodes positioned over the parietal
and occipital areas (PO7, PO3, POz, PO4, POS, O1, Oz, and O2) were used to record the SSVEPs with a
ground electrode FPz and reference electrode on right ear. All of the data were sampled at a rate of
1200 Hz. All the electrodes were positioned according to international 10-20 system. The impedance
of all of the electrodes was reduced to below 1kohm.

2.1.9. Eye-Tracker Recordings

The eye movements were recorded with a video eye-tracking system (Eyelink 1000, developed by
SR Research Ltd., Ottawa, ON, Canada). The sampling rate was 250 Hz. A velocity threshold of 30°/s
was used to define the saccades; the acceleration threshold and minimum deflection threshold were
8000°/s% and 0.1°, respectively. The eye tracker was calibrated for each participant.

2.2. Methods

In this study, eye tracking data and the CCA algorithm were used to identify the target sub-matrix
and frequency of SSVEPs, respectively. Before analyzing data, eye tracking and EEG data were
synchronized by using event triggers sent to both systems through the parallel port of the computer.
In the offline and online experiments, data epochs were extracted according to event triggers that were
produced by the MATLAB program. Given the latency delay in the visual system, the data epochs
for the experiments were extracted in [0.14 s 5.14 s] and [0.14 s 1.14 s], respectively (time 0 indicated
stimulus onset) [34]. To remove the common power line noise in EEG data, a notch filter of 50 Hz
was applied to the data recording. In both the offline and online experiments, all of the epochs were
first down-sampled to 300 Hz and then band-pass-filtered from 12 to 110 Hz. All the processing and
analysis was performed in MATLAB.

2.2.1. Sub-Matrix Detection

In this study, eye tracking data were used to identify the target sub-matrix in the proposed system.
Eye tracker data were stored as pixels. Data epochs that were extracted using event triggers were used
in this analysis. The mean of the gaze-direction data from each epoch was calculated as a feature to
classify target sub-matrices.
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2.2.2. SSVEP Detection

CCA is a method for the extraction of similarities between two data sets [34,87]. CCA was first
used in BCI studies by Lin et al. to detect SSVEP frequencies [88]. Considering two multidimensional
variables X, Y and their linear combinations x = X w, and y= YTwy, CCA finds the weight vectors,
wy and wy, that maximize the correlation between x and y by solving the problem:

E[xTy] E[w,TXYTw,]

———— = maXy,,
ERTHE[TY] ot

)

p(x, y) = maXuw,,w,
VE[w:TXXTw Ef, TYY Tw,

The maximum of p with respect to wy and wy is the maximum canonical correlation. Projections
onto wy and wy, are called canonical variants. Here, X refers to a set of multi-channel EEG signals, and
Y refers to the set of reference signals that have the same length as X. In SSVEP detection, the reference
signals Yy € R2NwN are set as

sin(2m fit)
cos (27 fit)
_|- _|t2 N
e =g ] @
sin(21tNy, fit)
cos(2nNy, fit)

where f; is the stimulation frequency, f; is the sampling frequency, N}, = 3 is the number of harmonics,
and N is the number of sample points. To recognize the frequency of the SSVEPs, CCA calculates the
canonical correlation py between the multi-channel EEG signals X and the reference signals at each
stimulus frequency Y}. The frequency of the reference signals with the maximal correlation is then
selected as the frequency of the SSVEPs.

Once the target sub-matrix and frequency were identified, the corresponding character was
selected as an output.

2.2.3. Performance Evaluation

Classification accuracy and ITR were separately calculated for the offline and online experiments.
The method for the calculation of ITR (in bits per minute, bpm) was [35]:

ITR = l[logzz\/f+Plogzp+ (1 —P)logz( 1-P )] X 60 (3)
T M-1

where M represents the total targets (i.e., 48 in this study), P represents the classification accuracy, and
T represents the average selection time. In the offline experiments, the optimal BCI performance to
calculate classification accuracy and ITR was estimated by using time windows between 1 and 4 s
with an increment of 0.5 s. For the online experiment, the accuracy and ITR were calculated by using
results obtained from the online data analysis program. In this study, the time windows that were
used to calculate ITR for both the offline and online experiments also included the gaze shifting time
(i.e, T=05s+1s=1.55).

3. Results

In this paper, we propose a hybrid strategy to increase user comfort and to achieve high eye
tracking and SSVEP-BCl-based speller classification accuracy and ITR.

