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Abstract: Pylons play an important role in the safe operation of power transmission grids.
Directly reconstructing pylons from UAV images is still a great challenge due to problems of weak
texture, hollow-carved structure, and self-occlusion. This paper presents an automatic model-driven
method for pylon reconstruction from oblique UAV images. The pylons are reconstructed with
the aid of the 3D parametric model library, which is represented by connected key points based
on symmetry and coplanarity. First, an efficient pylon detection method is applied to detect the
pylons in the proposed region, which are obtained by clustering the line segment intersection points.
Second, the pylon model library is designed to assist in pylon reconstruction. In the predefined
pylon model library, a pylon is divided into two parts: pylon body and pylon head. Before pylon
reconstruction, the pylon type is identified by the inner distance shape context (IDSC) algorithm,
which matches the shape contours of pylon extracted from UAV images and the projected pylon model.
With the a priori shape and coplanar constraint, the line segments on pylon body are matched and
the pylon body is modeled by fitting four principle legs and four side planes. Then a Markov Chain
Monte Carlo (MCMC) sampler is used to estimate the parameters of the pylon head by computing
the maximum probability between the projected model and the extracted line segments in images.
Experimental results on several UAV image datasets show that the proposed method is a feasible way
of automatically reconstructing the pylon.

Keywords: pylon reconstruction; unmanned aerial vehicle images; inner distance shape context;
Markov Chain Monte Carlo

1. Introduction

Modern society has become increasingly reliant on the electricity supply. Electric power systems,
which provide electricity to modern society, are indispensable components of the industrial world.
Pylons are the elementary facility and play a vital role in the safe and reliable operation of electric
power systems. Regular inspections and monitoring the status of pylons are an important approach to
ensure the safety of electric power systems. Accurate parameters and detailed types of pylon can be
obtained through the reconstruction procedure. In addition, the pylon model can be used in many
contexts, such as transmission corridor visualization, simulation analysis, disaster prevention, etc.

There are seven fundamental types of data that can be used in high-voltage transmission line
inspections [1]. Among those, ALS data and unmanned aerial vehicle (UAV) images are the most
common data sources for 3D reconstruction of high-voltage transmission corridors and power facilities.
ALS is an active remote sensing technique that can quickly obtain dense 3D point clouds with high

Sensors 2020, 20, 824; doi:10.3390/s20030824 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-1161-5049
https://orcid.org/0000-0002-3162-0566
http://dx.doi.org/10.3390/s20030824
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/3/824?type=check_update&version=2


Sensors 2020, 20, 824 2 of 25

precision [2]. It can be applied in the fields of 3D reconstruction of pylons, detailed high-voltage
transmission corridor mapping, monitoring of power lines and their surroundings, etc. With a laser
scanner mounted on an aircraft scanning along the high-voltage transmission corridors, 3D dense
point clouds on power lines, pylons and their surroundings can be accurately measured. However,
this method has some limitations that restrict its wide application. The high cost of laser scanning
equipment increases the price of such inspections. In addition, due to its weight and large size, it is
not convenient for regular inspections. In contrast to ALS data, UAV images can be easily captured
using a UAV equipped with cameras, which is cheaper and more convenient for regular inspections [3].
The extrinsic and intrinsic parameters of cameras can be determined using the method of structure from
motion (SfM) with the auxiliary information GNSS/IMU (Global Navigation Satellite System/Inertial
Measurement Unit) [4–6]. The dense point clouds of high-voltage transmission corridors can be
generated by the multi-view stereo (MVS) method. However, because of the complex structures of
pylons and the lack of feature points, there are only several matched points of pylons, making pylon
reconstruction from UAV images more difficult than from ALS data.

The proposed method uses oblique UAV images to reconstruct the pylons. As the line segments
are the most salient feature of pylon in images, the presented method tries to use the line segments to
recover the 3D information of pylons instead of points. The line segments can be extracted by any line
segment detector such as LSD (Line Segment Detector) [7] or EDL [8]. The workflow of the proposed
method is shown in Figure 1. First, an improved pylon detection approach is proposed to detect the
pylon from the UAV images efficiently. The proposed regions are computed with the consideration of
gradient symmetry and the density of intersection points, and the DMP method is applied to detect
the pylon in the proposed regions, which improves the efficiency of pylon detection. Second, the shape
contours of pylon are extracted with alpha shape algorithm using the clustered intersection points
of line segment. The prior information of the pylon is adopted to translate, rotate and project the
pylon model onto each visible image. After extracting the shape contours of the projected models,
the IDSC [9] method is adopted to match the two shape contours. The pylon types can be identified
according to the matching cost. Third, the line segments of the pylon body are matched with the shape
prior and coplanar constraint. Then, the pylon body is modeled by fitting four principle legs and four
side planes with the matched line segments on pylon body. Finally, a MCMC sampler is designed
to estimate the parameters of pylon head by computing the similarity between the line segments of
projected pylon head model and the extracted line segments of the pylon in the images.
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Figure 1. The workflow of proposed method.

