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Abstract: The monitoring and prediction of the landslide groundwater level is a crucial part of
landslide early warning systems. In this study, Tangjiao landslide in the Three Gorges Reservoir
area (TGRA) in China was taken as a case study. Three groundwater level monitoring sensors were
installed in different locations of the landslide. The monitoring data indicated that the fluctuation
of groundwater level is significantly consistent with rainfall and reservoir level in time, but there
is a lag. In addition, there is a spatial difference in the impact of reservoir levels on the landslide
groundwater level. The data of two monitoring locations were selected for establishing the prediction
model of groundwater. Combined with the qualitative and quantitative analysis, the influencing
factors were selected, respectively, to establish the hybrid Genetic Algorithm-Support Vector Machine
(GA-SVM) prediction model. The single-factor GA-SVM without considering influencing factors and
the backpropagation neural network (BPNN) model were adopted to make comparisons. The results
showed that the multi-factor GA-SVM performed the best, followed by multi-factor BPNN and
single-factor GA-SVM. We found that the prediction accuracy can be improved by considering
the influencing factor. The proposed GA-SVM model combines the advantages of each algorithm;
it can effectively construct the response relationship between groundwater level fluctuations and
influencing factors. Above all, the multi-factor GA-SVM is an effective method for the prediction of
landslides groundwater in the TGRA.

Keywords: landslides monitoring; groundwater level prediction; Support Vector Machine; influencing
factors; Three Gorges Reservoir area

1. Introduction

The groundwater, with storage and migration behaviors, is one of the main natural factors affecting
landslide stability. It impacts the various stages of landslide development [1,2]. According to the
statistics, 30–40% of dam failures are caused by the damage of groundwater seepage [3], and more
than 55% of soil landslides are caused by the effect of groundwater in China. The monitoring and
prediction of the landslide groundwater level is a crucial part of landslide early warning systems [4].

The groundwater level in a landslide is mainly affected by external input factors (rainfall,
reservoir level, irrigation, etc.) and the permeability of the sliding body (looseness of the soil,
development of earth cracks, etc.). For example, for landslides with loose soil and well-developed
cracks, the groundwater level clearly rises after rainfall infiltration, which becomes an unfavorable
factor for landslide stability [5]. There are mainly three aspects of groundwater that affect the stability
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of landslides [6,7], including physical and chemical functions of rock and soil, the mechanical function
of pore water pressure, and hydrodynamic pressure conditions of landslides. Trigo et al. proposed that
landslides of variable movement types are triggered by groundwater level rising and shear strength
reduction [8]. Ray and Jacobs and Tommasi et al. also considered that most of the slope failures are
caused by soil moisture or groundwater because they increase pore water pressure and decrease shear
strength [9–11]. It can be seen that the effect of groundwater on landslides is reflected by the change
of landslide stability, which is caused by the change of the water level [12]. Hence, real-time process
control of groundwater levels can provide an effective judgment on the stability of landslides.

For the landslides in the Three Gorges Reservoir area (TGRA) in China, under the conditions
of water-impoundment of the reservoir, the slopes are recharged directly by groundwater or surface
water chronically with strong alternating and cycling actions [13]. The dynamic variation process of
the landslide groundwater level is a complex power system. It is controlled by the hydrogeological
conditions and the combined action of internal and external factors, such as precipitation and the
fluctuation of reservoir water level [14]. However, it is difficult to comprehensively analyze the
overall stability of landslides through an accurate analytical method of the measured pore water
pressure [15,16]. In general, the change of groundwater level is composed of the deterministic and
random components, and the components are influenced by both deterministic and non-deterministic
factors. The action rules of these factors will be reflected in the measured data as long as the observation
period of the groundwater level is long enough. It is of great significance for landslide forecasting to
study the variation characteristics of groundwater under variable conditions of rainfall and reservoir
water level, and make a real-time prediction of groundwater level in a potential susceptible landslide.

