
sensors

Article

A New Edge Patch with Rotation Invariance for
Object Detection and Pose Estimation

Xunwei Tong , Ruifeng Li *, Lianzheng Ge, Lijun Zhao and Ke Wang

State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China;
tong1137@163.com (X.T.); gelz@hit.edu.cn (L.G.); zhaolj@hit.edu.cn (L.Z.); wangke@hit.edu.cn (K.W.)
* Correspondence: lrf100@hit.edu.cn

Received: 9 January 2020; Accepted: 5 February 2020; Published: 7 February 2020
����������
�������

Abstract: Local patch-based methods of object detection and pose estimation are promising. However,
to the best of the authors’ knowledge, traditional red-green-blue and depth (RGB-D) patches contain
scene interference (foreground occlusion and background clutter) and have little rotation invariance.
To solve these problems, a new edge patch is proposed and experimented with in this study. The edge
patch is a local sampling RGB-D patch centered at the edge pixel of the depth image. According to the
normal direction of the depth edge, the edge patch is sampled along a canonical orientation, making
it rotation invariant. Through a process of depth detection, scene interference is eliminated from
the edge patch, which improves the robustness. The framework of the edge patch-based method
is described, and the method was evaluated on three public datasets. Compared with existing
methods, the proposed method achieved a higher average F1-score (0.956) on the Tejani dataset and
a better average detection rate (62%) on the Occlusion dataset, even in situations of serious scene
interference. These results showed that the proposed method has higher detection accuracy and
stronger robustness.

Keywords: object detection; object pose estimation; edge patch; rotation invariance

1. Introduction

Object detection and pose estimation (ODPE) are important research topics in semantic navigation,
robotic intelligent manipulation, and other fields. Although intensive work has been conducted, ODPE
tasks remain challenging owing to scene interference problems. In this paper, only two kinds of scene
interference, i.e., foreground occlusion and background clutter, are involved. In general, there are
ODPE methods based on artificial features (local or global), machine learning, and local patches.

Global feature-based methods are robust to background clutter, but will suffer in situations with
occlusion [1–5]. Local feature-based methods are robust to foreground occlusion, but only perform
well for objects with enough feature points [6–9]. Furthermore, the representation ability of artificial
features is not adequate for the diversity of objects.

Additionally, ODPE methods based on machine learning have achieved many remarkable
results [10–12]. Compared with artificial feature-based methods, these learning-based methods
are more adaptable to objects with various attributes. The object pose can be learned by random
forests [13–15] or convolutional neural networks (CNNs) [16–18]. These methods directly use raw
images for end-to-end learning and prediction, achieving real-time performance. However, the random
forests or CNNs used in ODPE tasks need to be retrained for each new target object, which makes the
learning-based methods not flexible enough.

Recently, local patch-based methods have been proposed, which use machine learning frameworks
to learn adaptive descriptors of local red-green-blue and depth (RGB-D) patches. For instance,
Doumanoglou et al. [19] trained a sparse auto-encoder to encode local RGB-D patches extracted from

Sensors 2020, 20, 887; doi:10.3390/s20030887 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-1947-0419
https://orcid.org/0000-0002-9108-8276
https://orcid.org/0000-0002-5615-0847
http://www.mdpi.com/1424-8220/20/3/887?type=check_update&version=1
http://dx.doi.org/10.3390/s20030887
http://www.mdpi.com/journal/sensors

Sensors 2020, 20, 887 2 of 17

synthetic views and testing scenes. However, the scene interference contained in the patch reduces
the matching accuracy between patches, leading to performance degradation during ODPE tasks.
To improve the robustness of random forests against scene interference, Tejani et al. [20] integrated a
z-check process into the similarity detection of training patches. However, without obviating the scene
interference in the patches, the improvement in robustness brought by learning methods is limited.
Kehl et al. [21] eliminated regions of scene interference in the depth channel by checking depth values,
leaving RGB channels unconsidered.

Moreover, as far as the authors know, the traditional RGB-D patches have little rotation invariance,
including those used by Kehl et al. [21]. This is because no canonical directions are selected, and the
feature encoders are sensitive to the in-plane rotation of input data. To solve these problems,
Zhang et al. [22] expanded the patch dataset by rotating the view of each rendering viewpoint at
10-degree intervals. However, this strategy introduces rotation quantization errors of up to 5 degrees
(half of the rotation interval), which affect the accuracy of feature matching.

Therefore, an RGB-D patch with rotation invariance and robustness against scene interference
is desired. For this reason, a new edge patch (E-patch) is proposed in this study. The E-patch is a
local RGB-D patch centered at the edge pixel of the depth image. The advantages of the E-patch are
summarized as follows:

• The E-patch is rotation invariant. In the sampling process, a canonical orientation is extracted
to make the E-patch rotation invariant. Thus, it is not necessary to expand the E-patch library
by rotating rendering views of the target object, avoiding quantization errors in the process of
feature matching.

• The E-patch contains less scene interference. During the depth detection process, the scene
interference is eliminated in the four channels of E-patch. This ensures the robustness of the
E-patch against scene interference.

These two advantages result in the proposed E-patch-based method obtaining higher detection
accuracy and stronger robustness to scene interference.

The rest of this paper is organized as follows: Section 2 describes the generation, encoding,
and usage of E-patch. The experimental results and discussion are presented in Section 3, and Section 4
concludes the paper.

2. Methods

2.1. E-Patch Generation

2.1.1. Sampling Center Extraction

A schematic diagram of occlusion between object A (Duck) and object B (Glue) is shown in
Figure 1.

Sensors 2020, 20, x 2 of 17

patch reduces the matching accuracy between patches, leading to performance degradation during
ODPE tasks. To improve the robustness of random forests against scene interference, Tejani et al. [20]
integrated a z-check process into the similarity detection of training patches. However, without
obviating the scene interference in the patches, the improvement in robustness brought by learning
methods is limited. Kehl et al. [21] eliminated regions of scene interference in the depth channel by
checking depth values, leaving RGB channels unconsidered.

Moreover, as far as the authors know, the traditional RGB-D patches have little rotation
invariance, including those used by Kehl et al. [21]. This is because no canonical directions are
selected, and the feature encoders are sensitive to the in-plane rotation of input data. To solve these
problems, Zhang et al. [22] expanded the patch dataset by rotating the view of each rendering
viewpoint at 10-degree intervals. However, this strategy introduces rotation quantization errors of
up to 5 degrees (half of the rotation interval), which affect the accuracy of feature matching.

Therefore, an RGB-D patch with rotation invariance and robustness against scene interference is
desired. For this reason, a new edge patch (E-patch) is proposed in this study. The E-patch is a local
RGB-D patch centered at the edge pixel of the depth image. The advantages of the E-patch are
summarized as follows:

• The E-patch is rotation invariant. In the sampling process, a canonical orientation is extracted
to make the E-patch rotation invariant. Thus, it is not necessary to expand the E-patch library
by rotating rendering views of the target object, avoiding quantization errors in the process
of feature matching.

• The E-patch contains less scene interference. During the depth detection process, the scene
interference is eliminated in the four channels of E-patch. This ensures the robustness of the
E-patch against scene interference.

These two advantages result in the proposed E-patch-based method obtaining higher detection
accuracy and stronger robustness to scene interference.

The rest of this paper is organized as follows: Section 2 describes the generation, encoding, and
usage of E-patch. The experimental results and discussion are presented in Section 3, and Section 4
concludes the paper.

2. Methods

2.1. E-Patch Generation

2.1.1. Sampling Center Extraction

A schematic diagram of occlusion between object A (Duck) and object B (Glue) is shown in
Figure 1.

(a)

(b)

Figure 1. Schematic diagram of foreground edges (colored in green) and background edges (colored
in red): (a) depth edges marked on the red-green-blue (RGB) image; (b) depth edges marked on the
point cloud.

Using the gradient filtering algorithm, edges in the depth image were extracted and divided into
foreground edges and background edges. These two kinds of depth edges are marked on the RGB

Figure 1. Schematic diagram of foreground edges (colored in green) and background edges (colored
in red): (a) depth edges marked on the red-green-blue (RGB) image; (b) depth edges marked on the
point cloud.

Sensors 2020, 20, 887 3 of 17

Using the gradient filtering algorithm, edges in the depth image were extracted and divided into
foreground edges and background edges. These two kinds of depth edges are marked on the RGB
image (Figure 1a) and point cloud (Figure 1b). Because the background edges could not represent the
real contour of object B, only foreground edge pixels were selected as sampling centers. The selection
criterion was defined by Equation (1):

zedge < max
(
zneighbor

)
− δedge (1)

where zedge is the depth value of the query edge pixel, zneighbor are the depth values of edge pixels in the
3 × 3 neighborhood of the query edge pixel, and δedge is the threshold used in the abovementioned
gradient filtering process. Figure 2 shows an extracting result. The desktop in Figure 2a was firstly
extracted using the random sampling consensus (RANSAC) algorithm [23], and irrelevant scene points
(black pixels in Figure 2b) under the desktop were removed. Sampling centers are drawn as green
pixels in Figure 2b.

