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Abstract: The high sensitivity of silicon microcantilever sensors has expanded their use in areas
ranging from gas sensing to bio-medical applications. Photochromic molecules also represent
promising candidates for a large variety of sensing applications. In this work, the operating principles
of these two sensing methods are combined in order to detect the reversible conformational change of
a molecular switch, spiropyran. Thus, arrays of silicon microcantilever sensors were functionalized
with spiropyran on the gold covered side and used as test microcantilevers. The microcantilever
deflection response was observed, in five sequential cycles, as the transition from the spiropyran
(SP) (CLOSED) to the merocyanine (MC) (OPEN) state and vice-versa when induced by UV and
white light LED sources, respectively, proving the reversibility capabilities of this type of sensor. The
microcantilever deflection direction was observed to be in one direction when changing to the MC
state and in the opposite direction when changing back to the SP state. A tensile stress was induced in
the microcantilever when the SP to MC transition took place, while a compressive stress was observed
for the reverse transition. These different type of stresses are believed to be related to the spatial
conformational changes induced in the photochromic molecule upon photo-isomerisation.

Keywords: microcantilever sensor; spiropyran; molecular switch; self-assembled monolayers

1. Introduction

Silicon microcantilever-based sensors have generated great interest in the last decades due to their
high sensitivity and their ability to work as label-free sensors capable of detecting numerous target
analytes [1–5]. Early work into microcantilever-based sensors began with the investigations of silicon
microcantilevers, typically used with atomic force microscopes, as sensor transducers in their own
right [6–8]. More recently, microcantilever sensors have proved their sensing abilities in various new
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areas ranging from gas, humidity and thermal sensing to novel applications in microbiology, genomics
and cancer detection [9–15]. Innovative microcantilever coatings include polymer brushes-based
on phenylboronic acid which have been used to detect glucose binding events [15] and graphene
oxide (GO) thin films for high-sensitivity humidity sensing [16]. Other examples involve the use
of microcantilever sensors for detection of various diseases through, for example, antibody-antigen
interactions for the detection of disease-related C-reactive proteins or for the screening of heart-related
diseases by using cardiomyocytes functionalized microcantilevers [17–19]. Different fabrication
methods for microcantilevers as well as the range of available modification methods in the substrate
and sensing layer allow for the realization of different types of cantilever-based sensors [20,21].
An improvement in microcantilevers sensor efficiency of the n-type over p-type silicon cantilevers was
demonstrated, and this effect was explained by their greater piezoresistive coefficient [20]. Examples
include micromachined silicon cantilever paddle sensors which can be used in high flow rate gas
sensing [20,21], and resonant cantilevers for pressure sensing [22].

Spiropyrans (SP) are one of the most popular families of photochromic molecules [23,24]. Upon
irradiation with UV light, the orthogonal SP isomer converts to the planar merocyanine (MC) form due
to the photo-cleavage of the Cspiro-O bond. The MC isomer shows a strong absorption band in the visible
region due to its conjugation. When the MC is exposed to visible light, the structure returns to the SP form.
The two isomers (SP vs. MC) have various different properties, including molecular conformations
(orthogonal vs. planar), absorption spectra, charge (neutral vs. zwitterion), electric dipole moment
(range of ~4–6 D vs. range of ~14–18 D) [25–27] and structural differences, whereby SP occupies less
volume than MC [28–30]. Means of identifying this conformation change commonly include nuclear
magnetic resonance (NMR) and optical methods such as UV/Vis, fluorescence, luminescence and
optically detected magnetic resonance (ODMR) spectroscopic techniques. The significantly different
physico-chemical properties between SP and MC allow for the utilization of SP in a wide variety of
applications, such as switchable photo-induced polarity sensors [31], volume change actuators [32–34]
and wettability modulators [35], as well as for photo-control of binding/release of ions [36–39], cell
adhesion [40] and membrane permeability [41]. Moreover, these molecules can be used to tune surface
morphology [33], mechanical properties [42,43] and surface stress [24,44]. Therefore, the combination
of microcantilever sensors and SP molecules could generate new types of sensors that synergistically
combine the molecular sensing and binding capabilities of the SP-MC pair within a flexible and versatile
sensing technology such as the microcantilevers sensors. There is an increased interest in attaching
molecular switches, such as SP, to thin films, as they allow for the conversion of molecular response
to control, for example, electronic [45], optical [45], wettability [35] and chemosensing properties of
materials [45].