3.1. Offline Data Analysis

To verify that the proposed framework performed better, the proposed approach was analyzed for
the proposed 48-target speller in an offline experiment. Furthermore, the performance of the proposed
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speller was compared with the performance of a previously developed basic BCI-speller with SSVEPs
only and hybrid EEG and eye tracking-based speller systems. Figure 2a shows a comparison of the
average classification accuracies that were achieved by the proposed framework (black line), basic
speller (blue line), and hybrid speller (orange line) for all subjects for epoch lengths ranging from
1 to 4 s with a fixed increment of 0.5 s; Figure 2b shows the corresponding average ITRs achieved
by the proposed framework (black line), basic speller (blue line), and hybrid speller (orange line)
with different epoch lengths. It could be seen that the accuracies and ITRs were higher for the
proposed hybrid approach than those for the basic BCI-speller and the hybrid speller. Moreover, the
significance of this performance improvement was statistically validated by using Mann-Whitney U
test. The results of this statistical analysis verified that the performance improvement by the proposed
hybrid approach was significantly higher than basic BCI-speller and hybrid speller for all time windows
with p < 0.001. Additionally, in order to evaluate the discomfort, annoyingness, eye fatigue, and
tiredness that was caused by the proposed, basic and hybrid speller systems, each subject was asked to
fill in a questionnaire concerning his experience in the use of all speller systems after the experiments.
The results of these questionnaire are listed in Table 1. It can be seen that 60% of the subjects felt a low
level of annoyance due to flickering when using the proposed speller, whereas 55% of the subjects were
highly annoyed when using the basic BCI-speller and the hybrid speller. Moreover, none of the subjects
felt a high level of eye fatigue after using the proposed BCI-speller, while 65% of the subjects were
highly fatigued after using both of the previously developed spellers. Furthermore, all the subjects
were also asked about the overall tiredness they felt after using all these spellers. It is noteworthy that
none of the subjects felt tiredness above a medium level after using the proposed speller, whereas
75% of the subjects were highly tired after using the other spellers. According to the results, all of the
subjects were significantly more comfortable using the proposed speller system as compared with
the spellers used in previous BCI studies [34,39]. Thus, the proposed speller could be implemented
as a more comfortable and easy-to-use mode for practical and clinical applications, e.g., patients
in locked-in state [89]. Since the average accuracy with the proposed speller was relatively higher
(>89.03%) with all of the epoch lengths, the highest ITR was obtained with the shortest epoch length.
According to Nakanishi et al. [35] and Equation (3) when using longer-length data, a minor increase in
the classification accuracy leads to a significant decrease of ITR. For example, compared with 1 s data
length, classification accuracy increased by 3.65% when using the 2 s data length (89.02% vs. 92.67%);
however, the ITR dropped from 179.60 to 144.32 bpm. Correspondingly, in an online system that used
the proposed framework, the 1 s epoch length was found to be optimal for the achievement of a high
ITR, and there was no overlapping in the epochs. Figure 2c shows the percentage of the correct trials
that were identified in each block by the proposed framework for each subject. Table 2 shows all of the
subjects’ classification accuracies and ITR for an epoch length of 1 s.

Table 1. Results from the questionnaires.

Experience with

Speller SSVEP BCI Flickering Annoying Eye Fatigue Level of Tiredness
Yes No Low Medium High Low Medium High 1 2 3 4 5
Proposed 12 8 0 12 8 0 7 10 3 0 0
Basic 4 16 0 9 11 0 7 13 0 0 5 10 5
Hybrid EEG
and eye 0 8 12 0 8 12 0 0 4 11 5
tracking

The numbers represent number of subjects. The level of tiredness was evaluated on a scale of 1 to 5: 1 = not tired; 2
= little tired; 3 = moderately tired; 4 = tired; and 5 = highly tired.