Sensors 2020, 20, x 3 of 17

image (Figure 1a) and point cloud (Figure 1b). Because the background edges could not represent the
real contour of object B, only foreground edge pixels were selected as sampling centers. The selection
criterion was defined by Equation (1):

() δ< −maxedge neighbor edgez z , (1)

where zedge is the depth value of the query edge pixel, zneighbor are the depth values of edge pixels in the
3 × 3 neighborhood of the query edge pixel, and δedge is the threshold used in the abovementioned
gradient filtering process. Figure 2 shows an extracting result. The desktop in Figure 2a was firstly
extracted using the random sampling consensus (RANSAC) algorithm [23], and irrelevant scene
points (black pixels in Figure 2b) under the desktop were removed. Sampling centers are drawn as
green pixels in Figure 2b.

(a)

(b)

Figure 2. Illustration of sampling center extraction: (a) original image; (b) scene image overlaid with
sampling centers (colored in green).

2.1.2. E-Patch Sampling along a Canonical Orientation

The sampling process of E-patch is shown in Figure 3. An E-patch P with a size of 32 × 32 × 4
was sampled from a square region in the input image I. The image coordinate frame of I is FrameI,
which has the principal axes Iu and Iv. The sampling square’s coordinate frame Frames is marked
with its principal axes (Gu

s , Gv
s). Gn

s is the canonical orientation of Frames.

Figure 3. Illustration of the sampling process of the E-patch.

The sampling square is centered at the edge pixel p0 and has a side length of L. To make the E-
patch scale invariant, L was calculated via Equation (2):

= ⋅
0

s
c

L
L f

z
, (2)

where Ls = 50 mm is a fixed metric size of the E-patch, fc is the focal length of the camera, z0 is the
depth of p0, and ⟦∙⟧ is the rounding function.

Each neighboring edge pixel of p0 within the distance of L/2 was collected and denoted as pi (i
= 1, 2, …). To make the E-patch rotation invariant, the canonical orientation Gn

s of the sampling
square was aligned with a unit vector n, which was determined by Equation (3):

Figure 2. Illustration of sampling center extraction: (a) original image; (b) scene image overlaid with
sampling centers (colored in green).

2.1.2. E-Patch Sampling along a Canonical Orientation

The sampling process of E-patch is shown in Figure 3. An E-patch P with a size of 32 × 32 × 4 was
sampled from a square region in the input image I. The image coordinate frame of I is FrameI, which
has the principal axes Iu and Iv. The sampling square’s coordinate frame Frames is marked with its
principal axes (Gs

u, Gs
v). Gs

n is the canonical orientation of Frames.

Sensors 2020, 20, x 3 of 17

image (Figure 1a) and point cloud (Figure 1b). Because the background edges could not represent the
real contour of object B, only foreground edge pixels were selected as sampling centers. The selection
criterion was defined by Equation (1):

() δ< −maxedge neighbor edgez z , (1)

where zedge is the depth value of the query edge pixel, zneighbor are the depth values of edge pixels in the
3 × 3 neighborhood of the query edge pixel, and δedge is the threshold used in the abovementioned
gradient filtering process. Figure 2 shows an extracting result. The desktop in Figure 2a was firstly
extracted using the random sampling consensus (RANSAC) algorithm [23], and irrelevant scene
points (black pixels in Figure 2b) under the desktop were removed. Sampling centers are drawn as
green pixels in Figure 2b.

(a)

(b)

Figure 2. Illustration of sampling center extraction: (a) original image; (b) scene image overlaid with
sampling centers (colored in green).

2.1.2. E-Patch Sampling along a Canonical Orientation

The sampling process of E-patch is shown in Figure 3. An E-patch P with a size of 32 × 32 × 4
was sampled from a square region in the input image I. The image coordinate frame of I is FrameI,
which has the principal axes Iu and Iv. The sampling square’s coordinate frame Frames is marked
with its principal axes (Gu

s , Gv
s). Gn

s is the canonical orientation of Frames.

Figure 3. Illustration of the sampling process of the E-patch.

The sampling square is centered at the edge pixel p0 and has a side length of L. To make the E-
patch scale invariant, L was calculated via Equation (2):

= ⋅
0

s
c

L
L f

z
, (2)

where Ls = 50 mm is a fixed metric size of the E-patch, fc is the focal length of the camera, z0 is the
depth of p0, and ⟦∙⟧ is the rounding function.

Each neighboring edge pixel of p0 within the distance of L/2 was collected and denoted as pi (i
= 1, 2, …). To make the E-patch rotation invariant, the canonical orientation Gn

s of the sampling
square was aligned with a unit vector n, which was determined by Equation (3):

Figure 3. Illustration of the sampling process of the E-patch.

The sampling square is centered at the edge pixel p0 and has a side length of L. To make the
E-patch scale invariant, L was calculated via Equation (2):

L =
Ls

z0
· fc, (2)

where Ls = 50 mm is a fixed metric size of the E-patch, fc is the focal length of the camera, z0 is the
depth of p0, and

Sensors 2020, 20, x 3 of 17

image (Figure 1a) and point cloud (Figure 1b). Because the background edges could not represent the
real contour of object B, only foreground edge pixels were selected as sampling centers. The selection
criterion was defined by Equation (1):

() δ< −maxedge neighbor edgez z , (1)

where zedge is the depth value of the query edge pixel, zneighbor are the depth values of edge pixels in the
3 × 3 neighborhood of the query edge pixel, and δedge is the threshold used in the abovementioned
gradient filtering process. Figure 2 shows an extracting result. The desktop in Figure 2a was firstly
extracted using the random sampling consensus (RANSAC) algorithm [23], and irrelevant scene
points (black pixels in Figure 2b) under the desktop were removed. Sampling centers are drawn as
green pixels in Figure 2b.

(a)

(b)

Figure 2. Illustration of sampling center extraction: (a) original image; (b) scene image overlaid with
sampling centers (colored in green).

2.1.2. E-Patch Sampling along a Canonical Orientation

The sampling process of E-patch is shown in Figure 3. An E-patch P with a size of 32 × 32 × 4
was sampled from a square region in the input image I. The image coordinate frame of I is FrameI,
which has the principal axes Iu and Iv. The sampling square’s coordinate frame Frames is marked
with its principal axes (Gu

s , Gv
s). Gn

s is the canonical orientation of Frames.

Figure 3. Illustration of the sampling process of the E-patch.

The sampling square is centered at the edge pixel p0 and has a side length of L. To make the E-
patch scale invariant, L was calculated via Equation (2):

= ⋅
0

s
c

L
L f

z
, (2)

where Ls = 50 mm is a fixed metric size of the E-patch, fc is the focal length of the camera, z0 is the
depth of p0, and ⟦∙⟧ is the rounding function.

Each neighboring edge pixel of p0 within the distance of L/2 was collected and denoted as pi (i
= 1, 2, …). To make the E-patch rotation invariant, the canonical orientation Gn

s of the sampling
square was aligned with a unit vector n, which was determined by Equation (3):

is the rounding function.

Sensors 2020, 20, 887 4 of 17

Each neighboring edge pixel of p0 within the distance of L/2 was collected and denoted as pi (i = 1,
2, . . .). To make the E-patch rotation invariant, the canonical orientation Gs

n of the sampling square
was aligned with a unit vector n, which was determined by Equation (3):

n =
g
‖g‖

, (3)

where the weighted sum g of gradient directions was calculated using Equation (4):

g =
∑

i

wigi. (4)

In Equation (4), gi is the gradient direction of pi, and the weighting coefficient wi was calculated
by Equation (5):

wi = e−36di/L2
, (5)

where di is the pixel distance between p0 and pi.
During the sampling process, a point set Gs = {Gij},∀i, j ∈ {1, . . . , 32}, was arranged in the sampling

square. The coordinates of Gij was calculated using Equation (6): uI
i j

vI
i j

 = R

 uS
ij

vS
ij

+ (
u0

v0

)
, ∀i, j ∈ {1, . . . , 32}, (6)

where (uI
i j, vI

i j) and (uS
ij, vS

ij) are the coordinates of Gi j in FrameI and Frames, respectively, and (u0, v0) is

the coordinate of p0 in FrameI. uS
ij and vS

ij were respectively calculated by Equations (7) and (8):

uS
i· = −

L
2
+

i− 1
31

L, (7)

vS
· j = −

L
2
+

j− 1
31

L. (8)

The rotation matrix R was expressed as Equation (9):

R =

(
−nv −nu

nu −nv

)
, (9)

where nu and nv are the horizontal and vertical components of n in FrameI.
As described in Equation (10), the E-patch P was obtained by sampling the original image I in

four RGB-D channels using the same rules:

P(i, j, c) = I
(
uI

i j, vI
i j, c

)
, ∀i, j ∈ {1, . . . , 32}, ∀c ∈

{
red, green, blue, depth

}
. (10)

In the E-patch, the pixel values in RGB channels ranged from 0 to 255, while in the depth channel,
values ranged from 0 mm to 4000 mm. To balance pixel values in the four channels, Equations (11) and
(12) were applied to each E-patch:

P′depth =
Pdepth − z0

3× Ls
, (11)

P′rgb =
Prgb

128
− 1, (12)

where Pdepth are pixel values in the depth channel, Prgb are pixel values in RGB channels, and P′depth and
P′rgb are the corresponding updated pixel values.