In this paper, a novel automatic pylon reconstruction framework from oblique UAV images is
introduced. The main contributions of the proposed framework are in three aspects: (1) an efficient
pylon detection method is employed to detect pylons in images, which detect the pylon in the proposed
regions by considering the structural features of pylons instead of searching the whole image region;
(2) the pylon body is reconstructed with the aid of a model library. The pylon model library is used to
identify the pylon type and guide the initial 3D line segment matching using the IDSC method. The a
priori shape and coplanar constraint of pylon body are taken into consideration to match the 3D line
segments on pylon body and fit the four side planes; (3) an MCMC sampler is applied to estimate the
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parameters of pylon head by computing the maximum likelihood probability between the projected
model and the extracted 2D line segments in images.

2. Related Work

Recently, there have been several high-quality algorithms focusing on 3D object reconstruction.
However, according to our knowledge, the automatic image-based reconstruction of pylon has rarely
been reported, and only a few works research automatic pylon reconstruction based on ALS data [10–13].
Li et al. first proposed a model-driven method to reconstruct the pylon [10]. The pylon is divided
into three parts: legs, body and head. The legs and body are reconstructed by analyzing the geometry
features on point clouds and the head type is classified by a SVM (Support Vector Machine) classifier.
However, this method can only confirm the head type, and cannot estimate precise parameters of
pylon head, and the reconstructed pylon model restricts its wide application in electric power systems,
such as windage yaw simulation. Guo et al. developed a stochastic geometry method to reconstruct
the pylon. The pylon points are automatically extracted from dense point clouds and an efficient
global optimization function is conducted to reconstruct the pylon [11]. Zhou et al. introduced a
heuristic pylon reconstruction method [13]. The pylon body is reconstructed by a data-driven strategy,
and the pylon head is efficiently reconstructed by a model-driven strategy using a Metropolis-Hastings
sampler coupled with a simulated annealing algorithm, which reduces the number of parameters
and searching space. Chen et al. divided the pylon into three parts: inverted triangular pyramid
lower structures, quadrangular frustum pyramid middle structures and complex upper structures [12].
The prior knowledge with a data-driven strategy is applied to reconstruct the lower and middle
structures and the priori abstract template structures are used to reconstruct the upper structures.
Similar to [13], in the proposed method, the pylon is divided into two parts: pylon body and pylon
head. The reconstruction of the pylon body is based on the a priori shape and plane constraint and the
pylon head parameters are estimated using the MCMC method. The four methods can efficiently and
successfully reconstruct pylons, but due to the high cost and weight of laser scanning equipment, ALS
data cannot satisfy the frequent inspection requirement.

In addition to the ALS-based pylon reconstruction methods, the related image-based works on
power facilities reconstruction are pylon line segment matching [14] and power line reconstruction [1,15].
Hofer et al. introduced a line segment matching method to reconstruct the wire objects (e.g., pylons) [14],
but the results are only 3D line segments without semantic or topological information. When the
number of images is not high enough, especially in the situation of high-voltage transmission line
inspection, Hofer’s method does not usually perform well, and the matched 3D line segments cannot
reconstruct the pylon. Zhang et al. focused on automatic obstacle detection within the power line
corridor. An automatic power line measurement method was proposed, which acquired the spatial
position of power lines based on epipolar constraint (PLAMEC) and extracted dense point clouds
based on semi patch matching. Fryskowska proposed a wavelet-based method to extract the 3D
power lines from noisy point clouds generated by image dense matching algorithm [15]. Jiang et al.
designed an UAV-based oblique photogrammetric system to acquire images of transmission lines and
conduct accuracy assessment tests to evaluate and explore the potential application for inspection of
transmission lines [3]. The oblique photogrammetric system and the SfM pipeline are applied for data
acquisition and image orientation in our work. Except for the power facilities reconstruction from
UAV images, there are also many works on the power transmission lines inspection and transmission
infrastructure monitoring [16–18]. Sampedro et al. proposed a supervised learning approach to detect
and classify the pylon from UAV images [16]. The HOG (Histogram of Oriented Gradients) features
were applied for training two MLP (multi-layer perceptron) neural networks. Jalil et al. applied the
multi-modal sensors to capture the visible and infrared images and detect the faults or damaged
components of the transmission infrastructure [17]. Han et al. aimed to detect the insulator faults
from aerial images [18]. A manually labelled dataset was built for the newly designed convolutional
network to solve the insulator faults detection problem.
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A pylon is a typical man-made object with a special structure, and this building is the most
representative example of a widely studied man-made object. The relevant literature of image-based
automatic building modeling will be discussed. There exists a significant body of image-based
approaches in the field of 3D building reconstruction. Generally, prior knowledge, such as parallelism,
vanishing point, line-features and piece-wise plane, is taken into consideration to constrain the target
3D models [19–25]. Hoiem et al. proposed a single image-based method which creates a “pop-up”
3D model [19]. Kosecka and Zhang presented an approach for the automatic extraction of dominant
rectangular structures with higher-level information from a single image [20]. Barinova et al. used the
assumption of the Manhattan structure to reconstruct 3D models [21]. Conditional Random Field (CRF)
models are employed to automatically infer polyline parameters and produce 3D building models.
Without any explicit assumptions, Saxena et al. used a trained MRF to model the image depth cues
and different parts relation from the image [22]. In their works, the reconstruction is based on a single
image, while many other methods are based on multi-view images. Werner and Zisserman provided
an automatic method that generates a coarse planar model and more detailed polyhedral models, such
as windows and doors, are fitted with the guidance of the coarse model [23]. Dick et al. introduced
a Bayesian and model-based method [24]. The a priori wall layout and the a priori parameters for
each primitive are defined, which are partially learned from training data and partially set by expert
architects. Finally, a MCMC machinery is employed to optimize the structure recovery and generate
possible solutions. Xiao et al. presented an approach to reconstruct 3D models from street-level
images [25]. The images are firstly semantically segmented by a supervised learning method. Then the
major line structures are adopted to separate building into independent blocks. Finally, the facade is
reconstructed by an inverse patch-based orthographic composition and structure analysis method from
each block. These multi-view-based methods either rely on the dense point clouds generated by MVS
or line segment features. However, neither of them can be directly applied to pylon reconstruction due
to the special structures of pylon.