In recent years, numerical simulation techniques have been utilized to study the groundwater
level change with external factors, including rainfall [17], reservoir impoundment [18], artificial
infiltration, drainage, and so on. However, the simulation technique is always complicated, and it
requires accurate soil parameters, which are difficult to obtain. Recently, with the development of
machine learning (ML) technique, numerous ML models, including hybrid, ensemble, deep learning,
etc., have been widely utilized in geology and environment studies [19–21]. Choubin et al. applied
simulated annealing feature selection to identify key features, and five ML models were used to predict
the earth’s fissure hazard [22]. Shamshirband et al. proposed the ensemble models with uncertainty
analysis for multi-day ahead forecasting of chlorophyll-a concentration in coastal waters [23]. Lian
et al. established a landslide displacement model based on a modified ensemble empirical mode
decomposition and extreme learning machine (ELM) [20]. Nguyen et al. presented three novel hybrid
ML models for landslide susceptibility modeling, all of which achieved good performance in the area
of Vietnam [21]. The advanced ML models have been applied in land subsidence hazard prediction,
landslide susceptibility mapping, landslide failure time prediction, and the other fields [22,24–26].
However, far too little attention has been paid to the application of ML for the prediction of landslide
groundwater level fluctuation. Support Vector Machine (SVM) model was established based on
statistical learning theory, which replaced the empirical risk minimization principle of traditional
ML methods with the structural risk minimization principle [27]. The SVM model shows a perfect
generalization ability to overcome the deficiencies of the traditional artificial neural networks [28,29].
The developed studies present that SVM has achieved excellent performance in both accuracy and
stability [25,30,31].

A hybrid model can integrate the advantages of each model. Nowadays, using hybrid models has
become popular in modeling and estimating studies. These models combine more than one classifier
or use one for estimating and the other for parameter optimization. Based on the previous literature,
the hybrid model performs better than the single model [32]. SVM advances a lot in dealing with the
problem of nonlinear regression prediction. However, its generalization performance is sensitive to the
selection of the parameters [33–36]. The difficulties in capturing the critical modeling variables are
noted as the major drawbacks to SVM [22]. Hence, it is urgent to apply optimization algorithms to
search for the optimal parameters of SVM. The Genetic Algorithms (GA) is an optimization algorithm;
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it simulates the mechanism of genetic variation and the theory of biological evolution. GA has the
advantages of parallelism and global optimization. It has achieved excellent optimization results in
plenty of studies [37–39]. In the current study, GA was utilized to select and optimize the parameters
of SVM.

Three sensors were installed in Tangjiao landslide to monitor the fluctuation of the groundwater
level. Based on the in-suit monitoring data, this study analyzed the variation characteristics of the
groundwater level and its relationship with reservoir level and rainfall. Two monitoring positions were
selected for establishing a prediction model. The proposed multi-factor GA-SVM, backpropagation
neural network (BPNN) model, and the single-factor GA-SVM without considering the factors were
utilized to predict the groundwater level of Tangjiao landslide. A comprehensive comparison and
assessment of these models will be presented in this study.

2. The Forecast Model of Groundwater Level

2.1. Proposed Prediction Model

In the reservoir area, the change of groundwater level in a landslide is associated with geological
conditions of the landslide itself, the scheduling of reservoir level, and the rainfall. According to the
data of reservoir scheduling, rainfall, and the monitoring data of groundwater level in the Tangjiao
landslide, the time-series expression is established as follows:

gi = f (xi, xi+1, . . . , xi+n, yi, yi+1, . . . , yi+n)(i = 1, 2, . . . , n) (1)

where f is the expression of the SVM, gi is groundwater level, xi is reservoir level, and yi is rainfall.
Reservoir level and rainfall are factors independent of each other.

2.2. Introduction of the GA-SVM Model

The SVM model is a nonlinear regression forecast method proposed by Vapnik et al. (1995).
The input variables are mapped to a high-dimensional linear feature space by the nonlinear
transformation. The optimal decision function is constructed. Then the dot product operation
of high-dimensional feature space is replaced by the kernel function of the original space. The optimal
global solution is obtained by learning and training of finite samples [40]. The regression function is
as follows:

f (x) =< W ·Φ(x) > +b (2)

The estimation function is transformed into a function minimization problem by the insensitive
loss function ε:

Rmin =
1
2
||W||2 + C

m∑
i=1

(ξi + ξi
∗) (3)

The constraints are as follows:
WTφ(xi) + bi − yi ≤ ε+ ξi;
yi −WTφ(xi) − bi ≤ ε+ ξ∗i ;
ξi, ξ∗i ≥ 0, i = 1, · · · , l.