Sensors 2020, 20, 887 5 of 17

2.1.3. Depth Detection

The key to ODPE methods based on the E-patch is the similarity matching between E-patches
extracted from synthetic views and real scenes. The original E-patch in a realistic scene contains regions
of foreground occlusion and background clutter, as shown in Figure 4. This leads to a difference
between realistic and synthetic E-patches. Therefore, a process of depth detection was used to eliminate
the regions of occlusion and clutter. Firstly, the regions of foreground occlusion were detected with
a criterion of P′depth < −1, and patches with occlusive rates higher than 30% were abandoned. Then,
the criterion of P′depth > 1 was used to detect the regions of background clutter. All four channels were
set to zero for pixels in the regions of occlusion and clutter, which enhanced the robustness of E-patch
against scene interference.

Sensors 2020, 20, x 5 of 17

abandoned. Then, the criterion of Pdepth > 1 was used to detect the regions of background clutter.
All four channels were set to zero for pixels in the regions of occlusion and clutter, which enhanced
the robustness of E-patch against scene interference.

Figure 4. Illustration of the depth-detection process.

2.2. Encoding Network Training

A CNN-based encoder, Netcoder, was constructed and trained within the Siamese network
framework. The Netcoder takes in an E-patch and computes a 16-dimensional descriptor, as shown in
Figure 5a. It included two convolutional layers (Conv) and three fully connected layers (FC). Each
convolutional layer was followed by a rectified linear unit (ReLU) as the activation function. Since
the size of the input E-patch was only 32 × 32 × 4, to avoid information loss, only one maximum
pooling layer (Max-pool) was introduced after the first convolutional layer. Each fully connected
layer was followed by a parametrized rectified linear unit (PReLU) as the activation function, which
avoided the premature failure of neurons. Following the first two fully connected layers, there were
dropout layers (Drop-out) to prevent overfitting of the training process.

(a)

(b)

Figure 5. (a) Architecture of the feature-encoding network; (b) architecture of the Siamese network.

Figure 4. Illustration of the depth-detection process.

2.2. Encoding Network Training

A CNN-based encoder, Netcoder, was constructed and trained within the Siamese network
framework. The Netcoder takes in an E-patch and computes a 16-dimensional descriptor, as shown
in Figure 5a. It included two convolutional layers (Conv) and three fully connected layers (FC).
Each convolutional layer was followed by a rectified linear unit (ReLU) as the activation function.
Since the size of the input E-patch was only 32 × 32 × 4, to avoid information loss, only one maximum
pooling layer (Max-pool) was introduced after the first convolutional layer. Each fully connected layer
was followed by a parametrized rectified linear unit (PReLU) as the activation function, which avoided
the premature failure of neurons. Following the first two fully connected layers, there were dropout
layers (Drop-out) to prevent overfitting of the training process.

Two parameter-sharing encoders Netcoder were combined into a Siamese network, as shown in
Figure 5b. patch1 and patch2 are E-patches in the patch pair, and labelsim is the similarity label of the
patch pair (labelsim = 1 for a similar patch pair and labelsim = 0 for a dissimilar pair). f 1 and f 2 are features
of patch1 and patch2, respectively. The contrastive loss function losscont is formalized in Equation (13):

losscont =
1

2N

N∑
i=1

[
labelsim · d f 2

i + (1− labelsim) ·max(margin− d fi, 0)2
]
, (13)

Sensors 2020, 20, 887 6 of 17

where N is the number of patch pairs, dfi is the Euclidean distance between features of the E-patches in
the ith pair, and margin is the threshold value (which here was 1).

Sensors 2020, 20, x 5 of 17

abandoned. Then, the criterion of Pdepth > 1 was used to detect the regions of background clutter.
All four channels were set to zero for pixels in the regions of occlusion and clutter, which enhanced
the robustness of E-patch against scene interference.

Figure 4. Illustration of the depth-detection process.

2.2. Encoding Network Training

A CNN-based encoder, Netcoder, was constructed and trained within the Siamese network
framework. The Netcoder takes in an E-patch and computes a 16-dimensional descriptor, as shown in
Figure 5a. It included two convolutional layers (Conv) and three fully connected layers (FC). Each
convolutional layer was followed by a rectified linear unit (ReLU) as the activation function. Since
the size of the input E-patch was only 32 × 32 × 4, to avoid information loss, only one maximum
pooling layer (Max-pool) was introduced after the first convolutional layer. Each fully connected
layer was followed by a parametrized rectified linear unit (PReLU) as the activation function, which
avoided the premature failure of neurons. Following the first two fully connected layers, there were
dropout layers (Drop-out) to prevent overfitting of the training process.

(a)

(b)

Figure 5. (a) Architecture of the feature-encoding network; (b) architecture of the Siamese network.

Figure 5. (a) Architecture of the feature-encoding network; (b) architecture of the Siamese network.

Patch pairs numbering 0.6 million were determined using the LineMod dataset [4] to train the
Siamese network. The ratio of similar and dissimilar patch pairs was 1:1. The parameters of Netcoder
were optimized using the root-mean-square prop (RMSprop) algorithm to minimize the contrast loss
losscont. This was equivalent to gathering similar E-patches and alienating dissimilar ones.

2.3. Object Detection and Pose Estimation Based on E-patch

The proposed E-patch-based method consists of two phases, offline modeling and online testing,
as shown in Figure 6. In the online testing phase, processes of object detection and pose estimation
were carried out simultaneously. The same CNN-based encoder was used in both phases to guarantee
the consistency of the feature coding principle.

Sensors 2020, 20, x 6 of 17

Two parameter-sharing encoders Netcoder were combined into a Siamese network, as shown in
Figure 5b. patch1 and patch2 are E-patches in the patch pair, and labelsim is the similarity label of the
patch pair (labelsim = 1 for a similar patch pair and labelsim = 0 for a dissimilar pair). f1 and f2 are features
of patch1 and patch2, respectively. The contrastive loss function losscont is formalized in Equation (13):

() ()
=

 = ⋅ + − ⋅ − 22

1

1 1 max ,0
2

N

cont sim i sim i
i

loss label df label margin df
N

, (13)

where N is the number of patch pairs, dfi is the Euclidean distance between features of the E-patches
in the ith pair, and margin is the threshold value (which here was 1).

Patch pairs numbering 0.6 million were determined using the LineMod dataset [4] to train the
Siamese network. The ratio of similar and dissimilar patch pairs was 1:1. The parameters of Netcoder
were optimized using the root-mean-square prop (RMSprop) algorithm to minimize the contrast loss
losscont. This was equivalent to gathering similar E-patches and alienating dissimilar ones.

2.3. Object Detection and Pose Estimation Based on E-patch

The proposed E-patch-based method consists of two phases, offline modeling and online testing,
as shown in Figure 6. In the online testing phase, processes of object detection and pose estimation
were carried out simultaneously. The same CNN-based encoder was used in both phases to
guarantee the consistency of the feature coding principle.

Figure 6. Framework of the E-patch-based method for object detection and pose estimation (ODPE)
tasks.

2.3.1. Offline Construction of the Codebook

In the offline modeling phase, each target object was uniformly rendered from 1313 perspectives.
Note that because of the rotation invariance of the E-patch, no in-plane rotation was needed for
rendering views. Features of all E-patches in rendering images were computed and used to construct
the codebook. To improve the retrieval efficiency, the codebook was arranged in a k-d tree according
to Euclidean distances between features, which was denoted as TreeF.

Figure 6. Framework of the E-patch-based method for object detection and pose estimation (ODPE) tasks.

Sensors 2020, 20, 887 7 of 17

2.3.1. Offline Construction of the Codebook

In the offline modeling phase, each target object was uniformly rendered from 1313 perspectives.
Note that because of the rotation invariance of the E-patch, no in-plane rotation was needed for
rendering views. Features of all E-patches in rendering images were computed and used to construct
the codebook. To improve the retrieval efficiency, the codebook was arranged in a k-d tree according to
Euclidean distances between features, which was denoted as TreeF.