The remainder of the paper is organized as follows: the brief descriptions of pylon library are
introduced in Section 3; the details of efficient pylon detection method are described in Section 4;
pylon type identification, pylon body reconstruction, and pylon head reconstruction are mentioned
in Section 5; the details of experimental datasets and results are presented in Section 6; Section 7
discusses the influence factors of pylon reconstruction; and Section 8 provides the conclusions of the
proposed method.

3. The 3D Pylon Model Library

The first step of pylon model reconstruction consists of specifying the 3D pylon models. The most
widely used pylons in high-voltage transmission lines can be categorized into two classes according to
the head part: that with a ring and that without a ring. The pylon with a ring in the head is generally
applied in single circuit lines and the other is generally applied in multiple circuit lines. Due to data
limitations, four typical types of pylon model are constructed: two with a ring and the other two
without a ring in the head. If a new type of pylon emerges that is not contained in the model library,
the new model should be added to the library to ensure successful pylon reconstruction.

The pylon model is divided into two parts: the pylon body and the pylon head, and the pylon
body consists of four principle legs and four side planes, as shown in Figure 2. For the four different
types of pylon model, the pylon body has the same parameters and there are two horizontal rectangle
structures in the body. The model library is built in full consideration of symmetry and coplanar
features. For simplicity, the center of the pylon model is the origin of the right-handed coordinate
system. The pylon direction is represented as the angle between the Y axis of the pylon’s local
coordinate system and the Ys axis of the object coordinate system. The structures of pylons are mainly
symmetric in the XZ plane and YZ plane. The structures on the pylon body are coplanar, with four
side planes, as shown in Figure 2b.
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The structural parameters ps of the model are the series of key turning points’ distance to the XZ
plane and the YZ plane of the pylon, as shown in Figure 3. In addition, each model has the common
parameters pc of location and direction: the center point coordinates and the direction. The parameters
of the four type models are defined as θ = (ps, pc). The pylon models are presented using line segments
connected with turning points, which can be used to guide the line segment matching in images.
In addition, each model records the four side planes’ information using the coplanar line segments.
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4. Efficient Pylon Detection

Pylons in high-voltage transmission lines are composed of hinged steel. In the 2D image, the pylon
features mesh structures and has numerous intersection points of line segment. In addition, the
intersection points imply the distribution of the pylon shape contours, which can be used to find the
proposed regions and extract the shape contours of the pylon. Based on these features, an efficient
pylon detection method is designed. The traditional machine learning object detection method DPM
(deformable part model) [26], which only needs a small amount of labeled training data while still
retaining ideal results in the object detection field, is applied to perform pylon detection in this paper.
This approach uses a sliding window strategy to detect objects at every location and scale in an
image, which results in it having poor time efficiency and high memory consumption. Fortunately,
the proposed regions can be computed by analyzing the characteristics of pylon in image. In addition,
the DPM method is used only in the proposed regions to detect the pylon, which can speed up the
efficiency of detection and save memory.

In this algorithm, the 2D line segments are firstly extracted using the LSD method. In addition,
gradient symmetry of the line segment is employed to filter the amount of line segments from the
natural background. After that, the rest of the line segments are used to calculate the valid intersection
points, which can then be clustered to obtain the proposed regions. Then, the DPM method is used to
detect pylons in the proposed regions.

4.1. Line Segment Extraction Constrained by Gradient Symmetry

The gradient symmetry of a line segment is an important feature that distinguishes man-made
objects from the natural background. For natural objects, the gradient distribution of line segments
is irregular. However, for man-made objects such as pylons, roads, and buildings, the gradient
distribution of the line segment is commonly characterized by symmetry.

Katahara et al. first proposed the gradient symmetry of a point and applied it in the field of face
detection [27]. The eight gradient directions and eight gradient symmetry types are defined as shown
in Figure 4a,b. For a point of interest p1, the gradient symmetry of p1 means that there exists another
point p2 in the gradient direction of p1 within a certain distance, and the gradient directions of p1 and p2

are one of the eight gradient symmetry types defined in Figure 4b. This can be extended to the gradient
symmetry of a line segment: for a line segment, the gradient symmetry of the line segment means that
its gradient direction is parallel to the gradient direction of its neighboring line segment at a certain
distance. It can be supposed that the gradient direction of line segment is approximately vertical to
the line segment direction. The problem of finding the line segments with gradient symmetry can
be simplified to finding the parallel line segments within a certain distance. As shown in Figure 4c,
the line segments l1 and l2 are extracted from image, the arrows represent the direction of the line
segment, and Td refers to the distance between l1 and l2; if the directions of l1 and l2 are approximate
parallel, these two segments can be described as having the feature of gradient symmetry within the
distance Td.
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4.2. Pylon Proposed Region Detection Based on Density Clustering