(4)

where, C is the penalty factor, ξi and ξ∗i are relaxation factors, b is the offset value. Finally, by introducing
Lagrange multipliers and the application of Wolf duality theory, it is translated into an equivalent dual
problem as follows:

min
1
2
(α− α∗)TQ(α− α∗) + ε

l∑
i=1

(αi + α∗i ) +
l∑

i=1

yi(αi − α
∗

i ) (5)
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The constraints are as follows: 
l∑

i=1
(αi + α∗i ) = 0;

0 ≤ αi,α∗i ≤ C, i = 1, 2 · · · l.
(6)

where, Qi j = K(xi, x j) = f (xi)
T f (xj).

By quadratic programming, the regression forecast model is obtained as follows:

f (x,α∗i ,αi) =
l∑

i=1

(α∗i − αi)K(xi, x) + b (7)

where, K(xi, x) is the kernel function of the SVM. At present, there are four commonly used kernel
functions—linear kernel function, polynomial kernel function, radial basis kernel function (RBF), and
sigmoid function.

The genetic algorithm is an artificial intelligence algorithm. It searches the optimal solution by
simulating the process of natural evolution. This algorithm simulates phenomena that occurred in
natural selections and genetics, such as reproduction, crossover, and mutation. Starting from an initial
population, through the operation of selecting, crossing and mutating, a group of better-adapted
individuals is produced. These individuals make the group evolve into a better area in the search
space. Then through the constant multiplications and evolutions, the optimal solution can be obtained
by converging to the individuals, which can best adapt to the environment.

Considering that the SVM is sensitive to the model parameters, GA was adopted to optimize the
parameters, and the GA-SVM coupling model was established. The flowchart is depicted in Figure 1.
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Figure 1. Analysis flowchart of the GA-SVM prediction model.

2.3. Introduction of the BPNN Model

BPNN is a multilayer feedforward neural network. It has the characteristics of error reverse
transmission and signal forward transmission. BPNN is learned by example, which consists of some
input examples and the known correct output for each case. In the first step of the BPNN process [41],
the learning samples are added to the input network. Then, the back-propagation algorithm is used
to train the weights and deviations in the network. It more closely matches the output vectors and
expectation vectors. If there is a big error between the output result and the expected result, the error
propagates backward, adjusts the network threshold and weight, and is repeated to eventually make
the predicted output result approach the expected output result. The topological structure of BPNN is
shown in Figure 2. Previous research has shown that the basic architecture of a three-layered neural
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network consists of an input layer, a hidden layer, and an output layer. It can accurately fit nonlinear
mapping relationships [42]. Additionally, the trial-and-error approach is used to choose an appropriate
number of hidden neurons in the BPNN model.

Sensors 2020, 20, x FOR PEER REVIEW 5 of 21 

 

expectation vectors. If there is a big error between the output result and the expected result, the error 
propagates backward, adjusts the network threshold and weight, and is repeated to eventually make 
the predicted output result approach the expected output result. The topological structure of BPNN 
is shown in Figure 2. Previous research has shown that the basic architecture of a three-layered neural 
network consists of an input layer, a hidden layer, and an output layer. It can accurately fit nonlinear 
mapping relationships [42]. Additionally, the trial-and-error approach is used to choose an 
appropriate number of hidden neurons in the BPNN model. 

 

Figure 2. The basic structure of BPNN. 

2.4. Evaluation Model of the Prediction Accuracy 

Root mean square error (RMSE, Equation (8)) and the mean absolute percentage error (MAPE, 
Equation (9)) are commonly used indexes for accuracy testing of prediction models. The smaller the 
values of RMSE and MAPE are, the better the prediction result is. However, the values of RMSE and 
MAPE are associated with the value of the motoring data. The correlation coefficient (Equation (10)) 
is not related to the monitoring data; it can reflect the correlation between the variables. This paper 
has adopted the correlation coefficient for the forecast accuracy analysis [43].  

2

1

1
ˆ( )

N

i i
i

RMSE x x
N =

= −  (8) 

1

ˆ1 N
i i

i i

MAPE
x x

N x=

=
−  (9) 

1

2 2

1 1

ˆ ˆ( )( )

ˆ ˆ( ) ( )

N

i i
i

N N

i i
i i

x x x x
R

x x x x

=

= =

− −
=

− −



 
 (10) 

where, ix  is the measured value; ˆix  is the predicted value; N  is the number of predicted values; 

xis the mean of the measured values; x̂ is the mean of predicted values. 
  

Figure 2. The basic structure of BPNN.