All the coordinate systems used in the construction of the codebook are shown in Figure 7. Cset
obj,

Cset
p , and Cset

c are the local coordinate systems of the target object, synthetic E-patch, and rendering
camera, respectively.

Sensors 2020, 20, x 7 of 17

All the coordinate systems used in the construction of the codebook are shown in Figure 7. Cset
obj ,

Cset
p , and Cset

c are the local coordinate systems of the target object, synthetic E-patch, and rendering
camera, respectively.

Figure 7. Coordinate systems used in the construction of the codebook.

In the codebook, the feature of each E-patch was stored together with an annotation, info = {obj,
setTo

p }. Here, obj is the name of the target object, and setTo
p is the transformation from Cset

obj to Cset
p , which

was obtained by Equation (14):

= ⋅set o set o set c
p c pT T T , (14)

where setTo
c is a known transformation from Cset

obj to Cset
c and setTc

p is the transformation from Cset
c to

Cset
p , which was calculated via Equation (15):

 − −
 − =

0
0

0 0 1
0 0 0 1

v u x

u v yset c
p

z

n n p
n n p

T
p

, (15)

where (px, py, pz) is the spatial coordinate of the sampling center of the E-patch.

2.3.2. Online Testing

In the online testing phase, the local coordinate systems of the target object, realistic E-patch,
and testing camera were respectively denoted as Cscene

obj , Cscene
p , and Cscene

c . Then, the transformation
relationship between coordinate systems in the scene is expressed as Equation (16):

scene o scene o scene c
p c pT T T= ⋅ , (16)

where sceneTo
p is the transformation from Cscene

obj to Cscene
p and sceneTo

c is the transformation from Cscene
obj to

Cscene
c , i.e., the pose of the target object. sceneTc

p is the transformation from Cscene
c to Cscene

p , which was
also determined by the canonical orientation and sampling center of the scene E-patch, similarly to
Equation (15).

For matching E-patches, it is reasonable to assume that the transformation relationship between
the coordinate systems of the E-patch and the object in the realistic scene is the same as that in the
virtual scene (i.e., sceneTo

p = setTo
p). Therefore, according to Equation (14) and Equation (16), the object

pose sceneTc
o was determined by Equation (17):

() ()−−
= = ⋅

11scene c scene o scene c set o
o c p pT T T T . (17)

Each E-patch in the testing scene was encoded as a feature f with the same encoder Netcoder used
in the offline phase. Its 100 nearest neighbors in TreeF were searched and denoted as fj (j = 1, …, 100).

Each neighboring feature fj generated a vote vj = {objj, sceneTc
o j } based on its annotation infoj = {objj, setTo

p j

} stored in the codebook. The confidence confj of vote vj was calculated by Equation (18):

Figure 7. Coordinate systems used in the construction of the codebook.

In the codebook, the feature of each E-patch was stored together with an annotation, info = {obj,
setTo

p}. Here, obj is the name of the target object, and setTo
p is the transformation from Cset

obj to Cset
p , which

was obtained by Equation (14):
setTo

p = setTo
c ·

setTc
p, (14)

where setTo
c is a known transformation from Cset

obj to Cset
c and setTc

p is the transformation from Cset
c to Cset

p ,
which was calculated via Equation (15):

setTc
p =

−nv −nu 0 px

nu −nv 0 py

0 0 1 pz

0 0 0 1

, (15)

where (px, py, pz) is the spatial coordinate of the sampling center of the E-patch.

2.3.2. Online Testing

In the online testing phase, the local coordinate systems of the target object, realistic E-patch,
and testing camera were respectively denoted as Cscene

obj , Cscene
p , and Cscene

c . Then, the transformation
relationship between coordinate systems in the scene is expressed as Equation (16):

sceneTo
p = sceneTo

c ·
sceneTc

p, (16)

where sceneTo
p is the transformation from Cscene

obj to Cscene
p and sceneTo

c is the transformation from Cscene
obj to

Cscene
c , i.e., the pose of the target object. sceneTc

p is the transformation from Cscene
c to Cscene

p , which was
also determined by the canonical orientation and sampling center of the scene E-patch, similarly to
Equation (15).

For matching E-patches, it is reasonable to assume that the transformation relationship between
the coordinate systems of the E-patch and the object in the realistic scene is the same as that in the

Sensors 2020, 20, 887 8 of 17

virtual scene (i.e., sceneTo
p = setTo

p). Therefore, according to Equation (14) and Equation (16), the object
pose sceneTc

o was determined by Equation (17):

sceneTc
o = (sceneTo

c)
−1 = sceneTc

p ·
(
setTo

p

)−1
. (17)

Each E-patch in the testing scene was encoded as a feature f with the same encoder Netcoder used
in the offline phase. Its 100 nearest neighbors in TreeF were searched and denoted as fj (j = 1, . . . , 100).
Each neighboring feature fj generated a vote vj = {objj, sceneTc

oj} based on its annotation infoj = {objj,
setTo

pj} stored in the codebook. The confidence confj of vote vj was calculated by Equation (18):

con f j = w j · α j, (18)

where weighting coefficients w j and α j are respectively calculated according to Equations (19) and (20):

w j = e−‖ f− f j‖, (19)

α j = w j/
100∑
j=1

w j. (20)

The mean shift algorithm was used to cluster voting poses successively in the translational space
and rotational space. For each cluster of votes, the clustering center was regarded as a hypothetical
pose, and the total weight was regarded as the corresponding confidence. To ensure operational
efficiency, only the top 80% of hypothetical poses according to their confidence values were retained.
After a hypothesis verification process similar to that used by Li et al. [7], the estimated results were
finally achieved.

3. Experiments and Discussion

In this section, the robustness of our E-patch-based method to occlusion and clutter is demonstrated
through two experiments on public datasets. The results of these two experiments also show the
improvement in the detection accuracy. In addition, experimental results on the third dataset indicate
that our method also has high accuracy in the case of slight clutter.

3.1. Results on the Tejani Dataset

3.1.1. Detection Results

The Tejani dataset [20] was chosen to demonstrate the robustness of the proposed method to
background clutter, which contains six target objects as shown in Figure 8. The numbers of testing
scenes contained in each object are 337, 501, 838, 556, 288, and 604, respectively. In each testing image,
there are two or three instances of the same kind of target object. Although this dataset contains slight
occlusion, different levels of background clutter pose a challenge to ODPE tasks.

Figure 9 shows the results of our method in three testing scenes. In each row, the left subfigure is
a scene image, the middle subfigure is a preprocessed scene overlaid with edge pixels, and estimated
poses are shown in the right subfigure with green transparent models, where the scene is displayed in
gray for better visibility.

An estimated pose was considered correct when its intersection over union (IoU) score was higher
than 0.5 [16]. The F1-scores of the proposed method are compared with those of the state-of-the-art
methods in Table 1. The results of the comparison methods were obtained from [7,24]. The proposed
method obtained a higher average F1-score (0.956) than did the other methods (0.910, 0.885, 0.747,
and 0.939). This indicates that the use of the E-patch provided higher detection accuracy.

Sensors 2020, 20, 887 9 of 17

Sensors 2020, 20, x 8 of 17

α= ⋅j j jconf w , (18)

where weighting coefficients wj and αj are respectively calculated according to Equations (19) and
(20):

jf f
jw e− −

= , (19)

100

1
j j j

j
w wα

=

= . (20)

The mean shift algorithm was used to cluster voting poses successively in the translational space
and rotational space. For each cluster of votes, the clustering center was regarded as a hypothetical
pose, and the total weight was regarded as the corresponding confidence. To ensure operational
efficiency, only the top 80% of hypothetical poses according to their confidence values were retained.
After a hypothesis verification process similar to that used by Li et al. [7], the estimated results were
finally achieved.

3. Experiments and Discussion

In this section, the robustness of our E-patch-based method to occlusion and clutter is
demonstrated through two experiments on public datasets. The results of these two experiments also
show the improvement in the detection accuracy. In addition, experimental results on the third
dataset indicate that our method also has high accuracy in the case of slight clutter.

3.1. Results on the Tejani Dataset

3.1.1. Detection Results

The Tejani dataset [20] was chosen to demonstrate the robustness of the proposed method to
background clutter, which contains six target objects as shown in Figure 8. The numbers of testing
scenes contained in each object are 337, 501, 838, 556, 288, and 604, respectively. In each testing image,
there are two or three instances of the same kind of target object. Although this dataset contains slight
occlusion, different levels of background clutter pose a challenge to ODPE tasks.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 8. Six objects in the Tejani dataset: (a) Camera; (b) Coffee Cup; (c) Joystick; (d) Juice Carton; (e)
Milk; (f) Shampoo.

Figure 9 shows the results of our method in three testing scenes. In each row, the left subfigure
is a scene image, the middle subfigure is a preprocessed scene overlaid with edge pixels, and
estimated poses are shown in the right subfigure with green transparent models, where the scene is
displayed in gray for better visibility.