After filtering an amount of background line segments, the rest of the line segments are used to
compute valid intersection points. As any two non-parallel line segments will intersect with each other,
the intersection point computation must be constrained to prevent too many intersection points. It is
assumed that only two line segments within a certain distance will participate in intersection point
computation. Furthermore, the intersection point of two line segments must not be far away from
them. Based on such assumptions, a valid intersection point computation algorithm is applied, similar
to that of Li and Yao [28]. With reference to Figure 5a, the buffer area R combined with a rectangular
and two half of circle is designed R centers on the midpoint of l1 and the width and height of the
rectangle are |l1| and 2*Tw, where |l1| denotes the length of l1 and Tw is equal to the radius of the circle
(Tw is a user-defined parameter). The other line segment l2 must have at least one endpoint in R and
the intersection point must also be located in R. Then, the intersection point P is thought to be valid.
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The intersection points are distributed densely in the region of the pylon and other man-made
objects. The proposed regions will be acquired after clustering these intersection points. There are many
classical clustering algorithms, such as k-means, hierarchy clustering, DBSCAN [29], etc. As DBSCAN
shows excellent capability to resist noise and needn’t give the number of clusters, the DBSCAN
method is chosen to cluster the intersection points. In the DBSCAN method, there are two important
parameters, eps and MinPts, which mean that within a radius distance eps there are at least MinPts
points in the region. The two parameters should be chosen cautiously to avoid clustering noise points
or segmenting the pylon into different parts. However, because of the different types of pylon and the
resolution of the images, the intersection points are distributed irregularly. The two parameters cannot
be chosen ideally. So the eps is conservatively set to a small value to avoid clustering points that do not
belong to pylon. However, the pylon may be clustered into different parts. To solve this problem, these
clusters need to be merged after the initial clustering.

An easy method is employed to merge these initial clusters. Firstly, a convex hull is calculated
for each initial cluster. Then, the location correlation is computed between each convex hull and its
neighbors. If the convex hull of a cluster is contained by or intersects with another cluster’s convex
hull, the two clusters should be merged. Otherwise, the minimum distance between the two convex
hulls is calculated. If the distance is smaller than a given threshold, the two clusters should be merged.
As shown in Figure 5b, P0, P1, P2, P3, P4 are the initial clusters. The procedure of merging the clusters
is as follows:
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(a) Compute the position correlation between P0 and other clusters: P4 is contained in P0, P0 intersects
with P3, P0 does not intersect with P1 or P2. So the clusters of P0, P3 and P4 should be merged
as P′0.

(b) Compute the shortest distances between P′0, P1 and P2: Dist(P′0,P1) > Tp, Dist(P1,P2) > Tp,
Dist(P′0,P2) < Tp (Dist(Pi,P j)

denotes the shortest distance between Pi and P j, Tp is a fixed threshold),
then P′0 and P2 should be merged.

The number and density of the pylon’s intersection points are usually bigger than those of other
man-made objects. Therefore, the point number and density threshold of the cluster can be used to
filter certain clusters. The density of intersection points is calculated using Formula (1).

TD =
A

TNum
(1)

A means the area of the cluster’s convex hull. In addition, TNum means the number of the cluster’s
intersection points. The rest of the clusters can be regarded as proposed regions.

The results of intersection point computation and clustering are shown in Figure 6. The rest of the
line segments with red color after filtering with gradient symmetry are shown in Figure 6a. The blue
points in Figure 6b are computed with the constraint mentioned above, and these points mainly cover
the pylon. These points are clustered, and the final convex hull is shown in Figure 6c in green color.
The region of the convex hull can be treated as the proposed region of the pylon.
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5. 3D Reconstruction of Pylon Models

Once the pylons in the images have been detected, the pylon models are reconstructed automatically
through a heuristic method. The reconstruction procedure consists of three steps: pylon type
identification, pylon body reconstruction, and pylon head reconstruction. Before the pylon body
reconstruction, the pylon type is identified using the IDSC method, and meanwhile, the correlation of
3D pylon legs and associated 2D line segments extracted in different images is obtained. After matching
the line segments on the pylon body, the pylon body is reconstructed by fitting four principle legs
and four side planes. As the structure of the pylon head is more complicated than the pylon body,
it is difficult to match segments of pylon head to recover the 3D information. Unlike pylon body
reconstruction, a MCMC method is employed to optimize the energy formulation to find the optimal
parameters of pylon head through multi-view images.
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5.1. Pylon Type Identification Based on Shape Matching

The pylon type can be identified by a shape matching method between the shape contours of
projected models and shape contours of the pylon in the images. For complicated backgrounds and
special structures of pylons, it is a difficult task to extract the rigid shape contours of the pylon precisely.
As the intersection points in the detected region imply the distribution of pylon shape contours, it can
be used to roughly extract the shape contours.