2.4. Evaluation Model of the Prediction Accuracy

Root mean square error (RMSE, Equation (8)) and the mean absolute percentage error (MAPE,
Equation (9)) are commonly used indexes for accuracy testing of prediction models. The smaller the
values of RMSE and MAPE are, the better the prediction result is. However, the values of RMSE and
MAPE are associated with the value of the motoring data. The correlation coefficient (Equation (10)) is
not related to the monitoring data; it can reflect the correlation between the variables. This paper has
adopted the correlation coefficient for the forecast accuracy analysis [43].

RMSE =

√√√
1
N

N∑
i=1

(x̂i − xi)
2 (8)

MAPE =
1
N

N∑
i=1

∣∣∣∣∣xi − x̂i
xi

∣∣∣∣∣ (9)

R =

N∑
i=1

(xi − x)(x̂i − x̂)√
N∑

i=1
(xi − x)2

√
N∑

i=1
(x̂i − x̂)

2

(10)

where, xi is the measured value; x̂i is the predicted value; N is the number of predicted values; x is the
mean of the measured values; x̂ is the mean of predicted values.

3. Sensors Installation and Data Acquisition

3.1. Geologic Conditions of the Monitored Landslide—The Tangjiao Landslide

The Tangjiao landslide is located in the Wanzhou district of Chongqing City, the east edge of
the Sichuan basin and the south side of the Yangtze River (Figure 3). Once the landslide fairs, it will
endanger the lives and property of 709 people in the landslide area. It will also threaten the safety of
the road and shipping of the Yangtze River.

The Tangjiao landslide location belongs to the bank accumulation landforms of the Yangtze River
valley. In the front of the landslide, the terraces and flood plains develop well with gentle step surfaces.
They bulge out like the tongue and show arc shapes in contours. The slope inclines with radial shape.
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The middle and rear part of the landslide is gentler than the front. The back edge of the landslide is
concave southwards with cirque shape. the slope gradient is 25◦–45◦ with many bedrocks exposed.
The landslide is an oversized soil deformation. It is fan-shaped on the whole platform, with the main
sliding direction of 359◦. It has an estimated volume of 2672.4 × 104 m3, with an average thickness of
20 m. The entire landslide covers an area of 133.62 × 104 m2, with a maximum longitudinal dimension
of 1020 m and an average width of 1310 m (Figure 4).
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Figure 4. Topographical map of the Tangjiao landslide, with monitoring points.

The landslide is located in the core area of Wanxian syncline. Its axis trend is NE30◦–60◦.
The attitude of the core rock layer is 153◦∠4◦ with two asymmetrical wings, the steep northwest one
(40◦–80◦) and the gentle southeast one (15◦–40◦). The landslide is locally covered by thick gravelly soil
accumulated from quaternary collapse-slide and eluvial-colluvial deposits. The underlying bedrock is
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interbedded with sandstone and mudstone of the Shaximiao Formation of Middle Jurassic, the strata
attitude of which is 170◦∠5◦ (Figures 5 and 6).
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The formula of the groundwater level is shown below:

H = h/100− hs + Hs − d (11)

where, H is the groundwater level; h is the device records(cm); hs is the height of water column at
standard atmospheric pressure, hs = 10.336 m; Hs the elevation of the hydrologic hole(m); d is the
distance between monitoring probe and hydrologic hole, in this paper, d = 5 m.

Three groundwater monitoring points (STK) were installed on the Tangjiao landslide. They were
respectively labelled as STK-1, STK-2, and STK-3, and their positions are shown on Figures 4, 5 and 8.
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Figure 8. Generalized schematic section of groundwater in the toe of the landslide.

The three monitoring points of groundwater level were all installed on the terrace III. The
groundwater level of STK-1 varied obviously along with the fluctuation of the reservoir level, while the
STK-2 and the STK-3 almost remained unchanged (Figure 8). STK-1 is located on the toe of the front
part with an elevation of 179 m, and it is close to the river; therefore, the groundwater can be directly
recharged or discharged by the reservoir water. The elevations of the STK-2 and STK-3 are 192 m and
213 m, respectively. The STK-3 is located on the second platform of the junction of terrace III and IV.
The maximum height of the reservoir level is about 175 m, which shows less impact on the groundwater
of the two positions. From field investigations, it was found that during the high reservoir level season,
groundwater is often exposed to small scarps (Figure 9a); and similar results were found for the STK-2
in rainy seasons (Figure 9b). Consequently, it is reasonable to infer that the groundwater in the toe of
the Tangjiao landslide consists of different hydrologic systems. The groundwater of STK-1 and STK-2
are influenced both by the reservoir level and rainfall. The reservoir level is the most obvious factor for
STK-1, while STK-3 is mainly influenced by rainfall. The groundwater level of STK-1 and STK-3 were
used to establish the prediction model in this paper (Figure 10).
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4. The Groundwater Level Prediction of STK-1