Figure 8. Six objects in the Tejani dataset: (a) Camera; (b) Coffee Cup; (c) Joystick; (d) Juice Carton;
(e) Milk; (f) Shampoo.Sensors 2020, 20, x 9 of 17

Figure 9. Some detection results on the Tejani dataset.

An estimated pose was considered correct when its intersection over union (IoU) score was
higher than 0.5 [16]. The F1-scores of the proposed method are compared with those of the state-of-
the-art methods in Table 1. The results of the comparison methods were obtained from [7,24]. The
proposed method obtained a higher average F1-score (0.956) than did the other methods (0.910, 0.885,
0.747, and 0.939). This indicates that the use of the E-patch provided higher detection accuracy.

Table 1. F1-scores of methods on the Tejani dataset.

Objects Li et at. [7] Kehl et al. [16] Kehl et al. [21] Liu et at. [24] Ours
Camera 0.603 0.741 0.383 0.996 0.941

Coffee Cup 0.991 0.983 0.972 0.931 0.990
Joystick 0.937 0.997 0.892 0.958 0.979

Juice Carton 0.977 0.919 0.866 0.949 0.945
Milk 0.954 0.780 0.463 0.970 0.962

Shampoo 0.999 0.892 0.910 0.831 0.918
Average 0.910 0.885 0.747 0.939 0.956

The method in [7] depends only on depth information. Due to the small size of ‘Camera’, its
space points are insufficient, resulting in a significant reduction in F1-score. The methods in [16,21]
are learning-based methods trained with synthetic models. Therefore, differences between synthetic
and realistic scenes caused by the scene interference affect the detection results. This is especially true
for the small object ‘Camera’ and pure white object ‘Milk’.

For each object, a clutter index was designed to represent the clutter level quantitatively. It was
calculated as the average proportion of background region in a radial neighborhood of 50 pixels
(around the projection of the object center). The clutter index of each object is shown in Table 2.
Taking the clutter index as the abscissa axis and the F1-score as the ordinate axis, curves were drawn
and are presented in Figure 10 to illustrate the influence of background clutter on the F1-scores of all
mentioned methods.

Figure 9. Some detection results on the Tejani dataset.

Table 1. F1-scores of methods on the Tejani dataset.

Objects Li et at. [7] Kehl et al. [16] Kehl et al. [21] Liu et at. [24] Ours

Camera 0.603 0.741 0.383 0.996 0.941
Coffee Cup 0.991 0.983 0.972 0.931 0.990

Joystick 0.937 0.997 0.892 0.958 0.979
Juice Carton 0.977 0.919 0.866 0.949 0.945

Milk 0.954 0.780 0.463 0.970 0.962
Shampoo 0.999 0.892 0.910 0.831 0.918
Average 0.910 0.885 0.747 0.939 0.956

Sensors 2020, 20, 887 10 of 17

The method in [7] depends only on depth information. Due to the small size of ‘Camera’, its space
points are insufficient, resulting in a significant reduction in F1-score. The methods in [16,21] are
learning-based methods trained with synthetic models. Therefore, differences between synthetic and
realistic scenes caused by the scene interference affect the detection results. This is especially true for
the small object ‘Camera’ and pure white object ‘Milk’.

For each object, a clutter index was designed to represent the clutter level quantitatively. It was
calculated as the average proportion of background region in a radial neighborhood of 50 pixels
(around the projection of the object center). The clutter index of each object is shown in Table 2. Taking
the clutter index as the abscissa axis and the F1-score as the ordinate axis, curves were drawn and
are presented in Figure 10 to illustrate the influence of background clutter on the F1-scores of all
mentioned methods.

Table 2. Clutter index of each object in the Tejani dataset (%).

Objects Clutter Indexes

Joystick 57.2
Milk 67.9

Juice Carton 76.8
Coffee Cup 83.4
Shampoo 84.5
Camera 89.2

Sensors 2020, 20, x 10 of 17

Table 2. Clutter index of each object in the Tejani dataset (%).

Objects Clutter Indexes
Joystick 57.2

Milk 67.9
Juice Carton 76.8
Coffee Cup 83.4
Shampoo 84.5
Camera 89.2

Figure 10. F1-scores against different levels of background clutter.

Taking a clutter index of 77.5% as the dividing point, objects were divided into two groups: those
with slight clutter (‘Joystick’, ‘Milk’, and ‘Juice Carton’) and those with heavy clutter (‘Coffee Cup’,
‘Shampoo’, and ‘Camera’). For the objects with slight clutter, the average F1-score of the proposed
method was 0.962, while those of the methods in [7,16,21,24] were 0.956, 0.899, 0.74, and 0.959,
respectively. The pure white color of ‘Milk’ made RGB-D patches inside the object too similar to
distinguish, leading to failure in [21]. The E-patch was located at the depth edge and contained
features of object contours as well as RGB-D appearance. Moreover, by sampling along the canonical
orientation, descriptor variation caused by in-plane rotation was avoided.

For the objects with heavy clutter, our average F1-score was 0.95, while those of the methods in
[7,16,21,24] were 0.864, 0.872, 0.755, and 0.919, respectively. With the aggravation of background
clutter, our average F1-score decreased by 0.012, while those of the methods in [7,16,24] decreased by
at least 0.027. These data prove that the proposed E-patch achieved stronger robustness against
clutter. The reasons for these phenomena are explained in detail later. Note that the average F1-score
of the method in [21] increased by 0.015 because its poor performance on the object ‘Milk’, which
made this method unsuitable for robustness analysis.

The aforementioned improvement in detection accuracy and robustness against clutter are
owing to the advantages of the E-patch. Considering a synthetic E-patch Psyn and the corresponding
realistic E-patch Prel, the relationship between them is expressed as Equation (21):

θ ε
θ

∂= + ⋅ +
∂rel syn

PP P d , (21)

where ε is variation of the E-patch caused by background clutter, and dθ is the deviation angle of the
in-plane rotation.

Taking E(·) as the encoding function, the features of the two E-patches are obtained via Equations
(22) and (23):

Figure 10. F1-scores against different levels of background clutter.

Taking a clutter index of 77.5% as the dividing point, objects were divided into two groups:
those with slight clutter (‘Joystick’, ‘Milk’, and ‘Juice Carton’) and those with heavy clutter (‘Coffee
Cup’, ‘Shampoo’, and ‘Camera’). For the objects with slight clutter, the average F1-score of the
proposed method was 0.962, while those of the methods in [7,16,21,24] were 0.956, 0.899, 0.74, and 0.959,
respectively. The pure white color of ‘Milk’ made RGB-D patches inside the object too similar to
distinguish, leading to failure in [21]. The E-patch was located at the depth edge and contained
features of object contours as well as RGB-D appearance. Moreover, by sampling along the canonical
orientation, descriptor variation caused by in-plane rotation was avoided.

For the objects with heavy clutter, our average F1-score was 0.95, while those of the methods
in [7,16,21,24] were 0.864, 0.872, 0.755, and 0.919, respectively. With the aggravation of background
clutter, our average F1-score decreased by 0.012, while those of the methods in [7,16,24] decreased by
at least 0.027. These data prove that the proposed E-patch achieved stronger robustness against clutter.
The reasons for these phenomena are explained in detail later. Note that the average F1-score of the

Sensors 2020, 20, 887 11 of 17

method in [21] increased by 0.015 because its poor performance on the object ‘Milk’, which made this
method unsuitable for robustness analysis.

The aforementioned improvement in detection accuracy and robustness against clutter are owing
to the advantages of the E-patch. Considering a synthetic E-patch Psyn and the corresponding realistic
E-patch Prel, the relationship between them is expressed as Equation (21):

Prel = Psyn +
∂P
∂θ
· dθ+ ε, (21)

where ε is variation of the E-patch caused by background clutter, and dθ is the deviation angle of the
in-plane rotation.

Taking E(·) as the encoding function, the features of the two E-patches are obtained via
Equations (22) and (23):

fsyn = E
(
Psyn

)
, (22)

frel = fsyn +
∂E
∂P
·

(
∂P
∂θ
· dθ+ ε

)
, (23)

where fsyn and frel are the features of Psyn and Prel, respectively. Therefore, the feature distance between
fsyn and frel can be expressed as Equation (24):

dis = ‖
∂E
∂P
‖ · ‖

∂P
∂θ
· dθ+ ε‖. (24)

The rotation invariance of the E-patch made dθ ≈ 0 (‘≈’ indicates ‘close to’), and the elimination
of background clutter in the depth detection process made ε ≈ 0. Both of these led to dis ≈ 0, and a
smaller dis means a more accurate feature-matching result. Consequently, the E-patch is beneficial to
improving the detection accuracy and robustness to clutter of ODPE methods.