After detecting the pylon using the DPM method, the proposed regions are confirmed and the
intersection points of the cluster are used to extract pylon shape contours. First, the alpha shape
method is applied to fit the shape contours from the intersection points. As the fitted shape contours
contain short irregular segments which affect the shape matching result, the Douglas-Peucker method
is adopted to simplify the shape contours. Second, the extrinsic and intrinsic parameters of cameras,
the prior information of pylon 3D coordinates, and direction are used to project each model onto
each visible image. The direction remains roughly consistent with the bisector of the angle which
is computed from the lines of the two neighboring pylons connected to this pylon. Once the model
has been projected onto the images, the connected external line segments are extracted as the shape
contours of the projected model. The shape contours of projected model in the images are non-closed
curves. Before projecting the model, the bottom endpoints of the four principle legs with the adjacent
midpoints of bottom horizontal rectangle are connected to ensure that the shape contours of the
projected model are closed (as shown in Figure 2a, the blue dotted lines). Third, the fixed number of
points on the shape contours of projected model and pylon in image are subsampled. Finally, the IDSC
method is adopted to identify the pylon type between the shape contours of projected model and
pylon in image. The IDSC shape matching results are presented in Figure 7. For each type of model,
the average shape matching cost is computed in each visible pylon images. The type of pylon T can be
identified to be the same as the model for which the cost is the smallest.
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5.2. Pylon Body Reconstruction

The pylon body consists of four principle legs, two horizontal rectangular structures, and four
side planes. Considering these features, the legs with a priori shapes implied by the pylon model are
firstly matched. Then the remaining segments on the pylon body are matched with the constraint of
coplanar condition. Finally, the parameters of the pylon body are analyzed through the least squares
fitting algorithm.
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5.2.1. Pylon Body Matching Based on a Priori Shape and Coplanar Constraint

The IDSC method can identify the pylon type and meanwhile the matched sampling points on
shape contours can be used to find the correlation of pylon 3D legs and extracted 2D line segments
from different visible images. The pylon body line segment matching algorithm includes two steps.
First, the four principle legs are matched using the correlation of pylon legs and the prior information
regarding pylon body structures. Second, the parameters of the four side planes of the pylon body are
fitted by the four matched legs and applied to match the rest of the line segments on the pylon body.

(1) Line segment matching for pylon legs
Let I = {I1, I2, . . . , In} be the sequence of visible images of the pylon, each image contains the

extracted 2D line segments lIi = {l1, l2, . . . , ln} of the pylon and the shape contours sIi = {s1, s2, . . . , sn}.
Let T be the identified type of pylon and Mt be the corresponding pylon model. The pylon model consists
of connected 3D line segments LMt = {L1, L2, . . . , Ln}. The shape contours of the projected pylon model
Mt on image Ii are set to be sIi

Mt
=

{
s′1, s′2, . . . , s′n

}
. The sampling points on the pylon shape contours of the

image and the projected model are set to be PIi = {P1, P2, . . . , Pk} and PIi
Mt

=
{
P′1, P′2, . . . , P′k

}
, respectively.

For the identified type T of the pylon, the IDSC method matches the sampling points PIi and
PIi

Mt
between the two shape contours by minimizing the matching cost with the inner distance shape

context descriptor. Once the minimized matching cost is determined, the matched sampling points’
correlation f (P) = PIi � PIi

Mt
can be obtained at the same time. The matched sampling points can be

used to match the pylon legs. Given the two line segments sk and s′
k

of the pylon legs in sIi and sIi
Mt

,
the matching score is defined as

score(sk, s′
k
) = max(

Nsk→s′
k

Nsk

,
Ns′

k
→sk

Ns′
k

), (2)

where Nsk stands for the total number of sampling points on line segment sk and Nsk→s′
k

means the

number of sampling points on line segment sk that match the sampling points on line segment s′
k

using
the IDSC method. If the score is above a fixed threshold value Ts (Ts = 0.6 in our experiments), the
two line segments are accepted to be matched.

The line segments sIi and sIi
Mt

are the intermediate objects that are used to find the correlation
between the 2D line segments in lIi and the 3D line segments of the pylon legs in LMT (as shown in
Figure 8). For each matched line segment sk in sIi , a buffer area R1, which is same as the R mentioned
in Section 4.2, and the parameter Tw in this situation is set to be 50, is generated to find the associated
line segments in lIi . If the line segment ln in lIi is in this buffer area and the angle between ln and sk
is less than a threshold value Ta(Ta = 20◦ in our experiments), ln is supposed to be affiliated with sk.
With the matched line segments between sI and sM, the 2D line segments of lIi from different images
that belong to the same 3D line segment of the pylon legs in LMT can be identified. As the projection
matrix Pi is known, the line segments from different images associated with a same 3D line segment
of pylon legs in LMT can be triangulated to compute the 3D line segment coordinates of pylon legs

using an epipolar-guided line matching algorithm similar to that used in [14,30]. Let lIi
k and l

I j

k
be the

line segments of image Ii and image I j, and they both belong to the same 3D line segment in LMT .
The intersection points x1 and x2 are computed between the epipolar lines of the endpoints of lIi

k and

the infinite lines passing through the line segment l
I j

k
, and the intersection points x1 and x2 are collinear

with the endpoints p
I j

k
and q

I j

k
of the line segment l

I j

k
. If the matching score between line segment lIi

k

and l
I j

k
is above a fixed threshold τ (τ = 0.25 in all our experiments), the intersection points and the
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endpoints of lIi
k can be triangulated to generate the 3D line segment coordinates. The matching score is

defined as

s(lIi
k , l

I j

k
) =

inner(p
I j

k
, q

I j

k
, x1, x2)

outer(p
I j

k
, q

I j

k
, x1, x2)