Previous work by this group focused on demonstrating the capability of silicon microcantilever
sensors to detect the unidirectional conformation change from SP to MC, in the case of Si-bonded
self-assembled monolayers (SAMs) and polymeric brushes as a proof of concept [44]. Although
successful, several drawbacks such as the inhomogeneity of the generated layer and the tedious
coating protocol (e.g., polymer brushes) prevented this technology from being further investigated.
In the present work, the gold-coated side of similar silicon microcantilevers has been functionalized
with SP-dithiolane SAMs. The limitations of the previous published work were overcome since
functionalizing the gold side of the microcantilever, rather than the silicon side, substantially increased
the uniformity of the coverage, generating a closely packed configuration of the SP coating when
utilizing thiol-terminated SAMs on the microcantilever surface. The dithiolane SP will spontaneously
bind to the gold-coated surface of the microcantilever via a strong Au-S interaction ensuring a
straightforward surface functionalization. This new system allowed for the detection of the reversible
isomerization process between SP and MC over five sequential cycles. This work demonstrates
that microcantilevers are able to sense the reversible conformational change of the molecular switch,
SP, when functionalized on the gold surface of the microcantilever. The microcantilever deflection
provides quantitative information of the stress induced by the conversion between the two isomers
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of the SP molecules when actuated with light of different wavelengths. This opens the possibility of
microcantilever sensor technology with SP sensing capabilities.

2. Materials and Methods

2.1. Materials

N, N’-dicyclohexylcarbodiimide (purity ≥ 99.0%) (DCC), 4-N, N-dimethylaminopyridine (purity
≥ 99.0%) (DMAP), L-thioctic acid (purity ≥ 98.0%), dichloromethane (DCM), hexane, ethyl acetate and
ethanol were all purchased from Sigma Aldrich (Ireland), and were used as received.

Microcantilever arrays were fabricated from single crystal silicon and are 756 µm long, 150 µm
wide, and 1 µm thick (Micromotive GmbH, Germany). Scanning electron microscopy images of the
microcantilevers were taken using the Carl Zeiss EVOLS 15 at an accelerating voltage of 10 kV.

2.2. Spiropyran Dithiolane Derivative Synthesis

The SP derivative used for the photochromic SAMs, 2-(3′,3′-dimethyl-6-nitrospiro [chromene-
2,2′-indolin]-1′yl)-5-(1,2-dithiolan-3-yl)pentanoate (SP-dithiolane), was synthesized from 2-(3′,3′-dimethyl-
6-nitrosoiro[chromene-2,2′-indolin]-1′-yl)ethanol (Tokyo Chemicals Industry, United Kingdom) and
L-thioctic acid, as described by Ivashenko et al. [46], see Figure 1. The by-product, dicyclohexylurea
(DCU) was removed through vacuum filtration, followed by rotary evaporation, in order to remove
the DCM solvent. Purification of the product was performed by column chromatography over silica
gel, using 1:5:1 hexane:DCM:ethyl acetate as the mobile phase. The isolated product was characterized
by 1H-NMR and 13C-NMR on a Bruker Avance Ultrashield 400 MHz NMR in deuterated chloroform
(CDCl3) (Figure S1).
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Figure 1. Synthesis of 2-(3′,3′-dimethyl-6-nitrospiro[chromene-2,2′-indolin]-1′yl) -5-(1,2-dithiolan-3-
yl)pentanoate from 2-(3′,3′-dimethyl-6-nitrospiro[chromene-2,2′-indolin]-1′-yl) ethanol and L-thioctic
acid in the presence of N’-dicyclohexylcarbodiimide (DCC) and 4-N, N-dimethylaminopyridine
(DMAP).

2.3. UV-Vis Studies

UV-Vis solution studies were performed on a SP-dithiolane 10−5 M solution in ethanol using a
Varian Carey 50 probe spectrophotometer (Figure S2). Prior to the collection of the MC-dithiolane
spectrum, the solution was irradiated with UV light for 1 min using a CL-1000 Ultra Violet Crosslinker
chamber. The kinetics of the SP/MC switching were also investigated in solution (10−4 M in ethanol)
using the UV/Vis Varian Carey 50 probe spectrophotometer. The absorbance at λmax 545 nm was
monitored each second over 1 h (Figure S3). The solution, which was placed in a quartz cuvette, was
subjected to UV light until the values stabilized. Following this, the solution was exposed to white light
irradiation (Dolan-Jenner-Industries Fiber-Lite LMI light emitting diode (LED lamp)). The experiment
was carried out over five cycles. The first-order rate constant for the ring opening (SP to MC) and ring
closing (MC to SP) processes were calculated using Equations S1–S2 (ESI, Figures S4 and S5).



