
sensors

Article

Message-Based Communication for Heterogeneous
Internet of Things Systems

Bogdan Oniga 1,*, Leon Denis 2, Vasile Dadarlat 1 and Adrian Munteanu 2

1 Department of Computer Science, Faculty of Automation and Computer Science, Technical University of
Cluj-Napoca, Memorandumului 28, 400114 Cluj-Napoca, Romania; vasile.dadarlat@cs.utcluj.ro

2 ETRO Department, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium;
ldenis@etrovub.be (L.D.); acmuntea@etrovub.be (A.M.)

* Correspondence: bogdan@oniga.me

Received: 19 December 2019; Accepted: 3 February 2020; Published: 6 February 2020
����������
�������

Abstract: The Internet of Things (IoT) domain presents a wide spectrum of technologies for
building IoT applications. The requirements are varying from one application to another granting
uniqueness to each IoT system. Each application demands custom implementations to achieve
efficient, secure and cost-effective environments. They pose a set of properties that cannot be
addressed by a single-based protocol IoT network. Such properties are achievable by designing
a heterogeneous IoT system, which integrates diverse IoT protocols and provides a network
management solution to efficiently manage the system components. This paper proposes an IoT
message-based communication model applied atop the IoT protocols in order to achieve functional
scalability and network management transparency agnostic to the employed communication protocol.
The paper evaluates the proposed communication model and proves its functional scalability in a
heterogeneous IoT system. The experimental assessment compares the payload size of the proposed
system with respect to the LwM2M standard, a protocol designed specifically for IoT applications.
In addition, the paper discusses the energy consumption introduced by the proposed model as well
as the options available to reduce such impact.

Keywords: heterogeneous IoT systems; network management; message-based communication;
power consumption

1. Introduction

Internet of Things devises and maintains the synergy between the digital and physical
environment. IoT comprises a wide variety of applications and protocols that grant uniqueness
to each implementation. In such complex ecosystems, the implementations are varying in accordance
with multiple factors such as environment properties, in-use protocols, ecosystem efficiency and costs.
Taking into consideration all these factors, building an efficient and cost-effective heterogeneous IoT
system represents a big challenge.

To achieve an effective heterogeneous IoT system, besides the multi-protocol communication
interoperability, the system must provide an effective network management solution responsible for
configuring, monitoring and maintaining the IoT entities agnostic to the employed communication
protocol. Heterogeneous IoT systems have various uplink and downlink traffic which is caused
by protocol heterogeneity, device configuration, firmware upgrade, commands execution, etc.
It becomes important for the implied entities to define a common set of rules and practices to achieve
semantic interoperability.

This paper proposes an IoT message-based communication (IMBC) model applied atop the IoT
communication protocols to achieve network management transparency despite the transmitting

Sensors 2020, 20, 861; doi:10.3390/s20030861 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-7290-0428
http://www.mdpi.com/1424-8220/20/3/861?type=check_update&version=1
http://dx.doi.org/10.3390/s20030861
http://www.mdpi.com/journal/sensors


Sensors 2020, 20, 861 2 of 17

protocol. IMBC is implemented at the application level and comprises a dictionary of services utilised
by the devices and the server to interact and to perform the desired actions. The dictionary is one
of the core components that allows management procedures such as device configuration, payload
identification, device control, firmware update, transmission cycle configuration and error handling.
The paper also evaluates the proposed communication model and demonstrates the functional
scalability of a heterogeneous IoT system applying the IMBC model. It compares the generated payload
sizes of IMBC with respect to the LwM2M standard and, last, assesses the energy consumption impact
introduced by the proposed techniques.

This paper is structured as follows. Section 2 presents the related work. Section 3 describes the
proposed message-based communication model. Its particularities are furthered detailed in Section 4,
whereas the experimental evaluation is given in Section 5. Finally, Section 6 draws the conclusions of
this work.

2. Related Work

Building efficient and cost-effective IoT applications presents a big challenge for developers. The
protocol variety and their unique properties are the key elements taken into consideration to fulfil the
application needs [1,2]. For complex IoT applications, a single-based protocol network may not suit
the application requirements due to protocol limitations, forcing a multi-protocol network to cover all
application particularities. To effectively handle such a heterogeneous system, it becomes important to
implement a network management solution designed to manage the IoT network components.

Many approaches and solutions have been introduced in the literature which address adaption
layers and integration techniques to achieve protocol interoperability in heterogeneous IoT systems.
Protocol interoperability has been implemented into the most popular IoT cloud-based services [3,4].
OneM2M is a standard defined to achieve a unique architecture for IoT technologies [5]. The
community and organisations are continuously expanding its capabilities. For example, J. Koo et al. [6]
analyse the types of device identifiers utilised by various IoT cloud-based services (e.g., Google, IBM,
Cisco, Samsung, etc.) and propose an IoT device identifier translator that translates identifiers to
oneM2M format to achieve abstract device identification. A heterogeneous IoT gateway is proposed
in [7], which allows package conversion between different IoT protocols. Design challenges of a
heterogeneous IoT system which passively detects and tracks moving elements have been studied
in [8].

The previously mentioned works focus on functionality and technical interoperability of multiple
protocols at the communication level. However, the major challenge of designing heterogeneous IoT
systems is to provide a network management solution and semantic interoperability between the IoT
entities. The latter has been addressed in [9], which proposes an expressive ontology named IoT-O,
an extension of the oneM2M standard which supports semantic data interoperability for network
management and automatic interpretation of data coming from different sources. Their techniques,
however, depend on the underlying transport protocol, rendering it unsuitable for an agnostic system
to perform similar tasks. The Open Mobile Alliance (OMA) has released the OMA Lightweight
Machine to Machine (LwM2M) protocol [10], a protocol meant to extend and match the requirements
of IoT applications. LwM2M is a light, compact and resource efficient protocol implemented with
the Constrained Application Protocol (CoAP), which facilitates device management and service data
transfer. The LwM2M is applied successfully on devices with Internet access [11–13] and multiple
solutions have been addressed that apply LwM2M on non-Internet devices. To implement LwM2M,
such devices must adopt the Internet Protocol (IP) [14,15] or implement translators for LwM2M
objects [16]. Other related work includes Smart Objects which has been defined by the Internet
Protocol for Smart Objects (IPSO) Alliance. They provide object models for high level interoperability
between devices [17]. The object models are applicable on any RESTful protocol since the object
description is mapped into the URI path and targets IP-enabled devices. Though applicable in many



Sensors 2020, 20, 861 3 of 17

settings, the usage of a RESTful protocol combined with their serialisation generates payloads, which
can be deemed too large for battery-powered devices.