3.1.2. Computation Time

The average time of our online testing phase on the Tejani dataset was 903.4 ms, which is close
to the 774.5 ms in Liu et al. [24]. The online testing phase consisted of four stages, namely, ‘Patch
sampling’, ‘Feature encoding’, ‘Hypothesis generation’, and ‘Hypothesis verification’. The ‘Feature
encoding’ stage was implemented in a Jupyter notebook environment with an NVIDIA Tesla T4
graphics processing unit (GPU). Other stages were implemented in a MATLAB environment, running
on a laptop with an Intel central processing unit (CPU, i7-4720HQ).

In our online testing phase, the computation times of each stage were 153.9 ms, 16.5 ms, 228.7 ms,
and 504.3 ms, respectively, while those in [24] were 12.5 ms, 47.4 ms, 186.2 ms, and 528.4 ms, respectively.
In ‘Feature encoding’ and ‘Hypothesis verification’, our times were roughly the same as those in [24].
The introduction of a canonical orientation led to longer times in ‘Patch sampling’ and ‘Hypothesis
generation’, which was acceptable considering the improvement in the detection accuracy. In addition,
the computation time of the depth detection process was negligible.

3.2. Results on the Occlusion Dataset

The Occlusion dataset [14] was used to test the robustness of the proposed method to the occlusion
problem. Figure 11 shows the eight objects in the dataset. To compare with the testing results reported
in [25], the same 200 scenes were selected. All eight objects coexist and occlude each other in each
testing scene, which is challenging for ODPE tasks.

Detection results of our method in three scenes are shown in Figure 12. In each row, the left
subfigure is a scene image, the middle subfigure is a preprocessed scene overlaid with edge pixels,
and the right subfigure shows estimated poses with green transparent models, where the scene is
displayed in gray for better visibility.

Sensors 2020, 20, 887 12 of 17

Sensors 2020, 20, x 11 of 17

()=syn synf E P , (22)

θ ε
θ

∂ ∂ = + ⋅ ⋅ + ∂ ∂
rel syn

E Pf f d
P

, (23)

where fsyn and frel are the features of Psyn and Prel, respectively. Therefore, the feature distance between
fsyn and frel can be expressed as Equation (24):

E Pdis d
P

θ ε
θ

∂ ∂= ⋅ ⋅ +
∂ ∂

. (24)

The rotation invariance of the E-patch made dθ ≈ 0 (‘≈’ indicates ‘close to’), and the elimination
of background clutter in the depth detection process made ε ≈ 0. Both of these led to dis ≈ 0, and a
smaller dis means a more accurate feature-matching result. Consequently, the E-patch is beneficial to
improving the detection accuracy and robustness to clutter of ODPE methods.

3.1.2. Computation Time

The average time of our online testing phase on the Tejani dataset was 903.4 ms, which is close
to the 774.5 ms in Liu et al. [24]. The online testing phase consisted of four stages, namely, ‘Patch
sampling’, ‘Feature encoding’, ‘Hypothesis generation’, and ‘Hypothesis verification’. The ‘Feature
encoding’ stage was implemented in a Jupyter notebook environment with an NVIDIA Tesla T4
graphics processing unit (GPU). Other stages were implemented in a MATLAB environment,
running on a laptop with an Intel central processing unit (CPU, i7-4720HQ).

In our online testing phase, the computation times of each stage were 153.9 ms, 16.5 ms, 228.7
ms, and 504.3 ms, respectively, while those in [24] were 12.5 ms, 47.4 ms, 186.2 ms, and 528.4 ms,
respectively. In ‘Feature encoding’ and ‘Hypothesis verification’, our times were roughly the same as
those in [24]. The introduction of a canonical orientation led to longer times in ‘Patch sampling’ and
‘Hypothesis generation’, which was acceptable considering the improvement in the detection
accuracy. In addition, the computation time of the depth detection process was negligible.

3.2. Results on the Occlusion Dataset

The Occlusion dataset [14] was used to test the robustness of the proposed method to the
occlusion problem. Figure 11 shows the eight objects in the dataset. To compare with the testing
results reported in [25], the same 200 scenes were selected. All eight objects coexist and occlude each
other in each testing scene, which is challenging for ODPE tasks.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 11. Eight objects in the Occlusion dataset: (a) Ape; (b) Can; (c) Cat; (d) Driller; (e) Duck; (f) Egg
Box; (g) Glue; (h) Hole Punch.

Figure 11. Eight objects in the Occlusion dataset: (a) Ape; (b) Can; (c) Cat; (d) Driller; (e) Duck; (f) Egg
Box; (g) Glue; (h) Hole Punch.

Sensors 2020, 20, x 12 of 17

Detection results of our method in three scenes are shown in Figure 12. In each row, the left
subfigure is a scene image, the middle subfigure is a preprocessed scene overlaid with edge pixels,
and the right subfigure shows estimated poses with green transparent models, where the scene is
displayed in gray for better visibility.

Figure 12. Some detection results on the Occlusion dataset.

Any estimated pose with a visible surface discrepancy (VSD) score of less than 0.3 was
considered correct [25]. The detection rates (percentages of correct poses) of all the eight objects in
the Occlusion dataset were calculated, as shown in Table 3.

Table 3. Detection rates of methods on the Occlusion dataset (%).

Objects
Hodan
et al. [5]

Vidal
et al. [8]

Drost
et al. [9]

Brachmann
et al. [15] Ours

Ape 54 66 62 64 60
Can 66 81 75 65 75
Cat 40 46 39 44 47

Driller 26 65 70 68 80
Duck 73 73 57 71 71

Egg Box 37 43 46 3 35
Glue 44 26 26 32 55

Hole Punch 68 64 57 61 74
Average 51 58 54 51 62

The results of the comparison methods were taken from [25]. Our method increased the
detection rates of ‘Cat’, ‘Driller’, ‘Glue’, and ‘Hole Punch’ by 1%, 10%, 11%, and 6%, respectively. Our
average detection rate (62%) was higher than those of other methods (51%, 58%, 54%, and 51%),
which showed that our E-patch-based method had higher accuracy.

Figure 12. Some detection results on the Occlusion dataset.

Any estimated pose with a visible surface discrepancy (VSD) score of less than 0.3 was considered
correct [25]. The detection rates (percentages of correct poses) of all the eight objects in the Occlusion
dataset were calculated, as shown in Table 3.

The results of the comparison methods were taken from [25]. Our method increased the detection
rates of ‘Cat’, ‘Driller’, ‘Glue’, and ‘Hole Punch’ by 1%, 10%, 11%, and 6%, respectively. Our average
detection rate (62%) was higher than those of other methods (51%, 58%, 54%, and 51%), which showed
that our E-patch-based method had higher accuracy.

The methods used in [8,9] rely only on the point pair feature, and perform well in most scenes
with good point-cloud quality. However, when the main plane of a flat object (‘Glue’) flips, its point
cloud quality deteriorates rapidly. This leads to a significant reduction in the detection rate.

Sensors 2020, 20, 887 13 of 17

Table 3. Detection rates of methods on the Occlusion dataset (%).

Objects Hodan
et al. [5]

Vidal
et al. [8]

Drost
et al. [9]

Brachmann
et al. [15] Ours

Ape 54 66 62 64 60
Can 66 81 75 65 75
Cat 40 46 39 44 47

Driller 26 65 70 68 80
Duck 73 73 57 71 71

Egg Box 37 43 46 3 35
Glue 44 26 26 32 55

Hole Punch 68 64 57 61 74
Average 51 58 54 51 62

For quantitative analysis, Table 4 shows the occlusion rate of each object, which is the average
proportion of occlusion in all testing scenes. The detection rates of all five methods against different
occlusion rates are displayed in Figure 13.

Table 4. Occlusion rate of each object in the Occlusion dataset (%).

Objects Occlusion Rates

Hole Punch 13.6
Duck 19.9
Ape 21.2
Can 25.1

Egg Box 26.9
Driller 28.8
Glue 31.1
Cat 40.2

Sensors 2020, 20, x 13 of 17

The methods used in [8,9] rely only on the point pair feature, and perform well in most scenes
with good point-cloud quality. However, when the main plane of a flat object (‘Glue’) flips, its point
cloud quality deteriorates rapidly. This leads to a significant reduction in the detection rate.

For quantitative analysis, Table 4 shows the occlusion rate of each object, which is the average
proportion of occlusion in all testing scenes. The detection rates of all five methods against different
occlusion rates are displayed in Figure 13.

Table 4. Occlusion rate of each object in the Occlusion dataset (%).

Objects Occlusion Rates
Hole Punch 13.6

Duck 19.9
Ape 21.2
Can 25.1

Egg Box 26.9
Driller 28.8
Glue 31.1
Cat 40.2

Figure 13. Detection rates against different levels of occlusion.