Sensors 2020, 20, 854 4 of 12

2.4. Microcantilever Functionalization

Test microcantilevers were functionalized with SP-dithiolane SAMs as per the procedure described
by Ivashenko et al. [46]. For this purpose, the microcantilevers were immersed in a 10−4 M SP-dithiolane
solution in DCM overnight, and then washed with DCM and dried under a gentle stream of nitrogen
gas. Each microcantilever array was composed of four wells of microcantilevers (Figure S6A), where the
first well was left unfunctionalized (4 reference microcantilevers) while wells 2–4 were functionalized
(12 test microcantilevers). This was achieved by having the meniscus of the SP-dithiolane solution
below the first well (ESI, Figure S6B).

2.5. Microcantilever Deflection Measurements

Microcantilever deflection measurements were carried out using the Protiveris system,
which utilizes the static mode of microcantilever operation [47]. The deflection of 16 microcantilevers
can be measured simultaneously with this system (Figure 2). The position-sensitive detector (PSD) has
a 20 × 20 mm2 sensing area, and allows measurement of microcantilever bending down to 0.1 nm [47].
The microcantilever array contains four individual cells (Figure 2A, each of them composed of four
free microcantilevers and one fixed mirror, as seen in Figure 2A,B The fixed mirror is in place to give
information on perturbations/drifts of the optical system and not from the deflection of cantilevers.
The deflection of each individual microcantilever was measured after achieving an optical alignment
of the laser sources on the back of the microcantilever array. In this work, post SP functionalization, all
the cantilevers were deflected upwards with respect to the reference mirror. This caused a difference in
the position of the reflected spots that prevented getting the maximum laser reflection from the back of
the free cantilevers and the fixed mirror, simultaneously. As a direct consequence, it was not possible to
monitor the signal from the fixed mirrors in these experiments. A method to overcome this limitation
is difficult to implement due to the functionalization of the cantilevers. Therefore, further studies will
be needed in order to overcome this limitation. The microcantilevers were maintained at the same
environmental temperature of 26 ◦C throughout the experiments. The cartridge holder is contained
in an environmental chamber blocking outside light. The cartridge is thermally insulated from the
rest of the device by a thick Teflon sheet and it can be heated using a resistor embedded in the metal
body of the cartridge itself. The temperature can be controlled with 0.1 ◦C precision using an external
temperature controller, as described in [47]. A white light emitting diode (LED) and a UV LED were
placed directly over the microcantilever holder and inside the chamber enclosing the microcantilever
holder. The white or UV LED were turned on or off at the required times. LED sources were used
in order to minimize possible heating effects of the microcantilevers that could lead to associated
thermal drifts. Data normalization and baseline subtraction methods were utilized as described by
Hegner et al. [48,49].
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comprising of: 0₋reference mirror; 1–4₋SP self-assembled monolayer (SAM) functionalized 

Figure 2. (A) Schematic representation of the optical deflection detection method (based on a VCSEL
array as the light source and a position-sensitive device (PSD) as detector) for one well of the
array comprising of: 0-reference mirror; 1–4-SP self-assembled monolayer (SAM) functionalized
microcantilevers; The UV LED and white light (WL) LED used for the SP/MC switching are also
shown. (B) SEM image of one individual well composed of 4 microcantilevers and one reference mirror;
(C) SEM detail of microcantilevers.

2.6. Detection of Surface Stress

A difference in surface stress between the two sides of a microcantilever induces a deflection of
the microcantilever. This change in surface stress and corresponding deflection can be calculated using
a version of Stoney’s formula, Equation (1) [2],

∆z =
3(1−v)L2

^
Et2

σ (1)

where L is the length (756 µm), v is the Poisson’s ratio (0.22),
^
E is the Young’s Modulus (1.65 × 1011 Pa),

t is the thickness (1µm) of the microcantilever and σ is the surface stress generated. The surface stress
induced on the microcantilever surface, as a result of the SP/MC conversion, can be calculated by using
the average differential deflection and Equation (1).