3. IoT Message-Based Communication (IMBC)

This work proposes a generic IoT message-based communication model to achieve IoT network
management transparency. It defines a dictionary of semantic data services utilised by the devices and
the server to interact and perform the desired actions. The dictionary of services refers to a set of object
models which describe environmental information (e.g., temperature, humidity, etc.) or management
procedures (e.g., device configuration, firmware update, etc.). Unlike IoT-O, the proposed message
communication is independent of the underlying standards and performs management procedures
agnostic to the IoT transport protocol. IMBC also serves as an alternative to the LwM2M protocol in
terms of service bootstrapping. It is employed at the application level, irrespective of the underlying
transport protocols, which utilise the device identifier format enforced by server integration. Unlike
LwM2M, IMBC does not define Client End Point Names since the device identification is enforced and
performed by the server for each integrated IoT protocol. IMBC improves over LwM2M by eliminating
the need of IP or LwM2M object translators for non-Internet devices. Moreover, the IMBC serialisation
format permits to construct payloads of sizes lower than that of the LwM2M and IPSO models. For
clarity, we have summarised the main similarities and differences of IMBC and LwM2M in Table 1.
The IMBC definitions and parsers are publicly available (https://gitlab.com/openiot/imbc).

For IMBC, the semantic data services are uniquely identified by an 8-bit identifier. The services
describe specific functions that are utilised by the central manager to communicate the desired
commands to the devices or to process the collected information. Those functions can for example be
temperature measurements, battery level reporting, firmware update, etc. Concretely, IMBC defines
services responsible for device configuration, payload identification, device control, firmware update,
transmission cycle configuration and error handling. Table 2 presents the service categories and their
identifier range values.

Table 1. Similarities and differences between IMBC and LwM2M.

IMBC LwM2M

Service bootstrapping Yes Yes
Payload size Service dependant * Higher for most services *

Network management Yes Yes
Device identification No Yes

IP required No Yes

* As described in Section 5.2.

Table 2. Semantic data services categories.

Identifier Range Service Type Description

00-0F Message Data Object (MDO)
Message specific services (e.g., device
configuration, transmission cycle, error messages,
timestamp)

10-1F Network Management (NMT) Transmission protocol transition, firmware update,
device control (power off/reset/sleep)

20-BF Payload Data Object (PDO) Payload data (e.g., temperature data, humidity
data, etc.), custom messages

C0-FF Reserved (RSV) Reserved for future implementations

The message payloads comprise at least one semantic data service representation which in turn
consists of two parts, that is, the service identifier and the service message. The service identifier
determines the service for which the following service message is intended. The service message

https://gitlab.com/openiot/imbc


Sensors 2020, 20, 861 4 of 17

contains the actual data associated with that service. The number of services comprised by a single
message varies based on the limitation of the employed IoT protocols, such as the maximum payload
size. In other words, IMBC allows sending data of multiple services in one single message, thus
reducing the network load. A message can for example be sent by the end-node to publish both
the temperature and its battery level. As a receiver, the central manager identifies the service
representations based on the service identifiers, processes the service messages accordingly and
extracts the corresponding data. The message format and its characteristics are described next.

3.1. The Message Format

A service is described as a JavaScript Object Notation (JSON) object of which the key is the service
identifier byte value represented as a hexadecimal number. The JSON object definition comprises
the service name, the title, the description and the service message particularities, such as the data
structure, type and unit.

As shown in Figure 1, IMBC implements five different formats for the service messages:
fixed-length data, variable-length data, fixed-length list, variable-length list and data mask. We
will provide more details about each hereunder.

Figure 1. Service message formats.

3.1.1. Fixed-Length Data Format

An object definition of a fixed length service message specifies the data length in bytes and its
type. The total size of such a service message format is computed as follows,

f ld(s) = sid + sdl , (1)

with s, sid and sdl representing the service, service identifier length and service data length, respectively.
We note that the naming of s and sid will be consistent throughout this section. Below we exemplified
a temperature service object definition which defines a service message of 4 bytes length represented
as floating point.

Sensors 2020, xx, 5 4 of 17

contains the actual data associated with that service. The number of services comprised by a single
message varies based on the limitation of the employed IoT protocols, such as the maximum payload
size. In other words, IMBC allows sending data of multiple services in one single message, thus
reducing the network load. A message can for example be sent by the end-node to publish both
the temperature and its battery level. As a receiver, the central manager identifies the service
representations based on the service identifiers, processes the service messages accordingly and
extracts the corresponding data. The message format and its characteristics are described next.

3.1. The Message Format

A service is described as a JavaScript Object Notation (JSON) object of which the key is the service
identifier byte value represented as a hexadecimal number. The JSON object definition comprises
the service name, the title, the description and the service message particularities, such as the data
structure, type and unit.

As shown in Figure 1, IMBC implements five different formats for the service messages:
fixed-length data, variable-length data, fixed-length list, variable-length list and data mask. We
will provide more details about each hereunder.

Figure 1. Service message formats.

3.1.1. Fixed-Length Data Format

An object definition of a fixed length service message specifies the data length in bytes and its
type. The total size of such a service message format is computed as follows,

f ld(s) = sid + sdl , (1)

with s, sid and sdl representing the service, service identifier length and service data length, respectively.
We note that the naming of s and sid will be consistent throughout this section. Below we exemplified
a temperature service object definition which defines a service message of 4 bytes length represented
as floating point.

{
"20": {

"service": "temperature",
"title": "Temperature",
"description": "Temperature value in degrees Celsius",



Sensors 2020, 20, 861 5 of 17Sensors 2020, xx, 5 5 of 17

"type": "float",
"length": 4,
"unit": "°C"

}
}

Figure 2a shows the temperature service representation associated with the JSON object.
It comprises the service identifier (“20” hexadecimal), followed by the service message (“41ef0000”
hexadecimal), which in this case is a 4 byte floating point representing value “29.875”.

Figure 2. Service message formats examples.

3.1.2. Variable-Length Data Format

A service message transporting data of variable length comprises the data length, followed by the
actual data. The data length is a decimal number given by the first bytes as specified by the service
object definition. The service representation size is computed by

vld(s) = sid + sdvl + sdl , (2)

where sdvl denotes the number of bytes necessary for describing the data length. The length of the
service data itself is presented as sdl . As described below, the custom message service object defines
a variable data length given by the first two bytes, resulting in a custom message of maximum
65,535 bytes long.

{
"af": {

"service": "custom_message",
"title": "Custom message",
"description": "Custom message of variable length",
"type": "byte",
"variable-length": 2

Figure 2a shows the temperature service representation associated with the JSON object.
It comprises the service identifier (“20” hexadecimal), followed by the service message (“41ef0000”
hexadecimal), which in this case is a 4 byte floating point representing value “29.875”.

Figure 2. Service message formats examples.

3.1.2. Variable-Length Data Format

A service message transporting data of variable length comprises the data length, followed by the
actual data. The data length is a decimal number given by the first bytes as specified by the service
object definition. The service representation size is computed by

vld(s) = sid + sdvl + sdl , (2)

where sdvl denotes the number of bytes necessary for describing the data length. The length of the
service data itself is presented as sdl . As described below, the custom message service object defines
a variable data length given by the first two bytes, resulting in a custom message of maximum
65,535 bytes long.