Sensors 2020, 20, 891 9 of 20

(@) (b)
o FOF R OR R KK ook E R R K R o #
Iﬂ-——%—__f ‘-t {' L_ﬂ: Proposed Speller
75 ‘ _T,_--—- ___I—___’ 150 | Basic Speller

Hybrid Speller

iz

(2]
o
T

Average accuracy (%)
8 i
%
! \
,_V *
Average ITR (bpm)
5
i

[ 1

0 . . X : 0 0 . A " . .
0.5 1 1.5 2 25 3 3.5 4 45 0.5 1 15 2 25 3 35 4 45
Time window (seconds) (c) Time window (seconds)

100 1 I 1 I I 1 1 I I 1
A Biock 1
9 [ Block 2
v A iock 3|
]
S
H
- 80 | 1
<]
(3]
70
0 2 4 6 8 10 12 14 16 18 20
Subjects

Figure 2. Performance comparison and evaluation of the proposed speller, the basic steady-state visually
evoked potential brain—-computer interface (SSVEP BCI)-speller, and the hybrid electroencephalography
(EEG)-eye tracking-based speller for all subjects with different time windows during the offline
experiment: proposed speller (black line), basic speller (blue line) and hybrid speller (orange line).
(a) Average classification accuracies, (b) average information transfer rate (ITR), and (c) percentage of
correct trials identified in each block for each subject. In (a,b), error bars indicate standard deviation.
The asterisks indicate a significantly improved performance by the proposed speller (* p < 0.001).

Table 2. Classification accuracy and information transfer rate of proposed framework with 1 s epoch
lengths in offline experiment.

Sub Classification Accuracy (%) Information Transfer Rate (bpm)
1 91.67 188.34
2 97.22 209.89
3 92.36 190.84
4 85.42 167.03
5 91.67 188.34
6 95.14 201.38
7 87.50 173.88
8 81.94 156.02
9 89.58 180.96

10 92.36 190.85
11 90.97 185.84
12 88.89 178.59
13 95.14 201.38
14 90.28 183.40
15 86.11 169.28
16 86.81 171.58
17 86.11 169.28
18 83.33 160.35
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Table 2. Cont.

Sub Classification Accuracy (%) Information Transfer Rate (bpm)
19 84.03 162.57
20 84.72 164.78
Mean 89.03 179.60
SD 4.224 14.728

3.2. Online Data Analysis

This study evaluated the proposed BCI speller while using two online cued- and free-spelling
tasks. Table 3 lists the classification accuracy and ITR for all subjects cued-spelling tasks in the training
and testing sessions. The average accuracy in the cued-spelling task in training session was 89.72%,
which resulted in an average ITR of 181.90 bpm across all subjects. In the testing session, the average
accuracy and ITR were 90.35% and 184.06 bpm, respectively. The online classification accuracy and
ITR were slightly higher than those obtained in the offline experiment (accuracy: 89.03% vs. 90.35%;
ITR: 179.60 bpm vs 184.06 bpm; Tables 2 and 3). This could have been due to the familiarization with
the proposed hybrid approach achieved by the subjects in the training sessions. Across individuals,
the minimal and maximal ITR were 162.57 bpm (subject 19) and 206.98 bpm (subject 13), respectively.
Table 4 shows the results of the free-spelling tasks. After some practice sessions for familiarization with
the speller layout (without any cue), all of the subjects successfully completed the tasks. For subjects
7,11, 15 and 18, the stimulus time was increased to 1.25 s to improve the classification accuracy; for
subjects 4, 8 and 19, the gaze-shifting time was increased to 1 s due to the difficulty in rapidly shifting
their gaze. The mean ITR achieved by the system was 190.73 bpm (minimum: 159.23 bpm (subjects 4,
8 and 19); maximum: 212.31 (subjects 6, 10 and 13)). An average spelling rate of 35.79 characters per
minute (cpm) was achieved by the proposed system with maximum of 39.11 cpm. The overall results
showed that there were no significant differences in the ITR of the cued- and free-spelling tasks.

Table 3. Classification accuracy and information transfer rate for the online cued-spelling task.

Training Session Testing Session
Sub Classification Information Transfer Classification Information Transfer
Accuracy (%) Rate (bpm) Accuracy (%) Rate (bpm)
1 89.58 180.97 88.19 176.21
2 95.13 201.38 95.13 201.38
3 90.97 185.84 92.36 190.85
4 87.50 173.88 86.81 171.57
5 92.36 190.85 93.06 193.42
6 95.83 204.15 95.83 204.15
7 88.19 176.22 89.58 180.97
8 86.80 171.57 86.11 169.28
9 92.36 190.85 93.06 193.42
10 93.75 196.02 93.06 193.42
11 88.89 178.58 91.67 188.33
12 91.67 188.33 92.36 190.85
13 95.83 204.15 96.53 206.98
14 88.89 178.58 91.97 185.84
15 85.42 167.02 87.50 173.88
16 90.97 185.84 90.28 183.39
17 85.42 167.02 86.81 171.57
18 86.81 171.57 86.11 169.29
19 82.64 158.19 84.03 162.57
20 85.42 167.02 87.50 173.88
Mean 89.72 181.90 90.35 184.06

SD 3.788 13.298 3.597 12.761
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Table 4. Classification accuracy and information transfer rate for the online free-spelling task.