4.1. Monitoring Data of Groundwater Level

The water-impoundment of the Three Gorges Reservoir has reached full capacity since 2007.
The fluctuation of the reservoir level ranges from 145 m to 177 m with a variation of 30 m. The scheduling
process is divided into four stages (Figure 11). It makes the hydrogeological conditions of the reservoir
area in Wanzhou represent different characteristics in different periods during the year [44].Sensors 2020, 20, x FOR PEER REVIEW 10 of 21 
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The groundwater level with time was analyzed and summarized below (Figure 12):

(1) Between September 2012 and May 2013, the fluctuation of the reservoir level maintained a high
degree of consistency with the groundwater level of hydrological hole STK-1. From May to July
2013, the reservoir level was continuously decreasing from 160 m to 145 m, while the groundwater
level clearly fluctuated under the influence of rainfall. The reason is that the front part of the
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landslide is covered by loose deposits, the high permeability of the soil, and the penetrative
pressure induced by short-time intensive rainfall make the groundwater recharge quickly by the
rainfall. So, the continuous rise of the groundwater level was affected by the rainfall more than
the reservoir level during this period.

(2) On 25 May 2013, the rainfall reached 115 mm/d, and the groundwater level rose from 173.5 m to
177.5 m which increased 4 m within 24 h. Meanwhile, the reservoir level fell at a speed of 1.1 m/d.
Three days after the rain stopped, the groundwater level dropped to 174 m again, and then rose
rapidly when the rainfall reached 54.6 mm/d on 29 May.

(3) Between September and November 2013, the reservoir level increased into the normal storage
level of 175 m, but the groundwater level showed a slight downward trend.
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The characteristics of the groundwater level in STK-1 indicated that the groundwater maintained
close hydraulic connection and significant response relationship with the reservoir level and rainfall.
They were the main factors of the changes in the groundwater level. Due to the geological conditions of
the landslide, there was a hysteresis effect when the groundwater level was changing with the variation
of rainfall and reservoir level, but the trends were in agreement substantially. When the reservoir
level rose, and the rainfall increased, the groundwater would be recharged to a corresponding uplift.
On the contrary, when the reservoir level dropped, and the rainfall decreased, the groundwater level
would decline.

4.2. Determination of Influencing Factors

The variable speed of the groundwater level is related to the fluctuation speed of reservoir level
and the permeability of the soil in front of the landslide. The greater the speed of groundwater level
declines, the faster the decrease of the seepage line in a landslide will be. When the reservoir level
drops at a certain speed and the rains last in a certain duration, the position of the seepage line would
depend on the rainfall intensity. With the changes in the external conditions and the soil permeability,
the response of the groundwater level shows hysteresis effects in various degrees.

The hydrology hole STK-1 is located on the front part of the Tangjiao landslide at a lower altitude.
The soil is loose with large permeability coefficient, so the lag-time, the groundwater response to the
reservoir water, is shorter than other parts of the landslide. The monitoring data in Figures 12 and 13
showed that the shape of the change rate curves of the groundwater level in the Tangjiao landslide
was similar to that of the change of the reservoir level on the previous day, the change of the reservoir
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level over the past two days, and the change of the reservoir level over the past one week. Hence,
the reservoir level on the current day, the change of the reservoir level on the previous day, the change
of the reservoir level over the past two days, and the change of the reservoir level over the past one
week were selected as the reservoir level factors of groundwater level.
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Figure 14 showed that it was at a lower level of the reservoir from May to July, and the rainfall
period as well. So, besides the fluctuation influence of the reservoir level, the groundwater level
was also influenced by the rainfall. The groundwater increased within 1–2 days when heavy rainfall
occurred, which was seen from 8–9 June. The relationship between the groundwater level and the
rainfall during 5–8 May and 23–25 June showed that, when the continuous heavy rainfall occurred,
the groundwater rose rapidly and was maintained at a high level, about one week after the rainfall
stopped. Then because of the geotechnical characteristics of the landslide, surface evaporation, and flow
discharge, the groundwater returned to the initial state rapidly within a short period. The continuous
heavy rainfall was the main reason for the rise of the groundwater level.
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The degree of grey correlation is applied to make a dynamic analysis on the degree of similarity
or dissimilarity of the development trend of multi-variable nonlinear time series. It is a quantitative
index for measuring the correlation. As the relationship between the groundwater level and its factors
was dynamically changing with time, the calculation of the absolute difference and the degree of grey
correlation were performed through the normalized processing. The values of grey correlation are
shown in Table 1.