Sensors 2020, xx, 5 5 of 17

"type": "float",
"length": 4,
"unit": "°C"

}
}

Figure 2a shows the temperature service representation associated with the JSON object.
It comprises the service identifier (“20” hexadecimal), followed by the service message (“41ef0000”
hexadecimal), which in this case is a 4 byte floating point representing value “29.875”.

Figure 2. Service message formats examples.

3.1.2. Variable-Length Data Format

A service message transporting data of variable length comprises the data length, followed by the
actual data. The data length is a decimal number given by the first bytes as specified by the service
object definition. The service representation size is computed by

vld(s) = sid + sdvl + sdl , (2)

where sdvl denotes the number of bytes necessary for describing the data length. The length of the
service data itself is presented as sdl . As described below, the custom message service object defines
a variable data length given by the first two bytes, resulting in a custom message of maximum
65,535 bytes long.

{
"af": {

"service": "custom_message",
"title": "Custom message",
"description": "Custom message of variable length",
"type": "byte",
"variable-length": 2



Sensors 2020, 20, 861 6 of 17
Sensors 2020, xx, 5 6 of 17

}
}

The corresponding data representation is given in Figure 2b. From the figure, we see that it
consists of the service identifier (“af” hexadecimal) and the service message, which is split as follows,
the data length (“000a” hexadecimal: 10 bytes) and the data (“f944cc4f3862a643a574” hexadecimal).

3.1.3. Fixed-Length List Format

The elements of a fixed length list are extracted based on the number of elements and their size in
bytes specified by the service definition. Equation (3) computes the total size of a service representation
carrying data lists. It is defined as

f ll(s) = sid + sll × lel , (3)

where sll represents the service list length and lel symbols the data size of each element. Below an
example is provided for a service which reports a location represented as a list of two float values,
latitude and longitude.

{
"33": {

"service": "location",
"title": "Location",
"description": "Location value given by the latitude and longitude.",
"list-length": 2,
"type": "float",
"element-length": 4,
"unit": "°"

}
}

As shown in Figure 2c, the location service representation internally consists of two parts, the
service identifier (“33” hexadecimal) followed by the service message, which is this case consists of
the latitude (“424b62f8”) and the longitude (“408b4452”), having floating point values “50.84665” and
“4.35209”, respectively.

3.1.4. Variable-Length List Format

As will later be described in Section 3.2.1, IMBC provides three management procedures utilised
for device configuration. The underlying component for these procedures is the service message
format used to transport lists of variable length. Such service messages comprise the list length and
the elements of the list. The payload size for such a message is given by

vll(s) = sid + slvl + sll × lel , (4)

where slvl is the number of bytes describing the list length. sll and lel denote the number of elements in
the list and the length of each element, respectively.

The service object definition exemplified hereunder permits to transmit a list of services of
maximum 256 elements, as the length is provided by the first byte which has a maximum value of 255.

{
"01": {

"service": "uplink_config",
"title": "Uplink service configuration",
"description": "Specifies the uplink services implemented by the device",
"variable-list-length": 1,
"type": "byte",

The corresponding data representation is given in Figure 2b. From the figure, we see that it
consists of the service identifier (“af” hexadecimal) and the service message, which is split as follows,
the data length (“000a” hexadecimal: 10 bytes) and the data (“f944cc4f3862a643a574” hexadecimal).

3.1.3. Fixed-Length List Format

The elements of a fixed length list are extracted based on the number of elements and their size in
bytes specified by the service definition. Equation (3) computes the total size of a service representation
carrying data lists. It is defined as

f ll(s) = sid + sll × lel , (3)

where sll represents the service list length and lel symbols the data size of each element. Below an
example is provided for a service which reports a location represented as a list of two float values,
latitude and longitude.

Sensors 2020, xx, 5 6 of 17

}
}

The corresponding data representation is given in Figure 2b. From the figure, we see that it
consists of the service identifier (“af” hexadecimal) and the service message, which is split as follows,
the data length (“000a” hexadecimal: 10 bytes) and the data (“f944cc4f3862a643a574” hexadecimal).

3.1.3. Fixed-Length List Format

The elements of a fixed length list are extracted based on the number of elements and their size in
bytes specified by the service definition. Equation (3) computes the total size of a service representation
carrying data lists. It is defined as

f ll(s) = sid + sll × lel , (3)

where sll represents the service list length and lel symbols the data size of each element. Below an
example is provided for a service which reports a location represented as a list of two float values,
latitude and longitude.

{
"33": {

"service": "location",
"title": "Location",
"description": "Location value given by the latitude and longitude.",
"list-length": 2,
"type": "float",
"element-length": 4,
"unit": "°"

}
}

As shown in Figure 2c, the location service representation internally consists of two parts, the
service identifier (“33” hexadecimal) followed by the service message, which is this case consists of
the latitude (“424b62f8”) and the longitude (“408b4452”), having floating point values “50.84665” and
“4.35209”, respectively.

3.1.4. Variable-Length List Format

As will later be described in Section 3.2.1, IMBC provides three management procedures utilised
for device configuration. The underlying component for these procedures is the service message
format used to transport lists of variable length. Such service messages comprise the list length and
the elements of the list. The payload size for such a message is given by

vll(s) = sid + slvl + sll × lel , (4)

where slvl is the number of bytes describing the list length. sll and lel denote the number of elements in
the list and the length of each element, respectively.

The service object definition exemplified hereunder permits to transmit a list of services of
maximum 256 elements, as the length is provided by the first byte which has a maximum value of 255.

{
"01": {

"service": "uplink_config",
"title": "Uplink service configuration",
"description": "Specifies the uplink services implemented by the device",
"variable-list-length": 1,
"type": "byte",

As shown in Figure 2c, the location service representation internally consists of two parts, the
service identifier (“33” hexadecimal) followed by the service message, which is this case consists of
the latitude (“424b62f8”) and the longitude (“408b4452”), having floating point values “50.84665” and
“4.35209”, respectively.

3.1.4. Variable-Length List Format

As will later be described in Section 3.2.1, IMBC provides three management procedures utilised
for device configuration. The underlying component for these procedures is the service message
format used to transport lists of variable length. Such service messages comprise the list length and
the elements of the list. The payload size for such a message is given by

vll(s) = sid + slvl + sll × lel , (4)

where slvl is the number of bytes describing the list length. sll and lel denote the number of elements in
the list and the length of each element, respectively.

The service object definition exemplified hereunder permits to transmit a list of services of
maximum 256 elements, as the length is provided by the first byte which has a maximum value of 255.

Sensors 2020, xx, 5 6 of 17

}
}

The corresponding data representation is given in Figure 2b. From the figure, we see that it
consists of the service identifier (“af” hexadecimal) and the service message, which is split as follows,
the data length (“000a” hexadecimal: 10 bytes) and the data (“f944cc4f3862a643a574” hexadecimal).