Using an occlusion rate of 27.5% as the boundary, the objects were divided into two groups:
those with slight occlusion (‘Hole Punch’, ‘Duck’, ‘Ape’, ‘Can’, and ‘Egg Box’) and those with heavy
occlusion (‘Driller’, ‘Glue’, and ‘Cat’). For the objects in the first group, our average detection rate
was 63%, while those of the methods in [5,8,9,15] were 59.6%, 65.4%, 59.4%, and 52.8%, respectively.
This means that the E-patch has acceptable performance in the situation of slight occlusion (only
lower than the method in [8]). In particular, ‘Egg Box’ was the most difficult object for the proposed
method, because its textureless appearance and repeated edges made E-patches too similar to
distinguish. This problem may be solved by introducing a sophisticated process of hypothesis
verification, which will be conducted in future work.

For the objects in the second group, our average detection rate was 60.7%, while those of the
methods in [5,8,9,15] were 36.7%, 45.7%, 45%, and 48%, respectively. Owing to the heavy occlusion,
our average detection rate decreased by 2.3%, which was a lower decrease than those for the
aforementioned methods (decreased by at least 4.8%). These results indicate that the E-patch is more
robust to occlusion problems. They also prove the effectiveness of eliminating occlusion regions
during the depth detection process.

Figure 13. Detection rates against different levels of occlusion.

Using an occlusion rate of 27.5% as the boundary, the objects were divided into two groups:
those with slight occlusion (‘Hole Punch’, ‘Duck’, ‘Ape’, ‘Can’, and ‘Egg Box’) and those with heavy
occlusion (‘Driller’, ‘Glue’, and ‘Cat’). For the objects in the first group, our average detection rate
was 63%, while those of the methods in [5,8,9,15] were 59.6%, 65.4%, 59.4%, and 52.8%, respectively.
This means that the E-patch has acceptable performance in the situation of slight occlusion (only lower
than the method in [8]). In particular, ‘Egg Box’ was the most difficult object for the proposed method,
because its textureless appearance and repeated edges made E-patches too similar to distinguish.

Sensors 2020, 20, 887 14 of 17

This problem may be solved by introducing a sophisticated process of hypothesis verification, which
will be conducted in future work.

For the objects in the second group, our average detection rate was 60.7%, while those of the
methods in [5,8,9,15] were 36.7%, 45.7%, 45%, and 48%, respectively. Owing to the heavy occlusion, our
average detection rate decreased by 2.3%, which was a lower decrease than those for the aforementioned
methods (decreased by at least 4.8%). These results indicate that the E-patch is more robust to occlusion
problems. They also prove the effectiveness of eliminating occlusion regions during the depth
detection process.

Similar to the theoretical analysis of the first experiment, our improvement in detection accuracy
and robustness to occlusion can be explained by Equation (25):

dis = ‖
∂E
∂P
‖ · ‖

∂P
∂θ
· dθ+ ε′‖, (25)

where ε’ represents the alteration of the E-patch caused by foreground occlusion.
The rotation invariance of E-patch made dθ ≈ 0, and the elimination of occlusion regions in the

depth detection process made ε’ ≈ 0. Therefore, dis ≈ 0, and feature matching became more accurate.
Consequently, E-patch is conducive to increased detection accuracy and robustness to occlusion in
ODPE methods.

3.3. Results on the Doumanoglou Dataset

The Douanoglou dataset [19] was chosen to demonstrate the effectiveness of the proposed
E-patch-based method in the case of light clutter. Figure 14 shows the 10 objects in the dataset,
four pairs of which belong to the same category.

Sensors 2020, 20, x 14 of 17

Similar to the theoretical analysis of the first experiment, our improvement in detection accuracy
and robustness to occlusion can be explained by Equation (25):

θ ε
θ

∂ ∂ ′= ⋅ ⋅ +
∂ ∂

E Pdis d
P

, (25)

where ε’ represents the alteration of the E-patch caused by foreground occlusion.
The rotation invariance of E-patch made dθ ≈ 0, and the elimination of occlusion regions in the

depth detection process made ε’ ≈ 0. Therefore, dis ≈ 0, and feature matching became more accurate.
Consequently, E-patch is conducive to increased detection accuracy and robustness to occlusion in
ODPE methods.

3.3. Results on the Doumanoglou Dataset

The Douanoglou dataset [19] was chosen to demonstrate the effectiveness of the proposed E-
patch-based method in the case of light clutter. Figure 14 shows the 10 objects in the dataset, four
pairs of which belong to the same category.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Figure 14. Ten objects in the Doumanoglou dataset: (a) Amita–1; (b) Amita–2; (c) Colgate; (d) Elite;
(e) Lipton–1; (f) Lipton–2; (g) Oreo–1; (h) Oreo–2; (i) Soft Kings–1; (j) Soft Kings–2.

Compared with the first two datasets, the Douanoglou dataset contains less background clutter,
which is suitable for analyzing the basic detection performance of ODPE methods. The dataset
contains 351 testing scenes, each of which has multiple objects placed on the desktop. The detection
results of our method in two scenes are shown in Figure 15.

In each row, the left subfigure is a scene image, the middle subfigure is a preprocessed scene
overlaid with edge pixels, and estimated poses are shown in the right subfigure with green
transparent models, where the scene is displayed in gray for better visibility.

The clutter index of each object is shown in Table 5, which indicates the Doumanoglou dataset
has slight clutter.

Table 5. Clutter index of each object in the Doumanoglou dataset (%).

Objects Clutter Indexes
Amita 13.6

Colgate 55.5
Elite 8.3

Lipton 56.1
Oreo 22.3

Soft Kings 25.5

Figure 14. Ten objects in the Doumanoglou dataset: (a) Amita–1; (b) Amita–2; (c) Colgate; (d) Elite;
(e) Lipton–1; (f) Lipton–2; (g) Oreo–1; (h) Oreo–2; (i) Soft Kings–1; (j) Soft Kings–2.

Compared with the first two datasets, the Douanoglou dataset contains less background clutter,
which is suitable for analyzing the basic detection performance of ODPE methods. The dataset contains
351 testing scenes, each of which has multiple objects placed on the desktop. The detection results of
our method in two scenes are shown in Figure 15.

In each row, the left subfigure is a scene image, the middle subfigure is a preprocessed scene
overlaid with edge pixels, and estimated poses are shown in the right subfigure with green transparent
models, where the scene is displayed in gray for better visibility.

The clutter index of each object is shown in Table 5, which indicates the Doumanoglou dataset has
slight clutter.

Sensors 2020, 20, 887 15 of 17
Sensors 2020, 20, x 15 of 17

Figure 15. Some detection results on the Doumanoglou dataset.

An estimated pose was considered correct when its IoU score was higher than 0.5. As shown in
Table 6, our detection rates were generally higher than those of the method in [19], which revealed
the high accuracy of the proposed method in the case of slight clutter. It should be noted that the
method in [19] has a low detection rate for the ‘Colgate’ object. This is because the narrow surfaces of
‘Colgate’ result in too many RGB-D patches near the edge. These patches usually contain background
clutter, which cannot be eliminated by the method in [19]. ‘Lipton’ and ‘Oreo’ have similar problems.

Table 6. Detection rates of methods on the Doumanoglou dataset (%).

Objects Doumanoglou et at. [19] Ours
Amita 71.2 72.5

Colgate 28.6 53.6
Elite 77.6 85.7

Lipton 59.2 78.6
Oreo 59.3 87.5

Soft Kings 75.9 91.1
Average 62.0 78.2

4. Conclusions

A new E-patch for ODPE tasks was proposed herein. The advantages of the E-patch were
described and evaluated on three public datasets. The proposed method improved the F1-score from
0.939 to 0.956 on the Tejani dataset and improved the detection rate from 58% to 62% on the Occlusion
dataset. With intensifying background clutter, the F1-score of the proposed method decreased more
slightly (0.012) than did those of the comparison methods (more than 0.027). When the occlusion level
increased, the detection rate of the proposed method decreased by 2.3%, and those of the comparison
methods decreased by at least 4.8%. These results prove that the proposed method is more accurate
and robust to scene interference. Additionally, one limitation of the proposed method is that it fails
to cover texture-less objects with repeated edges, which is worth further study.

Author Contributions: Conceptualization, X.T.; Data curation, X.T., L.G. and K.W.; Funding acquisition, R.L.;
Investigation, X.T.; Methodology, X.T.; Supervision, R.L. and L.Z.; Validation, R.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was funded by the National Natural Science Foundation of China (No. 61673136) and the
Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No.
51521003).

Conflicts of Interest: The authors declare no conflict of interest.

Figure 15. Some detection results on the Doumanoglou dataset.

Table 5. Clutter index of each object in the Doumanoglou dataset (%).