3. Results and Discussion

3.1. Photo-Induced Microcantilever Deflections

Previous work tested the response of the silicon microcantilevers functionalized with SP on the
silicon side of the microcantilevers, monitoring only the change in state from SP to MC and without
using baseline subtraction methods [44]. This earlier work showed an upward deflection response of
the functionalized microcantilever on exposure to UV due to the SP changing state to the MC form.
In the present work, the microcantilevers having a SP-dithiolane SAM coating on the gold side (test
microcantilevers) showed a downward deflection upon similar exposure to UV light.

The different type of stress observed in these experiments, between the SP and MC state, can be
explained if one considers the spatial arrangements of the photochromic molecules, where SP occupies
less volume than MC [23,50]. As the transition SP–MC takes place under UV irradiation, the MC isomer
tends to occupy a larger volume and this can be accommodated by the microcantilever only through a
change in its curvature in order to increase its surface area. This leads to the occurrence of a tensile
stress and down deflection (schematic representation Figure 3, and deflection data shown in Figure 4).
On the other hand, the MC to SP transition implies a reduction in the surface area covered by the
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photochromic molecule and a minimization in its free energy. Consequently, the microcantilever tends
to reduce its area, i.e., bending in the opposite direction (Figure 4 and the schematic representation
in Figure 3). The magnitude of the stress values presented will depend on the surface density of the
photochromic molecules [35,44].
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Figure 4. Typical average deflection response of the test (red) and reference (black) microcantilevers
during 5 cycles of alternating UV and white light illumination.

Tests were also carried out to determine the ability of SP-functionalized microcantilevers to detect
the reversibility of the SP–MC transition. To this end, microcantilever response was measured when
exposed to successive illumination using UV and white light LEDs. Figure 4 shows a typical average
deflection response of the test and reference microcantilevers from one array on exposure to UV and
white LEDs over five sequential switching cycles (optimum alignment microcantilevers signals used,
n = 2 reference, n = 3 test). Despite the drift in the deflection of the reference microcantilever that
can be mainly ascribed to thermal fluctuations, larger deflection responses can be clearly observed



Sensors 2020, 20, 854 7 of 12

in test microcantilevers on exposure to the UV and white light LEDs; thus demonstrating the ability
of silicon microcantilever sensors to detect the reversible change of SP between the SP and MC state
when considering the differential deflection (test minus reference). The fact that the deflection of
the test microcantilevers in both the SP and MC states appears more constant than the reference
microcantilevers is due to the fact that the surface stress induced by the SP or MC conformations
is relatively constant. The fast response time is the result of the monolayer coverage allowing for
fast switching of the SP coating. Larger equilibrium time scales are typically observed in the case of
polymeric coatings [15] or microcantilever deflections that are a result of binding events [51,52].

The mean and standard error of the microcantilever deflection for the test, the unfunctionalized
reference and the differential deflections were determined by measuring responses to UV or white light
LEDs over five switching cycles. The mean linear deflections of the test and reference microcantilevers
were calculated using data normalization and baseline subtraction (see [49,51] for more details) and are
presented in Figure 5. The differential deflection response of the test minus reference microcantilevers
during 5 cycles of alternating UV and white light illumination are presented in Figure S7. It can be seen
that the MC–SP transition leads to a mean differential microcantilever deflection of 15 ± 1 nm upwards,
while the SP–MC transition leads to a mean differential microcantilever of 10.8 ± 0.6 nm, downwards;
see Figure 5. These deflection changes, in the tens of nm range, are due to molecular conformational
changes. Microcantilever deflections presented in Figure 4 are showing a difference in the direction of
deflection and therefore type of stress induced when switching between the SP and MC states. These
results indicate a different spatial layout of the SP molecules when either in the SP or MC states on the
microcantilever surface, which concurs with other findings on the structural differences of the SP and
MC [28–30,42].
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3.2. Photo-Induced Surface Stress

The surface stress induced on the microcantilever surface as a result of the SP/MC conversion was
calculated and is presented in Table 1.

Table 1. The surface stress induced as a result of SP/MC photo-isomerization.