3.1.3. Fixed-Length List Format

The elements of a fixed length list are extracted based on the number of elements and their size in
bytes specified by the service definition. Equation (3) computes the total size of a service representation
carrying data lists. It is defined as

f ll(s) = sid + sll × lel , (3)

where sll represents the service list length and lel symbols the data size of each element. Below an
example is provided for a service which reports a location represented as a list of two float values,
latitude and longitude.

{
"33": {

"service": "location",
"title": "Location",
"description": "Location value given by the latitude and longitude.",
"list-length": 2,
"type": "float",
"element-length": 4,
"unit": "°"

}
}

As shown in Figure 2c, the location service representation internally consists of two parts, the
service identifier (“33” hexadecimal) followed by the service message, which is this case consists of
the latitude (“424b62f8”) and the longitude (“408b4452”), having floating point values “50.84665” and
“4.35209”, respectively.

3.1.4. Variable-Length List Format

As will later be described in Section 3.2.1, IMBC provides three management procedures utilised
for device configuration. The underlying component for these procedures is the service message
format used to transport lists of variable length. Such service messages comprise the list length and
the elements of the list. The payload size for such a message is given by

vll(s) = sid + slvl + sll × lel , (4)

where slvl is the number of bytes describing the list length. sll and lel denote the number of elements in
the list and the length of each element, respectively.

The service object definition exemplified hereunder permits to transmit a list of services of
maximum 256 elements, as the length is provided by the first byte which has a maximum value of 255.

{
"01": {

"service": "uplink_config",
"title": "Uplink service configuration",
"description": "Specifies the uplink services implemented by the device",
"variable-list-length": 1,
"type": "byte",



Sensors 2020, 20, 861 7 of 17Sensors 2020, xx, 5 7 of 17

"element-length": 1
}

}

The service representation described in Figure 2d transports a list of two services. The list length
is given by the first byte (“02” hexadecimal). The list itself consists of the service identifiers for
temperature (“20”) and location (“33”).

3.1.5. Data Mask Format

IMBC defines a data format responsible for handling data coming from multiple sources. More
concretely, the data mask format carries multiple values corresponding to one specific service, which is
called the reporting service. Using this format, one can send measurements of many different sensors
in a single message, thus reducing the network load. The origins of the values are encoded in a binary
mask. The message content of this data format contains the reporting service, the mask and the actual
data. Its payload size is given by the following equation,

dm(s) = sid + ssr_id + sml + mb × (m f (ssr)− ssr_id), (5)

with ssr and ssr_id representing the reporting service and reporting service identifier length. The service
mask length is denoted by sml . The number of bits in the mask having value 1 is given by mb. Finally,
m f (ssr) returns the data length as defined by Equations (1)–(4) of the reporting service depending on
its data format.

{
"0a": {

"service": "origins_8",
"title": "Service multi-origins (8-bit)",
"description": "Maximum of 8 service reporting origins",
"mask": 1,
"type": "byte",

}
}

A service responsible for carrying multi-origin data is exemplified above. A message for this
service is provided in Figure 2e. This particular message transmits the temperature (“20” hexadecimal)
of two different sensors, of which the origin is defined by the mask (“a0” hexadecimal = “10100000”
binary). The temperature values reported by the first and the third origins are “41f40000” and
“41da0000”, respectively.

3.2. Management Procedures

IMBC defines a set of services that enable management procedures responsible for device
configuration, payload identification, transmission cycle configuration, device control, firmware
update, protocol set-up and error handling. This section describes the applicability of these services in
the network management of heterogeneous IoT applications.

3.2.1. Device Configuration

The device configuration procedure accomplishes two tasks, namely, device configuration
announcement and device reconfiguration. The role of the former is to announce the implemented
services at the device level whenever a device is initialised. The announcement is utilised by the server
to automatically generate the necessary controls and device management functions. By implementing
the device reconfiguration functions at both server and device level, the server acquires the ability to
modify the device configuration at will.

The service representation described in Figure 2d transports a list of two services. The list length
is given by the first byte (“02” hexadecimal). The list itself consists of the service identifiers for
temperature (“20”) and location (“33”).

3.1.5. Data Mask Format

IMBC defines a data format responsible for handling data coming from multiple sources. More
concretely, the data mask format carries multiple values corresponding to one specific service, which is
called the reporting service. Using this format, one can send measurements of many different sensors
in a single message, thus reducing the network load. The origins of the values are encoded in a binary
mask. The message content of this data format contains the reporting service, the mask and the actual
data. Its payload size is given by the following equation,

dm(s) = sid + ssr_id + sml + mb × (m f (ssr)− ssr_id), (5)

with ssr and ssr_id representing the reporting service and reporting service identifier length. The service
mask length is denoted by sml . The number of bits in the mask having value 1 is given by mb. Finally,
m f (ssr) returns the data length as defined by Equations (1)–(4) of the reporting service depending on
its data format.

Sensors 2020, xx, 5 7 of 17

"element-length": 1
}

}

The service representation described in Figure 2d transports a list of two services. The list length
is given by the first byte (“02” hexadecimal). The list itself consists of the service identifiers for
temperature (“20”) and location (“33”).

3.1.5. Data Mask Format

IMBC defines a data format responsible for handling data coming from multiple sources. More
concretely, the data mask format carries multiple values corresponding to one specific service, which is
called the reporting service. Using this format, one can send measurements of many different sensors
in a single message, thus reducing the network load. The origins of the values are encoded in a binary
mask. The message content of this data format contains the reporting service, the mask and the actual
data. Its payload size is given by the following equation,

dm(s) = sid + ssr_id + sml + mb × (m f (ssr)− ssr_id), (5)

with ssr and ssr_id representing the reporting service and reporting service identifier length. The service
mask length is denoted by sml . The number of bits in the mask having value 1 is given by mb. Finally,
m f (ssr) returns the data length as defined by Equations (1)–(4) of the reporting service depending on
its data format.

{
"0a": {

"service": "origins_8",
"title": "Service multi-origins (8-bit)",
"description": "Maximum of 8 service reporting origins",
"mask": 1,
"type": "byte",

}
}

A service responsible for carrying multi-origin data is exemplified above. A message for this
service is provided in Figure 2e. This particular message transmits the temperature (“20” hexadecimal)
of two different sensors, of which the origin is defined by the mask (“a0” hexadecimal = “10100000”
binary). The temperature values reported by the first and the third origins are “41f40000” and
“41da0000”, respectively.

3.2. Management Procedures

IMBC defines a set of services that enable management procedures responsible for device
configuration, payload identification, transmission cycle configuration, device control, firmware
update, protocol set-up and error handling. This section describes the applicability of these services in
the network management of heterogeneous IoT applications.