Sub Trial Length (s) Total No. of Trials Spelling Rate Information Transfer
(Gaze Shift + Stimulus)  (Correct/Incorrect) (cpm) Rate (bpm)

1 15(05+1) 45 (41/4) 36.44 186.34
2 1505 +1) 45 (43/2) 38.22 203.03
3 1.5(0.5+1) 45 (43/2) 38.22 203.03
4 20(1+1) 45 (44/1) 29.36 159.23
5 1.5(0.5+1) 45 (43/2) 38.22 203.03
6 1.5(0.5+1) 45 (44/1) 39.11 212.31
7 1.75 (0.5 + 1.25) 45 (43/2) 32.76 174.02
8 20(1+1) 45 (44/1) 29.36 159.23
9 1.5(0.5+1) 45 (43/2) 38.22 203.03
10 1.5(0.5+1) 45 (44/1) 39.11 212.31
11 1.75 (0.5 + 1.25) 45 (44/1) 33.52 181.98
12 1505 +1) 45 (42/3) 37.33 194.45
13 15(05+1) 45 (44/1) 39.11 212.31
14 15(05+1) 45 (43/2) 38.22 203.03
15 1.75 (0.5 + 1.25) 45 (44/1) 33.52 181.98
16 1.5(0.5+1) 45 (43/2) 38.22 203.03
17 1.5(05+1) 45 (42/3) 37.33 194.45
18 1.75 (0.5 + 1.25) 45 (43/2) 32.76 174.03
19 20(1+1) 45 (44/1) 29.36 159.23
20 1.5(0.5+1) 45 (42/3) 37.33 194.45
Mean - - 35.79 190.73
SD 3.47 17.849

4. Discussion

User comfortability plays an important role in the performance of BCI systems. As discussed in
previous studies, in basic BCI spellers, the flickering of a large number of frequencies causes eye fatigue
and discomfort for patients, thus rendering concentration on specific targets difficult, especially after
using the speller for long period of time [43,52,82,83]. In the past, the necessity of decoding a large
number of frequencies remained the key obstacle to the improvement of BCI-based spelling systems’
classification accuracy and ITR. Certainly, classification-accuracy and ITR shortcomings are precisely
the problems that make the practical implementation of BCI spellers so difficult. However, recent
advances in SSVEP-based BCls have developed techniques and algorithms to overcome these obstacles.
Several studies have proposed different stimulus design techniques to realize large number of targets
with only few frequencies, but they have also suffered limitations [21,38,43,50,57,58,90]. Furthermore,
a few researchers combined SSVEPs with P300 to generate more targets with less frequencies, but this
was at the cost of task complexity, which eventually affected the performance of the system. In order to
overcome these issues, the present study tested a hybrid approach that combines EEG and eye-tracking
systems to not only reduce user discomfort but to also to achieve high classification accuracies and ITRs.
The proposed framework for the implementation of the 48-target BCI speller uses only six frequencies.
It is noteworthy that this is only 15% of the frequency number that is used in any BCI speller study to
decode 36 or more commands to date [21,28,63]. The present BCI speller achieved an average high
spelling rate of 184.06 bpm in the cued-spelling task, and an even higher rate, 190.73 bpm, in the
free-spelling task. Table 5 lists the comparison of the recently developed SSVEP-based BCI systems
including the proposed approach. In this comparison, the number of electrodes used to record SSVEP,
the number of commands presented, the number of frequencies used to decode these commands, the
accuracy and ITR are utilized as performance evaluation metrics. To the best of our knowledge, the
ITRs that were achieved by the proposed hybrid approach are not highest ever achieved, but they are
among the highest achieved with any speller system (Table 5). For further comparison, the mean ITR
of a code-modulated visually evoked potential (cVEP)-based system was 116.4 bpm, the mean ITR of
an SSVEP-based speller was 87.50 bpm, and the mean ITR of a P300-based speller was 17.4 bpm [28].
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Table 5. Comparison of the present study with recent SSVEP-based BCI studies.