Objects Clutter Indexes

Amita 13.6
Colgate 55.5

Elite 8.3
Lipton 56.1
Oreo 22.3

Soft Kings 25.5

An estimated pose was considered correct when its IoU score was higher than 0.5. As shown in
Table 6, our detection rates were generally higher than those of the method in [19], which revealed the
high accuracy of the proposed method in the case of slight clutter. It should be noted that the method
in [19] has a low detection rate for the ‘Colgate’ object. This is because the narrow surfaces of ‘Colgate’
result in too many RGB-D patches near the edge. These patches usually contain background clutter,
which cannot be eliminated by the method in [19]. ‘Lipton’ and ‘Oreo’ have similar problems.

Table 6. Detection rates of methods on the Doumanoglou dataset (%).

Objects Doumanoglou et at. [19] Ours

Amita 71.2 72.5
Colgate 28.6 53.6

Elite 77.6 85.7
Lipton 59.2 78.6
Oreo 59.3 87.5

Soft Kings 75.9 91.1
Average 62.0 78.2

4. Conclusions

A new E-patch for ODPE tasks was proposed herein. The advantages of the E-patch were
described and evaluated on three public datasets. The proposed method improved the F1-score from
0.939 to 0.956 on the Tejani dataset and improved the detection rate from 58% to 62% on the Occlusion
dataset. With intensifying background clutter, the F1-score of the proposed method decreased more
slightly (0.012) than did those of the comparison methods (more than 0.027). When the occlusion level
increased, the detection rate of the proposed method decreased by 2.3%, and those of the comparison

Sensors 2020, 20, 887 16 of 17

methods decreased by at least 4.8%. These results prove that the proposed method is more accurate
and robust to scene interference. Additionally, one limitation of the proposed method is that it fails to
cover texture-less objects with repeated edges, which is worth further study.

Author Contributions: Conceptualization, X.T.; Data curation, X.T., L.G. and K.W.; Funding acquisition, R.L.;
Investigation, X.T.; Methodology, X.T.; Supervision, R.L. and L.Z.; Validation, R.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was funded by the National Natural Science Foundation of China (No. 61673136) and the
Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 51521003).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tjaden, H.; Schwanecke, U.; Schomer, E. Real–time monocular pose estimation of 3D objects using temporally
consistent local color histograms. In Proceedings of the IEEE International Conference on Computer Vision
(ICCV), Venice, Italy, 22–29 October 2017.

2. Hinterstoisser, S.; Cagniart, C.; Ilic, S.; Sturm, P.; Navab, N.; Fua, P.; Lepetit, V. Gradient response maps for
real–time detection of textureless objects. IEEE. Trans. Pattern. Anal. 2011, 34, 876–888. [CrossRef] [PubMed]

3. Hinterstoisser, S.; Holzer, S.; Cagniart, C.; Ilic, S.; Konolige, K.; Navab, N.; Lepetit, V. Multimodal templates
for real–time detection of texture–less objects in heavily cluttered scenes. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), Barcelona, Spain, 6–13 November 2011.

4. Hinterstoisser, S.; Lepetit, V.; Ilic, S.; Holzer, S.; Bradski, G.; Konolige, K.; Navab, N. Model based training,
detection and pose estimation of texture–less 3d objects in heavily cluttered scenes. In Proceedings of the
11th Asian Conference on Computer Vision (ACCV), Daejeon, Korea, 5–9 November 2012.

5. Hodaň, T.; Zabulis, X.; Lourakis, M.; Obdržálek, Š.; Matas, J. Detection and fine 3D pose estimation of
texture–less objects in RGB–D images. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, Hamburg, Germany, 28 September–2 October 2015.

6. Collet, A.; Martinez, M.; Srinivasa, S.S. The MOPED framework: Object recognition and pose estimation for
manipulation. Int. J. Robot. Res. 2011, 30, 1284–1306. [CrossRef]

7. Li, M.; Hashimoto, K. Accurate object pose estimation using depth only. Sensors 2018, 18, 1045–1061.
[CrossRef] [PubMed]

8. Vidal, J.; Lin, C.-Y.; Martí, R. 6D pose estimation using an improved method based on point pair features.
In Proceedings of the 4th International Conference on Control, Automation and Robotics (ICCAR), Auckland,
New Zealand, 20–23 April 2018.

9. Drost, B.; Ulrich, M.; Navab, N.; Ilic, S. Model globally, match locally: Efficient and robust 3D object
recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, San Francisco, CA, USA, 13–18 June 2010.

10. Guo, Y.; Liu, Y.; Oerlemans, A.; Lao, S.; Wu, S.; Lew, M.S. Deep learning for visual understanding: A review.
Neurocomputing 2016, 187, 27–48. [CrossRef]

11. Bengio, Y.; Courville, A.C.; Vincent, P. Unsupervised feature learning and deep learning: A review and new
perspectives. CoRR 2012, 1, 1–30.

12. Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep learning for computer vision: A brief
review. Comput. Intell. Neurosci. 2018, 2018, 1–13. [CrossRef] [PubMed]

13. Michel, F.; Kirillov, A.; Brachmann, E.; Krull, A.; Gumhold, S.; Savchynskyy, B.; Rother, C. Global hypothesis
generation for 6D object pose estimation. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

14. Brachmann, E.; Krull, A.; Michel, F.; Gumhold, S.; Shotton, J.; Rother, C. Learning 6d object pose estimation
using 3d object coordinates. In Proceedings of the 13th European Conference on Computer Vision (ECCV),
Zurich, Switzerland, 6–12 September 2014.

15. Brachmann, E.; Michel, F.; Krull, A.; Ying Yang, M.; Gumhold, S. Uncertainty–driven 6d pose estimation of
objects and scenes from a single rgb image. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

http://dx.doi.org/10.1109/TPAMI.2011.206
http://www.ncbi.nlm.nih.gov/pubmed/22442120
http://dx.doi.org/10.1177/0278364911401765
http://dx.doi.org/10.3390/s18041045
http://www.ncbi.nlm.nih.gov/pubmed/29601549
http://dx.doi.org/10.1016/j.neucom.2015.09.116
http://dx.doi.org/10.1155/2018/7068349
http://www.ncbi.nlm.nih.gov/pubmed/29487619

Sensors 2020, 20, 887 17 of 17

16. Kehl, W.; Manhardt, F.; Tombari, F.; Ilic, S.; Navab, N. SSD–6D: Making RGB–based 3D detection and 6D pose
estimation great again. In Proceedings of the IEEE International Conference on Computer Vision (ICCV),
Venice, Italy, 22–29 October 2017.

17. Rad, M.; Lepetit, V. BB8: A scalable, accurate, robust to partial occlusion method for predicting the 3D
poses of challenging objects without using depth. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), Venice, Italy, 22–29 October 2017.

18. Tekin, B.; Sinha, S.N.; Fua, P. Real–time seamless single shot 6d object pose prediction. In Proceedings of the
2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23
June 2018.

19. Doumanoglou, A.; Kouskouridas, R.; Malassiotis, S.; Kim, T.-K. Recovering 6D object pose and predicting
next–best–view in the crowd. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

20. Tejani, A.; Tang, D.; Kouskouridas, R.; Kim, T.-K. Latent–class hough forests for 3D object detection and
pose estimation. In Proceedings of the 13th European Conference on Computer Vision (ECCV), Zurich,
Switzerland, 6–12 September 2014.

21. Kehl, W.; Milletari, F.; Tombari, F.; Ilic, S.; Navab, N. Deep learning of local RGB–D patches for 3D object
detection and 6D pose estimation. In Proceedings of the 14th European Conference on Computer Vision
(ECCV), Amsterdam, The Netherlands, 11–14 October 2016.

22. Zhang, H.; Cao, Q. Texture–less object detection and 6D pose estimation in RGB–D images. Robot. Auton. Syst.
2017, 95, 64–79. [CrossRef]

23. Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to
image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]

24. Liu, H.; Cong, Y.; Yang, C.; Tang, Y. Efficient 3D object recognition via geometric information preservation.
Pattern Recognit. 2019, 92, 135–145. [CrossRef]

25. Hodan, T.; Michel, F.; Brachmann, E.; Kehl, W.; GlentBuch, A.; Kraft, D.; Drost, B.; Vidal, J.; Ihrke, S.;
Zabulis, X. BOP: Benchmark for 6D object pose estimation. In Proceedings of the 15th European Conference
on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.robot.2017.06.003
http://dx.doi.org/10.1145/358669.358692
http://dx.doi.org/10.1016/j.patcog.2019.03.025
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methods
	E-Patch Generation
	Sampling Center Extraction
	E-Patch Sampling along a Canonical Orientation
	Depth Detection

	Encoding Network Training
	Object Detection and Pose Estimation Based on E-patch
	Offline Construction of the Codebook
	Online Testing

	Experiments and Discussion
	Results on the Tejani Dataset
	Detection Results
	Computation Time

	Results on the Occlusion Dataset
	Results on the Doumanoglou Dataset

	Conclusions
	References