3.2.1. Device Configuration

The device configuration procedure accomplishes two tasks, namely, device configuration
announcement and device reconfiguration. The role of the former is to announce the implemented
services at the device level whenever a device is initialised. The announcement is utilised by the server
to automatically generate the necessary controls and device management functions. By implementing
the device reconfiguration functions at both server and device level, the server acquires the ability to
modify the device configuration at will.

A service responsible for carrying multi-origin data is exemplified above. A message for this
service is provided in Figure 2e. This particular message transmits the temperature (“20” hexadecimal)
of two different sensors, of which the origin is defined by the mask (“a0” hexadecimal = “10100000”
binary). The temperature values reported by the first and the third origins are “41f40000” and
“41da0000”, respectively.

3.2. Management Procedures

IMBC defines a set of services that enable management procedures responsible for device
configuration, payload identification, transmission cycle configuration, device control, firmware
update, protocol set-up and error handling. This section describes the applicability of these services in
the network management of heterogeneous IoT applications.

3.2.1. Device Configuration

The device configuration procedure accomplishes two tasks, namely, device configuration
announcement and device reconfiguration. The role of the former is to announce the implemented
services at the device level whenever a device is initialised. The announcement is utilised by the server
to automatically generate the necessary controls and device management functions. By implementing
the device reconfiguration functions at both server and device level, the server acquires the ability to
modify the device configuration at will.



Sensors 2020, 20, 861 8 of 17

IMBC defines three services for device configuration announcement: dual service configuration
(“00”), uplink service configuration (“01”) and downlink service configuration (“02”). The up-
and downlink services allow for up and download traffic, respectively, whereas the dual service
configuration allows for both. The dual service configuration can for example be used for a thermostat
where the uplink traffic is employed for reporting the temperature to the server. The downlink traffic
is then utilised for adjusting the temperature threshold to indicate when the heater should start.
An example where only uplink traffic is necessary can be a device only reporting its battery level.
A device only needing firmware updates can serve as another example only requiring a downlink
service.

3.2.2. Payload Identification

This procedure identifies and processes the Payload Data Object (PDO) services that are
responsible to carry the payload data. When originating from devices, the PDO’s carry reporting data
such as the battery level. When sent by the server, they can carry data used for device configuration.
An example can be the temperature threshold for the thermostat.

3.2.3. Transmission Cycle Configuration

IMBC defines a service responsible for configuring the time period between two successive
transmissions. The time period, expressed in milliseconds, is declared as an unsigned integer value
which permits time period configurations with a maximum of ∼49 days.

3.2.4. Device Control

IMBC also provides a service which allows the server to perform actions such as power off, restart
or sleep at the device level. This service has identifier “13”. The actions are represented by a 1 byte
value corresponding to the predefined actions listed in Table 3.

3.2.5. Firmware Update

IMBC handles firmware updates using two services: One service targets non-Internet devices,
whereas the other handles Internet-connected devices. The former has service identifier “11” and
carries firmware batches of variable length. The latter uses identifier “12” and transports the firmware’s
Uniform Resource Locator (URL) that points to the firmware available for download.

3.2.6. Protocol Setup

The protocol set-up procedure is meant for managing the IoT protocol used for succeeding
transmissions. This is mandatory for hybrid devices implementing more than one IoT protocol. The
identifier for this service is “10”. The payload data comprises the desired protocol identifier chosen
from the predefined list of protocols shown in Table 3. If the message sequence is “00”, the transmitting
protocol is automatically chosen by the receiver.

Table 3. Device action options, Protocol options and error messages. The considered protocols include
Low Range Wide Area Network (LoRaWAN), Narrowband IoT (NB-IoT), WiFi and Bluetooth Low
Energy (BLE).

Action Identifier Protocol Identifier Error message Identifier

Power off 00 Auto 00 Message parsing error 00
Reboot 01 LoRaWAN 01 Protocol not implemented 01
Sleep 02 NB-IoT 02 Protocol connection failed 02

WiFi 03 Firmware update error 03
BLE 04 Service not implemented 04

Transmission cycle setup error 05



Sensors 2020, 20, 861 9 of 17

3.2.7. Error Handling

Error handling refers to the procedure of handling the error conditions present at the device level.
This service is used to detect errors generated by the management procedures and maintaining device
functionality. It has identifier “0a” and transports the predefined 1 byte error messages shown in
Table 3.

4. Network Management Characteristics

IMBC achieves syntactic and semantic interoperability by implementing a common set of rules
which are followed by both the server and the devices. Syntactic interoperability refers to the ability of
each device within the network to communicate with one another. Note that, in this case, the term
device is used broadly, and thus also includes the server. This type of interoperability is obtained
by IMBC through the means of the service message formats. Semantic interoperability, on the other
hand, is the result of the server and the devices implementing adaptors that automatically interpret
data meaningfully by converting the service messages into system-readable representations. The
syntactic and semantic interoperability allow IMBC to achieve device configuration adaptability and
functional scalability.

4.1. Device Configuration Adaptability

Device configuration adaptability refers to the server’s ability to adapt the management functions
based on the device configuration. Concretely, the server automatically generates the list of interfacing
functions for a device and the available services. It implements the interfacing functions for each IMBC
service, which allow the users or the integrated applications to manage the IoT devices.

As illustrated in Figure 3, the device configuration is announced whenever a device is initialised.
More specifically, each device provides a list of implemented services to the server, which in turns
executes a function f with parameters the device identifier and the device configuration. This function
therefore returns a list of interfacing routines that can be used for device management. These interfacing
functions play an important role in achieving functional scalability described hereunder.

4.2. Functional Scalability

Functional scalability refers to the ability to enhance an IoT system by extending functionalities
without disrupting existing activities. Being functionally scalable is highly advisable for IoT
systems, due their evolving nature and their heterogeneity. Tasks such as battery replacement
for battery-powered devices, device reporting adjustments or device reachability enhancement,
demonstrate the need for such scalability to manage IoT systems with minimal effort. In this context,
IMBC provides services and management procedures to adjust the device configuration, to perform
service commands or to update service parameters at the device level as shown in Figure 4.

Though functional scalability vastly simplifies the management of IoT systems and in addition
enhances the ability to automate data representations and application interactions, it does increase the
overall complexity of the application. In other words, a trade-off between the management capabilities
and energy consumption is to be made. In order to reduce the overhead introduced by IMBC, we
have implemented support for power profiles that can be used to reduce power consumption. We will
further elaborate on this next.

Figure 3. Device configuration adaptability.



Sensors 2020, 20, 861 10 of 17

Figure 4. Device functional scalability.