Study Stimuli Multimodal Frequency Range NE NC NF Average Accuracy (%) Information Transfer Rate
Present Rectangles Yes Mid 8 48 6 90.35 (84.03-96.53) 190.73 (159.23-212.31)
Nakanishi et al. [29] Rectangles No Low 9 40 40 89.83 (79.50-97.50) 325.33 (263.00-376.58)
Chen et al. [84] Rectangles No Low 9 40 40 91.95 (78.50-99.50) 151.18 (114.48-175)
Chen et al. [28] Characters No Low 9 40 40 91.00 (77.00-99.50) 267.0 (199.8-315.0)
Bin et al. [33] Rectangles No Low 9 6 6 95.30 (83.30-100.0) 58.00 (40.00-67.00)
Kwak et al. [91] LED No Low 8 5 5 91.30 (81.40-98.60) 32.90 (19.60-51.00)
Miiller -Putz et al. [92] LED No Low 4 4 4 72.50 (44.00-88.00) 19.70 (4.10-34.20)
Chen et al. [27] Characters No Low 9 45 45 88.70 (73.30-98.90) 61.0 (45.00-75.00)
Martinez et al. [93] Checkerboard No Low 6 4 4 96.50 (82.30-100.0) 29.60 (17.00-38.70)
Min et al. [94] Line-grid No Low 3 6 6 42.50 (20.00-63.30) 3.20 (0.10-9.40)

NE: number of electrodes, NC: number of commands, and NF: number of frequencies. Frequency range: low = 4-12, mid = 12-30, and high, >30.
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The present significant performance improvement can be attributed to the novel speller design
that was implemented by combining the EEG and eye-tracking approaches.

The present study demonstrates the feasibility of a comfortable and high-speed speller that can
achieve an ITR of up to 212.31 bpm. It should be noted here that only four subjects were familiar with
the SSVEP-based BClI speller and layout. It has been reported in BCI literature that the major challenge
in SSVEP-based spellers is to find a tradeoff between accuracy and ITR [20,28,52]. The selection of the
time window has a high impact on the accuracy and ITR [95,96]. Many previous studies have already
reported that CCA-based classification has high errors when using a short time window [34,83,84,96].
This might be due to the fact that decoding large number of frequencies (i.e., the number of frequencies
that are equal to number of targets) may cause the production of errors in the classification of SSVEP
targets. In contrast, the proposed hybrid approach uses only six frequencies to decode forty-eight
targets. Furthermore, the performance of the proposed BCl-speller has been compared with the
performance of a conventional SSVEP-based basic BCI-speller and a previously developed hybrid
EEG and eye tracking speller. The results of this comparison revealed a significant improvement
in the performance by using proposed approach (Figure 2a,b). A Mann-Whitney U test was used
to statistically validate this performance improvement, and the results of this analysis showed that
the proposed speller is significantly better in terms of both accuracy and ITR for all time windows
with p < 0.001. Another advantage of the proposed framework is the considerably lower probability
of target-key misclassification relative to the previous BCI speller systems that use a number of
frequencies equal to the number of targets (e.g., 40 targets [28]), particularly those systems that also
use short-duration EEG data (e.g., 1 s) (Figure 2). As discussed above, another potential advantage
is that the proposed speller has considerably low annoyingness, fatigue and tiredness as compared
to the basic BCI-speller (Table 1). This can also be attributed to the use of only six frequencies, and
this could also have made it possible to use the proposed speller for longer period of time which is
highly difficult to do with basic BCI-spellers. In contrast, the basic speller uses forty-eight frequencies
for forty-eight targets, which causes a high level of discomfort and fatigue. It was also indicated by
previous studies that the simultaneous flickering of a large number of stimuli can cause discomfort
and fatigue to users, and this can also affect the performance of the system. Furthermore, another
important advantage of the proposed framework is that it can overcome the restrictions and limitations
that are caused by the monitor refresh rate to generate large number of frequencies to decode large
number of targets [34,38,39], since the proposed speller only uses six frequencies that can be generated
by any monitor. In the light of the above, the proposed BCI-speller system could be used as an efficient
and better alternative to the previous speller systems.