Table 1. Calculation results of grey correlation between groundwater level and factors of STK-1.

Influencing Factor Degree of Grey Correlation

The reservoir level on the current day 0.988
The change of the reservoir level on the previous day 0.827
The change of the reservoir level over the past two days 0.827
The change of the reservoir level over the past one week 0.828
The rainfall on the current day 0.854
The cumulative rainfall on the previous day 0.854
The cumulative rainfall over the past two days 0.859
The cumulative rainfall over the past one week 0.879

The results showed that the degree of grey correlation between the influencing factors and
the groundwater level were all greater than 0.800. It indicated a great consistency of the changing
tendency. The influence of the reservoir level was stronger, which was in a valid agreement with the
monitoring data.

This paper selected the reservoir level on current day, the change of the reservoir level on the
previous day, the change of the reservoir level over the past two days, the change of the reservoir
level over the past one week, the rainfall on current day, the cumulative rainfall on the previous day,
the cumulative rainfall over the past two days and the cumulative rainfall over the past one week as
the influencing factors to establish the response model between the factors and the groundwater level
and to predict the groundwater level in the STK-1.

4.3. The Result Analysis of the Prediction Model

The monitoring data from 15 February to 7 June 2013 were selected as the training sample of the
time-series for the GA-SVM prediction model. The data from 9 to 27 June 2013 were selected as the test
sample, which was within the period when the groundwater level fluctuated the most.

In order to eliminate the influence of the dimension, a normalization processing was applied to all
the data, and the normalization formula is shown as follows:

x =
X −Xmin

Xmax −Xmin
(12)

where, x are the normalized values, X are the original values, Xmax is the maximum value of a sequence,
and Xmin is the minimum value of a sequence.

The population of the GA was set as pop = 30 and the maximum iterative steps number was
100. The optimal parameters of the penalty factor C and the radial basis kernel function (RBF) γ were
searched by the GA (Figure 15), which was C = 6.9709 and γ = 0.58537, respectively. Using the
optimal parameters, the multi-factor SVM model was established to find the response relationship
between the groundwater level and the influencing factors. The model was trained by the training
sample, then the trained model was used to make a prediction of the groundwater level.

In addition, the single-factor SVM prediction model without considering the factors and the
BPNN model were adopted to make a comparative analysis with the proposed multi-factor model.
The comparison curves between the predicted and measured groundwater levels are shown in
Figures 16 and 17. The evaluation results of the prediction accuracy are shown in Table 2.
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Figures 16 and 17 showed that the predicted results of the three models were all consistent with
the trend of measured values, but the prediction error at the turning points was relatively larger using
the single-factor model.
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Table 2. Evaluation results of the prediction accuracy of STK-1.

Prediction Model Multi-Factor
GA-SVM

Single-Factor
GA-SVM

Multi-Factor
BPNN

Accuracy
RMSE/m 1.104 1.409 1.195
MAPE/% 0. 465 0.525 0.522

R 0.881 0.591 0.718

Table 2 showed that the RMSE and the MAPE of the multi-factor GA-SVM model were 1.104 m
and 0.465%, while the values of the multi-factor BPNN model were 1.195 m and 0.522%, respectively.
The correlation coefficient (R) of the former was 0.881, which was greater than the latter (0.718). So,
the multi-factor GA-SVM model outperforms the multi-factor BPNN model. The RMSE, MAPE, and R of
the single-factor GA-SVM model were 1.409 m and 0.525%, 0.591, respectively. The prediction accuracies
of the multi-factor models were much greater than the single-factor model, so the consideration of the
influencing factors in the multi-factor model can make the results superior to that of the single-factor
model. The main reasons are, on the one hand, the groundwater level of the landslide is under
influencing factors such as reservoir level and rainfall. On the other hand, because of the complex
geological conditions of the Tangjiao landslide, there is a complicated nonlinear relationship between
the groundwater level and its influencing factors. In conclusion, the multi-factor prediction model
considering the factors that showed a higher prediction accuracy.