4.3. Transmission Energy Consumption

The transmission energy consumption varies with the payload size and the transmitting protocol
particularities. It is calculated according to the following equation,

Etx = Ep × ps, (6)

with Etx, Ep and ps denoting the transmission energy consumption in joule, protocol energy
consumption per byte in joule and payload size in bytes, respectively. The payload size ps varies
depending on the payload structure, the included services and the message formats. More concretely,
it is the summation of the data sizes for all service representations. It is computed as follows,

ps =
K

∑
k=1

f ld(sk) +
L

∑
l=1

vld(sl) +
M

∑
m=1

f ll(sm)

+
N

∑
n=1

vll(sn) +
P

∑
p=1

dm(sp),

(7)

with s representing a service and fld, vld, fll, vll and dm representing the data length in bytes using the
fixed-length, variable-length, fixed-length list, variable-length list and data mask format as explained
in Section 3.1, respectively. The upper limits of the summations K, L, M, N and P represent the number
of services for each format.

5. Experimental Evaluation

This section evaluates the proposed IMBC model and its use in a functional scalable heterogeneous
IoT system. The system utilised for the experimental evaluation integrates various IoT protocols,
namely, LoRaWAN, NB-IoT, WiFi and BLE. The aforementioned protocols support bidirectional
communication allowing both server and devices to initiate the communication. The server implements
a logically centralised management solution making use of IMBC, which provides interfacing functions
for device management. The devices implement the IMBC services and the necessary adaptors to
automatically extract and pack meaningful data. To evaluate the proposed communication model,
a comparison has been conducted against the LwM2M standard to determine the payload size
differences. In addition, we evaluate the energy consumption for two IoT protocols that target
data transmission for low power devices.

5.1. Services

For the experimental evaluation, five services are transmitted within three different transmission
profiles. A summary of the employed services can be found in Table 4. For our experiments, we have
implemented three different transmission methods: The first one transmits the raw data, that is, the



Sensors 2020, 20, 861 11 of 17

actual measured data with no additional identifiers for service identification. The second transmission
technique utilises the proposed IMBC communication model and transmits the actual measured data
together with the service identifiers, which allow extracting and packing meaningful data. The third
transmission methods extends upon the second by adding three power profiles that prioritise the
five services depending on freely chosen user parameters, such as battery percentage, for example.
The power profiles are arbitrarily chosen to exemplify a scenario in which the device configuration is
adjusted utilising the IMBC model in order to increase the battery lifetime. More specifically, power
profile 1 transmits all service data until the battery capacity reaches 50%. Power profile 2 only transmits
data associated with services having priority 0 and 1 until the battery capacity reaches 25%. Last,
power profile 3 only sends data having priority 0 until the battery is fully discharged.

The power profiles play an important role for battery-powered devices as it can greatly increase
their battery lifetime. Furthermore, and as previously mentioned, the power profiles can be arbitrarily
chosen by the user. A key aspect of such an implementation is that one is able to predefine the lifetime
of the devices by tuning the profiles. This can greatly aid in planning the battery replacement process,
which can be problematic for large scale deployments.

5.2. Payload Size

This subsection compares the IMBC and LwM2M Tag-Length-Value (TLV) formats with respect
to the generated payload sizes when bootstrapping the services described in Table 4. The values for
LwM2M are determined by taking into account that multi-value messages are transmitted following
the TLV format. Each service includes the type, the identifier, the length (if applicable) and the value
as defined by the LwM2M specification [10]. Note that, in addition to the LwM2M TLV payload,
a LwM2M message also comprises the transport bytes imposed by the CoAP protocol; this is not the
case for IMBC, which does not rely on CoAP.

Embedding the aforementioned services in a single transmission message generates a message
payload size of 36 bytes and 27 bytes for LwM2M TLV and IMBC, respectively. Note that this does
not include the transport bytes for LwM2M TLV. The reduction in payload size provided by IMBC,
approximately 25%, is significant for battery-powered devices and low-power transmitting protocols
since the energy consumption for transmission is proportional to the data to be sent. Moreover, larger
payloads may extend over the protocol limitations with regard to the maximum transmission payload
size. For example, the maximum payload size for LoRaWAN varies between 51 bytes and 222 bytes
for the EU863-870 band channels. In this case, the LwM2M messages may easily pass over the lower
limit, therefore making the IMBC model much more suited for LoRaWAN transmitting devices.

Table 4. Service data priority and the payload size of the raw data, the IMBC data and the LwM2M
TLV data.

Service Data Priority Raw Data Size IMBC Data Size LwM2M TLV Data Size

Battery level 0 1 bytes 2 bytes 3 bytes
Temperature #0 0 4 bytes 5 bytes 6 bytes
Temperature #1 1 4 bytes 5 bytes 6 bytes

Humidity 1 1 bytes 2 bytes 3 bytes
Custom message 2 9 bytes 12 bytes 12 bytes

Total bytes 19 bytes 26 + 1 * bytes 30 + 6 * bytes

* Note that additional bytes are required to send multiple service values (e.g., Temperature #0 and #1).

Overall, IMBC advances over LwM2M in terms of payload size. Moreover, it eliminates the
transport bytes imposed by the CoAP protocol and the need of a LwM2M objects translator for BLE
devices as proposed by M. Ha et al. in [16]. In view of the foregoing, we may also conclude that the
IMBC model is more suitable than LwM2M for low-power deployments.



Sensors 2020, 20, 861 12 of 17

5.3. Power Consumption

To evaluate the power consumption of IMBC, two IoT protocols have been taken into
consideration: LoRaWAN and BLE v5.0. The reason for not incorporating WiFi and NB-IoT in
our experiments is justified by the negligible impact of the proposed IMBC identifiers in terms of
power consumption per transported bytes, as discussed in [11,18].

5.3.1. LoRaWAN

This subsection evaluates the impact of IMBC in terms of battery lifetime for LoRaWAN enabled
devices. The theoretical battery lifetime is computed for a battery capacity of 2400 mAh based on
the formalism established in [19]. Specifically, the battery lifetime Tli f etime_unACK for unacknowledged
transmission is given by

Tli f etime_unACK =
Cbattery

Iavg_unACK
, (8)

with Cbattery and Iavg_unACK denoting the battery capacity and average current consumption,
respectively. Iavg_unACK varies with respect to the notification period and transmission states. It is
computed as follows,

Iavg_unACK =
1

TNoti f

Nstates

∑
i=1

Ti · Ii, (9)

with TNoti f , Nstates, Ti and Ii denoting the notification period employed by the device, the number of
transmission states, the duration of state i and the current consumption of state i, respectively. The
average values for the different states are given in [19]. The battery lifetime is computed for three
different data rates and the related configurations for EU863-870 band channels. For each data rate, the
transmitted payload includes the transmission profiles particularities described below.

• Data rate 0—Spreading Factor 12, Bandwidth 125 kHz,
• Data rate 3—Spreading Factor 9, Bandwidth 125 kHz,
• Data rate 6—Spreading Factor 7, Bandwidth 250 kHz.