(3)

where the inner(p
I j

k
, q

I j

k
, x1, x2) and outer(p

I j

k
, q

I j

k
, x1, x2) are the Euclidean distance between the inner

and the outer pair of the four collinear points (p
I j

k
, q

I j

k
, x1 and x2), respectively. As there are many

fractured 2D line segments that belong to the same 3D line segment of the pylon legs, the RANSAC
(Random Sample Consensus) [31] method is adopted to remove outliers and the final 3D line segment
coordinates are computed by least squares fitting technique.
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Figure 8. The workflow of correlation confirmation between 3D line segments of model and 2D line
segments of pylon legs in images.

Through the above method, the pylon legs which are located inside the shape are still unmatched.
As shown in Figure 2a, there are two horizontal rectangle structures on pylon body and the rectangle
structures are intersected with the four pylon legs. For the unmatched pylon legs, their hypothetical
coordinates can be initially generated with constraint of horizontal rectangle structures and the matched
3D line segments of pylon legs. Then these hypothetical 3D line segments are projected onto each
visible image. For the projected hypothetical 3D line segment of the pylon legs, the buffer area R1 is
generated again to find the corresponding 2D line segments in lIi as mentioned above. Finally, with
the epipolar-guided line matching algorithm and RANSAC method, the accurate 3D coordinates of
unmatched pylon legs are computed. Figure 9 illustrates the workflow of the rest of the pylon leg
matching algorithm.
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(2) Line segment matching for the pylon body
After matching the four pylon legs, the four side plane parameters can be fitted using the matched

pylon leg coordinates by least squares fitting technique. As the line segments of pylon body are
distributed on the four side planes, the four side planes are used to match the rest line segments of the
pylon body. First, the matched pylon legs are projected in each visible image and the convex hull of the
projected pylon legs are computed. The 2D line segments in the convex hull of each visible image are
used to generate 3D line segments of pylon body. Let f =

{
f1, f2, f3, f4

}
be the four side planes. Given a

2D line segment lk ∈ lIi where lk is in the convex hull, the costs of lk to be labeled with fi(i = 1, 2, 3, 4)
are respectively computed. If lk is labeled with the plane fi, the two rays passing through the endpoints
of lk are used to intersect with fi and the 3D coordinates of lk are computed. Then the 3D line segment
of lk is projected onto each image I j ∈ I − Ii and it is found whether there exists a line segment in the

buffer area R of the projected line segment l
I j
p . Then the cost of lk to be labeled with fi is computed

using the function:

cost(lk, fi) =

Nv∑
j=0

log(
exp(−max(dist j))

√
2π

) + exp(−angle j)

Nv
(Nv > 0) (4)

where Nv is the number of images in which the line segment l′k′ is found in the buffer area R of l
I j
p ;

the max(dist j) is the max distance between the endpoints of l′k′ and lp; the angle j is the angle between
the two segments. The lk is assumed to be coplanar with the plane fi if the cost labeled with fi is
the minimum. After finding the plane fi that is coplanar with lk, the 2D line segments in different

images that are in the buffer area R of l
I j
p are triangulated to compute the 3D coordinates with the

epipolar-guided line matching algorithm, and the RANSAC method is applied to remove outliers.

5.2.2. Pylon Body Parameter Estimation

The pylon body has the features of symmetry and perpendicularity. The parameters of the four
side planes fitted above only using the four pylon legs coordinates need to be adjusted in consideration
of these features. After matching 3D line segments of pylon body, we follow the approach of Li and
Chen et al., who proposed an adjustment model using least squares fitting with additional parameters
to fit the four side plane parameters. Linearization and iterative solutions are adopted to solve the
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model. The four side plane parameters fitted in the previous section are set to be initial values. The four
pylon legs are then computed by intersecting the four side planes.

There are a number of horizontal line segments distributed in the pylon body. To compute the
height and position of the pylon body, the two horizontal rectangles defined in the model should be
found in the horizontal line segments. First, the maximum height Hmax and minimum height Hmin of
these horizontal line segments are computed. Second, the histogram of the height H = Hmax −Hmin

with a certain bin width ∆H is generated. In addition, the horizontal line segments whose height can
be located are grouped in the same histogram bin. The average height of the group with the maximum
value is regarded as the top horizontal rectangle height. Third, the total length of the group whose
average height is in the range (Hmin, Hmin +

1
3 H) is computed. As most of the line segments in a group

overlap with other line segments, for such line segments, a merging strategy needs to be conducted
before the total length is computed. The average height of the group is used to intersect with the four
pylon legs and the two neighboring intersection points are set to be the new line direction of the line
segments which are on the same side plane. For the overlapping line segments, all the endpoints of
these line segments are projected into the new line and the overlapping line segments are replaced with
the line segment defined by the two outmost points. After merging the overlapping line segments,
the total length of the left line segments in the group is calculated. The average height of the group
with maximum length value is regarded as the bottom horizontal rectangle height. Finally, the heights
of the top and bottom horizontal rectangles are used to intersect with the four pylon legs to compute
the parameters of the two rectangles. The horizontal position of the pylon body is derived from the
average center of the two horizontal rectangles. In addition, the height of the position of the pylon
body is set to be the same as the height of the bottom horizontal rectangle. The direction of the line
defined by the two midpoints of the bottom horizontal rectangle edges that are at the front and back
sides is treated as the orientation of the pylon. The detailed algorithm is shown below (Algorithm 1):