Since the main aim of this study was to propose a novel speller design for SSVEP-based BCI
spellers, the proposed speller nonetheless has room for improvement. First, phase information could
be added to the stimuli for more efficient target-frequency detection. Nakanishi and co-authors [20]
used different phase values to better discriminate the target frequency from the recorded SSVEP signals
as compared with a conventional frequency coding scheme. Additionally, the accuracy of the proposed
system could be improved by using more enhanced SSVEP detection algorithms. Additionally in
this regard, the algorithm that was utilized for target-frequency detection could be improved by
incorporating filter bank analysis and individual training data. In filter bank analysis, all EEG data
could be divided into different frequency sub-bands to improve the classification of the SSVEP targets.
Chen and co-authors [84] illustrated the use of filter bank analysis to enhance the performance of
conventional CCA-based target detection. Further improvements in the classification accuracy could
be achieved by replacing conventional reference signals by individual training data for each target
frequency. Individual training data for each target could be recorded before the actual experiment
and could be used instead of sine/cosine reference signals. Yuan and co-authors [83] showed that
inter-subject information could be used to update the reference signals to improve the detection of
the target frequency in SSVEP-based BCls. Moreover, the selection of flickering frequencies can be
further optimized to enhance the performance of the proposed system. Figure 3 shows the confusion



Sensors 2020, 20, 891 14 of 20

matrices for SSVEP and eye tracking predictions, which can be helpful in selecting optimal parameters
for the proposed speller. It can be seen that eye tracking predictions had no errors, as the size of the
target box was large enough to be detected correctly. This is consistent with the previous studies
which have shown that eye tracking classifications are low if the targets are densely located with small
sizes [65]. In contrast, the SSVEP predictions showed misclassifications, specifically for frequency six.
The prediction errors with this frequency highly affect the overall classification accuracy and ITR of the
system. Therefore, the optimization of the frequency selection could highly increase the performance
of the proposed system. Furthermore, higher ITRs could be achieved if the stimulus duration was
separately optimized for each subject. Indeed, system parameters such as electrode locations, the
number of electrodes, stimulation frequencies, the effect of frequencies from different SSVEP ranges,
and the number of trials for templates could be optimized for each individual to achieve the best system
performance [97]. Therefore, it is our immediate future plan to study the effect of all these parameters
on the performance of the proposed system and to select optimal parameters with best performance.

(@)
Predicted
F1 F2 F3 F4 F5 F6

17 5) 4 6

F1
F2
F3
F4
F5
F6

Actual

(b)
Predicted
Box 1 Box 2 Box 3 Box 4 Box 5 Box 6 Box 7 Box 8

Box 1
Box 2
Box 3
Box 4
Box 5
Box 6
Box 7
Box 8

Actual

Figure 3. Confusion matrices. (a) SSVEP predictions. (b) Eye tracking predictions.

It is important to mention here that, whereas eye-tracker-based spellers’ spelling rate is 5 to
10 words per minute [28,98], they require a high sampling rate as well as a high level of user
concentration on the target (i.e., “gaze control” without any movement), which is difficult for most
people to manage [65,99]. Furthermore, the equipment needed for such eye tracking in real time is, at
least at present, expensive, which makes it impractical for application [100]. One may argue that the
Eyelink used in this study is also a research grade eye tracking system and can achieve good accuracy
by itself. However, we argue on the basis of previous studies that have used cheap cameras for eye
tracking and have shown that eye tracking classifications are low if the targets are densely located
with small sizes and SSVEP-based BCI performs better in such a scenario [65,81]. On the other hand,
there are higher chances of misclassification of targets in SSVEP-based BCIs when decoding a large
number of targets. Therefore, combining eye tracking with an SSVEP-based BCI can provide a good
solution that can be used to achieve best results. In other words, the present study used eye tracking to
detect large boxes (a region covered by six keys, as shown in Figure 1b) that can be easily detectable
by any ordinary camera, and that, therefore, do not require exceedingly high levels of concentration
and motionlessness. Thus, the proposed hybrid framework can be considered for employment as an
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optimal speller not only in many BCI applications but also in many other applications like artifact
rejection from EEG data.

5. Conclusions

This paper presents a hybrid framework to implement a novel speller design to reduce user
discomfort and to increase the classification accuracy and ITR of a speller system by combining eye
tracking and an SSVEP BCI with stimulus frequencies ranging from 13 to 24 Hz. The proposed
speller is superior to most of the spellers that have been developed in the literature in terms of user
comfortability, items classified, classification accuracy, and ITR. The high point of the proposed speller
is that it only uses six frequencies to classify forty-eight targets, whereas a basic speller uses a number of
frequencies that is equal to the number of targets. Furthermore, the discomfort, fatigue, annoyingness
and tiredness caused by the proposed speller are lesser as compared to the basic and hybrid spellers.
A comparison with the basic and hybrid spellers revealed a statistically validated significantly better
performance of the proposed framework.
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