Figure 5 demonstrates the relatively limited impact of the IMBC identifiers in terms of power
consumption, despite enabling much more functionality with respect to network management.
However, note that the impact is more pronounced for lower data rates. Transmitting IMBC data
without power profiles utilising Data rate 0 results in a decreased battery lifetime of 14.5% when
compared to sending the raw data. For Data rates 3 and 6 the diminished lifetime is reduced to
approximately 3.2% and 0.5%, respectively. The negative impact on the battery lifetime, however, can
be mitigated by introducing power profiles. When using thresholds 50% and 25% for example, we
do not detect any decrease in battery lifetime for IMBC, as shown in Figure 5a,c,e. On the contrary,
for Data rate 0 the lifetime increased by more than 3.2% when taking the raw data transmission as
the reference.

The same conclusions can be drawn for LwM2M. Also in this case the impact on battery lifetime
is more apparent for lower data rates. However, when compared to IMBC, we observe from the figures
that the higher payload size of LwM2M negatively impacts the overall power consumption. Though
the power profiles indeed mitigate this problem, the thresholds of 50% and 25% do not suffice in this
case and the reduced battery lifetime is still substantial, unlike for IMBC.

Figure 5 further shows the results when using power profiles with thresholds 30% and 15%.
By comparing the results of using both power profiles thresholds, one can derive the impact of
enabling different power profiles. In principle, the results demonstrates the ability to adjust the battery
lifetime by tuning the thresholds. Note that this is also true for the highest data rate, where the
difference in lifetime is still days. As mentioned previously, the ability to plan and manage the battery
lifetime can greatly facilitate and streamline the battery replacement process, which can be very tedious
for large scale deployments.



Sensors 2020, 20, 861 13 of 17

(a) DR0 - Power profiles thresholds 50% and
25%

(b) DR0 - Power profiles thresholds 30% and
15%

(c) DR3 - Power profiles thresholds 50% and
25%

(d) DR3 - Power profiles thresholds 30% and
15%

(e) DR6 - Power profiles thresholds 50% and
25%

(f) DR6 - Power profiles thresholds 30% and
15%

Figure 5. Battery lifetime for LoRaWAN data rates DR0, DR3 and DR6 when transmitting Raw data,
IMBC data, IMBC data with power profiles, LwM2M TLV data and LwM2M TLV data with power
profiles. The orange coloured lines correspond to Raw data, the blue coloured lines correspond to
IMBC data and the green coloured lines correspond to LwM2M data.

5.3.2. Bluetooth Low Energy v5.0

For BLE v5.0-enabled devices, we compute the theoretical battery lifetime for a battery capacity of
500 mAh by dividing the battery capacity with the estimated average current computed by the power



Sensors 2020, 20, 861 14 of 17

profile estimator published by Nordic Semiconductor [20]. Similarly to LoRaWAN, we incorporate
three different data rates in our tests for both IMBC and LwM2M TLV while implementing the same
functionalities for both techniques:

• PHY8S—LE Coded S = 8, data rate 128 kbps,
• PHY1—LE 1M, data rate 1 Mbps,
• PHY2—LE 2M, data rate 2 Mbps.

The evaluating device is a connected peripheral utilising an nRF52840 chip at a working voltage
of 3.3 V with a connection interval of 100 ms and transmission power equal to 0 dBm. Figure 6
illustrates the battery lifetime computed for each data rate and each transmission profile for both
IMBC and LwM2M TLV. Generally speaking, the same conclusions as for LoRaWAN can be drawn
for the proposed method. Also, in this case, the impact of IMBC without power profiles is greater for
lower data rates in terms of battery life. More specifically, for data rates PHY8S, PHY1 and PHY2,
the power consumption is increased by approximately 14.5%, 6.5% and 3.7%, respectively, when
taking the raw data transmission as a reference. Note that according to [20], values less than 5% are
equivalent to device to device variations. For LwM2M TLV without power profiles the increase in
power consumption is much more pronounced. In this case, the reduced battery lifetime increased
correspondingly by 49%, 33%, and 27%, respectively, when taking the raw data transmission as a
reference. Similarly as for LoRaWAN, the increased power consumption can be completely negated
by using power profiles with thresholds 50% and 25% when using IMBC, as shown in Figure 6a,c,e.
Moreover, they allow us to tune the battery lifetime in a variable window of 18, 24 and 16 days for
data rates PHY8S, PHY1 and PHY2, respectively. For LwM2M TLV, however, the reduction in battery
lifetime remains substantial even when using power profiles. Taking Figure 6a as an example, we
observe a reduction in battery life of 20% for LwM2M TLV. In contrast, IMBC increased battery life
time with 2.9%.

(a) PHY8S - Power profiles thresholds: 50%,
25%

(b) PHY8S - Power profiles thresholds: 30%,
15%

Figure 6. Cont.



Sensors 2020, 20, 861 15 of 17

(c) PHY1 - Power profiles thresholds: 50%,
25%

(d) PHY1 - Power profiles thresholds: 30%,
15%

(e) PHY2 - Power profiles thresholds: 50%,
25%

(f) PHY2 - Power profiles thresholds: 30%,
15%

Figure 6. Battery lifetime for Bluetooth data rates PHY8S, PHY1 and PHY2 when transmitting Raw
data, IMBC data, IMBC data with power profiles, LwM2M TLV data and LwM2M TLV data with power
profiles. The orange coloured lines correspond to Raw data, the blue coloured lines correspond to
IMBC data and the green coloured lines correspond to LwM2M data.

6. Conclusions

This paper proposed a message-based communication model that achieves network management
and functional scalability for heterogeneous IoT systems. The model comprises a dictionary of services
utilised by the devices and the server to interact and to perform the desired actions agnostic to the
implied IoT protocol. Syntactic and semantic interoperability is achieved by implementing adaptors
that automatically interpret data meaningfully and convert the service messages into system-readable
representations. This paper described the message formats, the management procedures and the
interfacing functions introduced by the proposed communication model, and addressed the model’s
particularities in terms of network management and functional scalability. We evaluated the proposed
methods and showed its applicability in a functional scalable heterogeneous IoT system that integrates
LoRaWAN, NB-IoT, WiFi and BLE. Our experimental assessment revealed that our method allows
for more compact data representation than that of the LwM2M standard, a protocol specifically
designed with IoT applications in mind. Our experiments also revealed that our communication model
has a limited impact in terms of power consumption, despite providing much more functionality
with respect to network management. In fact, the increased power consumption can be completely
negated when using the power profiles implemented on top of our communication model. Besides
reducing the energy consumption, those power profiles allow one to predefine the battery lifetime



Sensors 2020, 20, 861 16 of 17

of the devices, which can greatly aid in streamlining the battery replacement process in large scale
deployments. Regarding future work, the underlying transmitting protocols impose limitations with
respect to the payload size. In the current approach, the employed transmission protocol is predefined.
Using the appropriate transmission protocol depending on the payload size is left as a topic for
future investigation.