State Transition Surface Stress Induced (N m−1) Type of Stress

SP→MC −1.3 ± 0.1 × 10−3 Compressive
MC→ SP +1.8 ± 0.1 × 10−3 Tensile

Further studies are needed in order to understand the relationship between the aerial surface
coverage, the spatial distribution of the photochromic molecules and the induced stress. Similar
microcantilever deflections and surface stress changes have been observed in other studies where
gold coated microcantilevers were used for the detection of a gene mutation linked to skin cancer [10]
or detection of Kanamycin [52]. However, a quantitative comparison to existing literature cannot
be made due to the difference in the microcantilever sensing systems and in the coating on the
microcantilever surface. Previous investigations exploiting microcantilever sensors for detection of
molecular conformation changes most commonly firstly implied a ligand–receptor association or
dissociation event (accompanied by a mass alteration) that resulted in a molecular change in the
microcantilever coating. As an example, the conformation change of the protein bacteriorhodopsin,
immobilized on the microcantilever surface, has been detected by measuring the microcantilever
deflection response to the injection of hydroxylamine, which induces conformation changes in this
protein due to ligand receptor dissociation [49]. Another study has demonstrated the ability to monitor
real-time conformational changes of enzymes immobilized on a microcantilever surface as a result of
binding with their ligands [53].

At present, elucidating the origin and the magnitude of the stress induced by the SP–MC
transitions (and reflected by the cantilever deflection) still needs further investigations. Thus, while it
is clear that different spatial configuration are occupied by the SP and MC state [46,54], further factors
might also contribute (by enhancing or hindering) to the detected deflection. Thus, the presence
of absorption/emission/dissipation phenomena in the functionalized cantilever can also play a role,
and they can mainly contribute to the presence of the thermal drift on the bending. The role of the
thermal drift appears to be mainly in hindering the effect of the bending, but further studies will
be needed in order to elucidate these aspects. Additionally, improvements in the system to reduce
the effects of the thermal drift would be beneficial. Other groups have developed systems with
improved temperature isolation and methods to measure the static and dynamic deflections of the
microcantilevers to increase the accuracy of the measurements [11,55]. Such improvements are foreseen
for the present configuration and will contribute in elucidating the phenomena described in this
paper. Even though such sophisticated improvements were not present in the work, the obtained
results clearly show that microcantilevers can sense reversible molecular conformation changes of the
SP monolayer solely due to isomerization. Moreover, the lack of hysteresis during the light cycling
(UV/WL) indicates that the microcantilever is an effective transducer for characterizing this reversible
photoswitching process.

4. Conclusions

In this study, reversible photo-induced isomerization between the SP and MC states has been
detected and evaluated using silicon microcantilever-based sensors. For this, the gold coated side of the
microcantilever sensor was functionalized with SP SAMs. Testing five switching cycles of SP to/from
MC transitions demonstrated the ability of the microcantilever sensor system to detect the reversible
switching between the two states on exposure to white or UV light, which induced a tensile and
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compressive stress for the SP to MC and MC to SP transitions, respectively. This difference in surface
stress can be interpreted in terms of the different surface spatial arrangements of the two isomers.

This work also represents a first step towards the realization of a microcantilever sensor, which can
be remotely and selectively configured using UV and white light LEDs. Based on the well-known
binding properties of the MC isomer, once in the ‘OPEN’ MC state, the microcantilever could be
used to capture and detect cationic species such as divalent metal ions by monitoring microcantilever
deflection. Future work in this area will further develop this microcantilever system and will test its
ability to detect the presence of metal ions when the SP coating is turned ‘OPEN’ remotely.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/3/854/s1,
Figure S1: 1H NMR of SP-dithiolane; Figure S2: Absorbance spectrum of a 10−5 M solution of SP-dithiolane in
ethanol, under different illumination conditions; Figure S3: Graph monitoring the absorbance at λmax = 545 nm
during UV/Vis irradiation cycles of a SP-dithiolane solution in ethanol; Figure S4: Experimental data and fitted
model following the absorbance at 545 nm during the ring opening (SP to MC) process, under UV irradiation,
for three consecutive switching processes; Figure S5: Experimental data and fitted model following the absorbance
at 545 nm during the ring closing (MC to SP) process, under white light irradiation, for three consecutive switching
processes; Figure S6: (A) Photograph of two cantilever arrays having the silicon (top) and the gold (bottom) side
facing up; (B) Placement of the cantilever array, during functionalisation, using the SP-dithiolane solution; Figure
S7: Typical differential deflection response of the test microcantilever during 5 cycles of alternating UV and white
light illumination.
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