Algorithm 1. Pylon Body Parameter Estimation

Input: matched horizontal 3D line segments of pylon body; fitted four pylon legs
Output: parameters of pylon body

1: Compute the maximum height Hmax and minimum height Hmin of the line segments
2: Generate the histogram of the height H = Hmax −Hmin with a certain bin width ∆H
3: Group the line segments of which height locate in the same histogram bin
4: Find the maximum height of the group and regard its average height as the top horizontal

rectangle height
5: Compute the total length of the groups of which height is in the range (Hmin, Hmin + 1

3 H)

6: Fine the maximum length of the group and regard its average height as the bottom horizontal
rectangle height

7: Intersect the four pylon legs with the top and bottom horizontal rectangle height
8: Compute the height, position and direction of pylon body

5.3. MCMC-Based Pylon Head Reconstruction

The structures of pylon heads are more complicated than those of pylon bodies. To match the 3D
line segments of pylon head from multi-view images is a great challenge. Instead of recovering the
pylon head parameters from the matched 3D line segments like the pylon body, the reconstruction
of the pylon head is transformed to be an optimization procedure, sampling from images using the
Markov Chain Monte Carlo (MCMC) method. Firstly, the parameters of the pylon body, position,
and orientation of the pylon which have been confirmed are used to update the pylon model coordinates.
Then, the pylon model is projected onto all the visible images to measure the similarity between the line
segments of projected pylon head and the extracted line segments of the pylon in the images. The MAP
solution is approximated to optimize the parameters of the pylon head using the MCMC method.
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The parameters of the pylon head are estimated using the MCMC procedure, which is based
on the Metropolis-Hastings (MH) algorithm. The continuous parameter space of the pylon head is
denoted as θ and the target distribution of the projected pylon head model M in the line segments lI of
multi-images is modeled as an exponential distribution:

P(θ
∣∣∣lI) ∼ e−J(θ) (5)

where J(θ) is the similarity measure between the projected pylon head model lM and lI. The maximum
posterior probability solution is adopted to approximate θ from the distribution P(θ

∣∣∣lI) , using the MH
algorithm. For a given parameter state θ† of the pylon head, the pylon head 3D coordinates of line
segments in the model are updated and the line segments are projected onto each of the visible images.
For each projected line segment lMk of the pylon head, the line segments Nl (Nl ∈ lIi) which are in the
buffer area R of lMk are found. The Nl are fitted as a single line segment l f by the least squares method.
Then lMk and l f are used to compute the posterior probability. J(θ†) is determined as:

J(θ†) =
A∑

k=0

1
B

 B∑
i=0

(log(exp(−anglek,i) + 1.2 ∗ exp(−distk,i) + 0.6 ∗ exp(overlapk,i − 1))

 (6)

where A is the number of line segments in the pylon head model and B is the number of visible images;
the anglek,i is the angle between l f and lMk in image Ii; the distk,i is the max distance between l f and lMk
in image Ii; the overlapk,i means the overlap ratio between l f and lMk in image Ii. The overlap ratio is
computed as follows:

(1) Select the longest line segment between l f and lMk as the new target line lt;

(2) Project the endpoints of the other line segment onto lt;
(3) Compute the distance of inner two endpoints di and the distance of the two outward endpoints

do, the ratio di
do

is treated as the overlap ratio.

In our case, the parameters of pylon body remain fixed in each iteration step and the parameters
of the pylon head are chosen randomly from their possible ranges. The MCMC algorithm proceeds by
changing the current parameter state θ to a new state θ† with an acceptance probability

A(θ→ θ†) = min(1,
P(θ†

∣∣∣L)u(θ† → θ)

P(θ
∣∣∣L)u(θ→ θ†)

) (7)

where the u(θ† → θ) is the proposed distribution of the parameters, which is a uniform distribution
in a range defined by the user.

6. Experiments and Results

6.1. Datasets

The proposed method is applied to reconstruct the pylons from oblique UAV images acquired in
Shenzhen, China. A multi-rotor UAV is used to fly above the high transmission line on both sides of
the pylon, and the flight trajectory is a closed loop. The same oblique photogrammetric system and
flight configuration of UAV found in reference [3], with only a front digital camera (camera mode: Sony
RX1R, focal length: 35mm, complementary metal oxide semiconductor (CMOS) sensor: 24 Mpixel
(6000 × 4000 pixels), physical camera dimensions: 35.8 mm × 23.9 mm), are applied for the photography
of the high transmission line corridor. The flight heights listed in Table 1 are relative to the position
from which the UAV takes off.



Sensors 2020, 20, 824 16 of 25

Table 1. Detailed information for flight configuration.