5. The Groundwater Level Prediction of STK-3

5.1. Monitoring Data of Groundwater Level

As can be seen from the monitoring curves (Figure 18), the rainfall reached 115 mm/d on 25 May
2013, the groundwater level rose from 211.6 m to 211.9 m, which increased 0.3 m within 24 h. Three
days after the rain stopped, the groundwater dropped to 211.7 m again. Then it rose rapidly when the
rainfall reached 54.6 mm/d on 29 May. Although the groundwater level of STK-3 fluctuating within
a narrow range, it was because of high sensitivity to rainfall.
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5.2. Determination of Influencing Factors

The changes of groundwater level of STK-3 was mainly caused by rainfall. It was hardly influenced
by the reservoir level. So, the rainfall was selected as the factor for the groundwater level prediction of
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STK-3. The degree of grey correlation between the groundwater level and the factors are shown in
Table 3.

Table 3. Calculation results of grey correlation between groundwater level and factors of STK-3.

Influencing Factor Degree of Grey Correlation

The rainfall on the current day 0.856
the cumulative rainfall on the previous day 0.856
the cumulative rainfall over the past two days 0.860
the cumulative rainfall over the past one week 0.880

The results show that the groundwater level kept a great consistency of changing tendency with
the influencing factors, which was in a valid agreement with the monitoring data. This paper selected
the rainfall on the current day, the cumulative rainfall on the previous day, the cumulative rainfall over
the past two days, and the cumulative rainfall over the past one week as the influencing factors to
predict the groundwater level of STK-3.

5.3. The Result Analysis of the Prediction Model

The monitoring data from 20 January to 20 August 2013, were selected as the training sample
of the time-series prediction model for STK-3. The data from 22 August to 7 September 2013, were
selected as the test sample. The population of the Genetic Algorithm was set as pop = 35 and the
maximum iterative steps number was 35. The optimal parameters of the penalty factor C and the radial
basis kernel function γ were searched by Genetic Algorithm, which was C = 4.8183 and γ = 30.0069,
respectively. The comparison curves between the predicted and measured groundwater levels are
shown in Figures 19 and 20, and the evaluation results of the prediction accuracy are shown in Table 4.

Table 4. Evaluation results of the prediction accuracy of STK-3.

Prediction Model Multi-Factor
GA-SVM

Single-Factor
GA-SVM

Multi-Factor
BPNN

Accuracy
RMSE/m 0.072 0.116 0.117
MAPE/% 0.032 0.048 0.0376

R 0.953 0.914 0.860
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Figures 19 and 20 showed that the goodness-of-fit of the multi-factor GA-SVM model was greater
than the single-factor GA-SVM model and the multi-factor BPNN model, especially when the strong
rainfall occurred and the groundwater level was fluctuating (24–31 August). The prediction results of
the multi-factor GA-SVM model were closer to the measured values. Table 4 shows that the RMSE and
the MAPE of the multi-factor GA-SVM model were 0.072 m and 0.032%, while the values of the BPNN
model were 0.117 m and 0.0376%, respectively. The correlation coefficient of the former was 0.953;
it was greater than the latter (0.860). Compared with the multi-factor models, the RMSE, MAPE, and R
of the single-factor GA-SVM model were 0.116 and 0.048%, 0.914, respectively. The prediction results
of the multi-factor model were superior to that of the single-factor model. These suggest that based
on deep analysis of the geological conditions of landslide and selecting the appropriate factors, an
accurate prediction of the groundwater level can be achieved.

6. Discussion

6.1. Performance Comparison of GA-SVM and BPNN

In order to compare the prediction stability of the GA-SVM and BPNN, three sets of prediction
experiments were obtained with the same inputs and model parameters (Figures 21 and 22). The REMS
of prediction results are shown in Table 5. Although the inputs and parameter of the BPNN are the
same, three sets of predicted results are different, while the prediction results of GA-SVM is constant.
Overall, the proposed multi-factor GA-SVM method can achieve accurate and stable predictions in the
groundwater level of landslides.
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Table 5. The prediction accuracy comparisons between different trials of BPNN.