Author Contributions: Conceptualisation, B.O., V.D. and A.M.; Funding acquisition, A.M.; Investigation,
B.O.; Methodology, B.O., V.D. and A.M.; Software, B.O.; Supervision, V.D. and A.M.; Visualisation, L.D.;
Writing—original draft, B.O. and L.D.; Writing—review & editing, B.O., L.D., V.D. and A.M. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by Fonds Wetenschappelijk Onderzoek (FWO), Vlaanderen (projects G025615
and G084117).

Acknowledgments: The research supported by the above mentioned projects is one of the research topics included
in the PhD work of B. Oniga.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Simeunović, M.; Mihailovic, A.; Djurišić, M.P. Setting up a multi-purpose Internet of Things system.
In Proceedings of the 2015 23rd Telecommunications Forum Telfor (TELFOR), Belgrade, Serbia, 24–26
November 2015.

2. Gonzalez, N.; Bossche, A.V.D.; Val, T. Hybrid wireless protocols for the Internet Of Things. In Proceedings
of the 2016 International Conference on Performance Evaluation and Modeling in Wired and Wireless
Networks (PEMWN), Paris, France, 22–25 November 2016.

3. Hoffmann, J.B.; Heimes, P.; Senel, S. IoT Platforms for the Internet of Production. IEEE Internet Things J. 2019,
6, 4098–4105. [CrossRef]

4. Alessio, B.; Walter, D.; Valerio, P.; Antonio, P. Integration of Cloud computing and Internet of Things:
A survey. Future Gener. Comput. Syst. 2015, 56, 684–700.

5. OneM2M. Available online: http://onem2m.org/ (accessed on 9 January 2020).
6. Koo, J.; Kim, Y.G. Interoperability of device identification in heterogeneous IoT platforms.

In Proceedings of the 2017 13th International Computer Engineering Conference (ICENCO), Cairo, Egypt,
27–28 December 2017.

7. Kulik, V.; Kirichek, R. The Heterogeneous Gateways in the Industrial Internet of Things. In Proceedings
of the 2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and
Workshops (ICUMT), Moscow, Russia, 5–9 November 2018.

8. Savazzi, S.; Sigg, S.; Nicoli, M.; Kianoush, S.; Gall, F.L.; Baqa, H.; Remon, D. A cloud-IoT model for
reconfigurable radio sensing: The Radio.Sense platform. In Proceedings of the 2018 IEEE 4th World Forum
on Internet of Things (WF-IoT), Singapore, 5–8 February 2018.

9. Alaya, M.B.; Medjiah, S.; Monteil, T.; Drira, K. Toward semantic interoperability in oneM2M architecture.
IEEE Commun. Mag. 2017, 53, 35–41. [CrossRef]

10. OMA Lightweight M2M. Available online: http://www.openmobilealliance.org/release/LightweightM2M/
V1_1-20180710-A/OMA-TS-LightweightM2M_Core-V1_1-20180710-A.pdf (accessed on 9 January 2020).

11. Cai, X.; Wang, Y.; Zhang, X.; Luo, L. Design and implementation of a WiFi sensor device management system.
In Proceedings of the 2014 IEEE World Forum on Internet of Things (WF-IoT), Seoul, Korea, 6–8 March 2014.

12. Trentin, I.F.; Berlemont, S.; Barone, D.A.C. Lightweight M2M protocol: Archetyping an IoT device, and
deploying an upgrade architecture. In Proceedings of the 2018 IEEE International Conference on Pervasive
Computing and Communications Workshops (PerCom Workshops), Athens, Greece, 19–23 March 2018.

13. Silverajan, B.; Zhao, H.; Kamath, A. A Semantic Meta-Model Repository for Lightweight M2M.
In Proceedings of the 2018 IEEE International Conference on Communication Systems (ICCS), Chengdu,
China, 19–21 December 2018.

14. Hoebeke, J.; Haxhibeqiri, J.; Moons, B.; Eeghem, M.V.; Rossey, J.; Karagaac, A.; Famaey, J. A Cloud-based
Virtual Network Operator for Managing Multimodal LPWA Networks and Devices. In Proceedings of the
2018 3rd Cloudification of the Internet of Things (CIoT), Paris, France, 2–4 July 2018.

http://dx.doi.org/10.1109/JIOT.2018.2875594
http://onem2m.org/
http://dx.doi.org/10.1109/MCOM.2015.7355582
http://www.openmobilealliance.org/release/LightweightM2M/V1_1-20180710-A/OMA-TS-LightweightM2M_Core-V1_1-20180710-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_1-20180710-A/OMA-TS-LightweightM2M_Core-V1_1-20180710-A.pdf


Sensors 2020, 20, 861 17 of 17

15. Karaagac, A.; VanEeghem, M.; Rossev, J.; Moons, B.; Poorter, E.D.; Hoebeke, J. Extensions to LwM2M for
Intermittent Connectivity and Improved Efficiency. In Proceedings of the 2018 IEEE Conference on Standards
for Communications and Networking (CSCN), Paris, France, 29–31 October 2018.

16. Ha, M.; Lindh, T. Enabling Dynamic and Lightweight Management of Distributed Bluetooth Low
Energy Devices. In Proceedings of the 2018 International Conference on Computing, Networking and
Communications (ICNC), Maui, HI, USA, 5–8 March 2018.

17. IPSO Alliance. Available online: https://omaspecworks.org/ipso-alliance/ (accessed on 9 January 2020).
18. Martinez, B.; Adelantado, F.; Bartoli, A.; Vilajosana, X. Exploring the Performance Boundaries of NB-IoT.

IEEE Internet Things J. 2019, 6, 5702–5712. [CrossRef]
19. Casals, L.; Mir, B.; Vidal, R.; Gomez, C. Modeling the Energy Performance of LoRaWAN. Sensors 2017,

17, 2364. [CrossRef] [PubMed]
20. Bluetooth Device Power Profiler. Available online: https://devzone.nordicsemi.com/nordic/power/

(accessed on 9 January 2020).

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://omaspecworks.org/ipso-alliance/
http://dx.doi.org/10.1109/JIOT.2019.2904799
http://dx.doi.org/10.3390/s17102364
http://www.ncbi.nlm.nih.gov/pubmed/29035347
https://devzone.nordicsemi.com/nordic/power/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	IoT Message-Based Communication (IMBC)
	The Message Format
	Fixed-Length Data Format
	Variable-Length Data Format
	Fixed-Length List Format
	Variable-Length List Format
	Data Mask Format

	Management Procedures
	Device Configuration
	Payload Identification
	Transmission Cycle Configuration
	Device Control
	Firmware Update
	Protocol Setup
	Error Handling


	Network Management Characteristics
	Device Configuration Adaptability
	Functional Scalability
	Transmission Energy Consumption

	Experimental Evaluation
	Services
	Payload Size
	Power Consumption
	LoRaWAN
	Bluetooth Low Energy v5.0


	Conclusions
	References