STK-1 STK-3

Model 1st 2nd 3rd Mean Variance 1st 2nd 3rd Mean Variance

BPNN 1.195 1.466 1.295 1.319 0.112 0.118 0.117 0.115 0.117 0.001
GA-SVM 1.104 1.104 1.104 1.104 0.000 0.072 0.072 0.072 0.072 0.000

6.2. Future Developments of ML Methods

The groundwater level is a key parameter in the assessment of landslide stability. Accurate
monitoring and prediction of groundwater level are essential for landslide early warning. Machine
learning is a very effective prediction technology. It has been applied to landslide prediction and has
achieved excellent results, such as landslide susceptibility mapping. In order to reduce the dependence
on tedious numerical simulations, how to make full use of ML technology for landslide groundwater
level prediction needs to be studied further.

There have been few reports on the application of ML techniques to groundwater level prediction
up to now. We compared the performance of ML models in the application, mainly the accuracy
and stability of prediction. In this study, through an optimum parameter searching by the GA
optimization algorithm, a hybrid model of the coupled SVM and GA algorithm was established
for prediction. Although GA-SVM performed well, in future studies, it is necessary to research the
prediction performance of more advanced ML algorithms, such as ELM, Adaptive Network-based
Fuzzy Inference System, optimization algorithms (Particle Swarm Optimization, Artificial Bee Colony,
Grey Wolf Optimizer, etc.), and ensemble learning (Bagging, Boosting, Stacking, etc.), Etc.. In order
to achieve an accurate and stable prediction of landslide groundwater level, its urgent to study the
combination of various algorithms and integrate their advantages.

6.3. Geological Factors of Groundwater Level

The groundwater level is not only affected by external inputs (rainfall, reservoir level, irrigation,
etc.), but also closely related to the appearance condition of the slope, including the landslide structure
and the macroscopic deformation characteristics (earth cracks, etc.). During the development process
of a landslide, earth cracks are important companion products [45]. The surface cracks destroy the
integrity of the soil, and significantly change the infiltration path and the distribution of the seepage
field as well. They provide a preferential flow path for the rapid migration of water to deep soil.
The study found that a slope would maintain a high saturation under long-term continuous rainfall,
and the top-down development of the wetting front would eventually lead to direct precipitation of
groundwater [46]. For landslides with loose mass and well-developed cracks, the groundwater will
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fill the cracks rapidly in a short-term concentrated rainfall. The anisotropy of crack parameters has
different influence rules and degrees on groundwater level. The larger the permeability coefficient
corresponding to the parameters, including the location, width, depth, density, length, fracture size,
and suction characteristics of earth cracks, the faster the groundwater responses. Hence, how to predict
the groundwater level by combining the characteristics of the influencing factors, the sliding body and
the macroscopic deformation of a landslide needs further study.

7. Conclusions

The monitoring and prediction of the groundwater level are significant for landslide early warning.
In this study, the Tangjiao landslide in the TGRA was taken as an example. Three groundwater level
monitoring sensors were installed in different locations of the landslide. Based on the monitoring
data, the response relationship between landslide groundwater level fluctuations and factors is
analyzed, multi-factor GA-SVM, multi-factor BPNN, and single-factor GA-SVM prediction models
were established. The main conclusions are as follows: (1) The fluctuation of groundwater level is
significantly consistent with rainfall and reservoir level in time, and there is also a lag. There is a spatial
difference in the impact of reservoir level on the groundwater level of the reservoir landslide. The closer
to the Yangtze River, the stronger the reservoir level effect and the shorter the lag time; (2) On the
basis of qualitative and quantitative analysis, the model inputs of STK-1 and STK-3 were established,
respectively. Comparing the prediction results of multi-factor GA-SVM and single-factor GA-SVM;
it can be found that multi-factor GA-SVM has higher accuracy at both locations. In the establishment
of landslide groundwater level prediction model, it can significantly improve the prediction accuracy
to consider the response of factors; (3) Comparing the prediction results of the multi-factor GA-SVM
and the multi-factor BPNN models, it demonstrated that the prediction accuracy and stability of the
GA-SVM model are both superior to the traditional BPNN model. The proposed GA-SVM model
integrates the advantages of GA and SVM, it shows excellent modeling efficiency and accuracy.
In general, by combining the advantages of different artificial intelligence algorithms, the multi-factor
GA-SVM model proposed in this paper can effectively construct the response relationship between
groundwater level fluctuations and influencing factors. It is a reliable prediction model, which can be
recommended in predicting landslide groundwater levels.
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