Dataset 1 2 3 4 5

Flying Height (m) 137 160 115 103 70
Number of Pylon 4 2 4 2 3

Voltage (Kv) 500 500 500 500 220

Five flight datasets which contain 15 pylons are applied in the experiments. There are nine images
from the 15 pylons that are presented in Figure 10. The first four flight datasets are in mountain areas
and the last one is near waters. The camera calibration and image orientation were performed using
the free software MicMac [32]. The experiments were all conducted on Intel Core i7 CPU machine with
NVidia GTX960 graphic card, 16GB RAM and 64-bit Windows 7 OS and implemented by C++.
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6.2. The Performance Analysis of Pylon Detection

In this experiment, 120 images are selected to manually label the location of pylons as training
data. In addition, five flight datasets from UAV images of different transmission lines comprise the
test data to examine the efficiency of pylon detection. According to the resolution of images and the
structure of the pylons, the parameters of Td, Tw and TNum are set to be 20, 60 and 1000, respectively;
the two parameters of DBSCAN (Eps and MinPts) are set to be 50 and 20; and the cluster density
threshold is set to be 0.01. The four threads are used in the procedure of pylon detection with OpenMP
technology. The four images are randomly selected as representative, are shown in Figure 11.
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Figure 11. The results of pylon detection. The first row is the result of pylon detection by the DPM
method and the second is the proposed method. The red rectangle is the detected bounding box
location of the pylon. In the second row, the green polygon is the proposed region.

The pylon detection results with the proposed method and the DPM method are listed in Table 2.
N is the number of images, the correctness and completeness are evaluated with the same equation as
in [10]. {

Completeness = TP/(TP + FN)

Correctness = TP/(TP + FP)
(8)

where TP is the number of correctly detected pylons, with the loU (Intersection over Union) score
being bigger than 0.5; FP is the number of wrongly detected pylons (the loU score is less than 0.5);
and FN is the number of undetected pylons. For the purpose of pylon reconstruction, only the images
covering the whole pylon are considered for evaluating correctness and completeness. The results
indicate that the cost in time and maximum consumed memory for pylon detection suing the proposed
are significantly improved. The cost of time and maximum consumed memory of the proposed
method varies based on differences in the surroundings of the pylon and the resolution of images,
while the DPM method is stable, as it uses a sliding window to detect the objects. The experiment
shows that the efficiency of pylon detection can be improved by computing the proposed regions and
directly detecting the pylon in the proposed regions instead of using the sliding window method.
The correctness of the proposed method is much higher than the DPM method, because in the process
of computing the proposed regions, the wrongly detected regions are filtered out. The proposed
method can retains the same completeness as the DPM method.

Table 2. Pylon detection results.

Dataset N
Time (h) Max Memory (Gb) Correctness Completeness

DPM Ours DPM Ours DPM Ours DPM Ours

1 138 2.87 0.13 13.13 1.14 78% 100% 88.64% 88.64%
2 138 2.77 0.15 13.13 1.45 95.65% 100% 97.78% 97.78%
3 257 5.33 0.22 13.13 1.67 76.19% 91.43% 94.12% 94.12%
4 100 2.08 0.14 13.13 1.56 82.5% 100% 94.82% 94.82%
5 119 2.52 0.11 13.13 1.18 73.33% 100% 93.94% 93.94%

6.3. The Recognition of Pylon Type

In this experiment, fifteen pylons selected from five sets of flight data are tested for the recognition
of pylon type. All the pylon types can be correctly identified by the IDSC method. The eight randomly
selected matching costs between the extracted pylon shape contours and the projected pylon models
are listed in Table 3.
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Table 3. Different shape matching costs.

Pylon No. Model 1 Model 2 Model 3 Model 4 Type

1 26.212 61.514 54.564 34.930 1
2 29.560 53.282 66.793 43.125 1
3 63.598 31.569 48.270 46.996 2
4 61.625 35.785 39.992 43.778 2
5 64.969 49.538 35.713 43.641 3
6 66.170 69.879 47.158 51.902 3
7 59.299 57.046 44.680 29.057 4
8 47.973 46.351 47.314 39.647 4

The results of the experiment suggest that the matching cost of the same pylon type is much
lower than that of different pylon types in the model, which can robustly identify the right model
type. Although the shape contours of the pylon in images extracted by the alpha shape method are not
rigidly fitted to the real shape of pylon, the IDSC algorithm can still distinguish the different pylon
types robustly.

6.4. 3D Model Reconstruction of Pylon Body and Head

In this paper, we automatically reconstructed fifteen pylons of four typical types using the
proposed method. To visually check the reconstructed model, the line segments of the pylon model are
projected onto each visible image, as shown in Figure 12.
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Figure 12. Samples of four type pylon reconstruction results. (a–d) are the reconstructed pylon models
of Type 1, Type 2, Type 3 and Type 4, respectively. The second and third rows are the projected model
from different image perspectives.

To evaluate the pylon body fitting accuracy, the adjacent image pairs of pylons are used to
measure the endpoints of the mainframe line segments on the pylon body using our self-developed
stereo-measurement software. Then the average distances from manually measured line segment
coordinates to the corresponding side plane are calculated. To evaluate the accuracy of horizontal
position and orientation accuracy, some horizontal rectangular structures of the pylon body are
manually measured to compute the horizontal position and orientation. δx and δy stand for the
difference value of x position and y position between the automatically extracted horizontal center
position and the manually measured horizontal center position, respectively; δd represents the difference
value of the pylon direction. These are defined by the equation:

δx =|mx − ax|

δy =
∣∣∣my − ay

∣∣∣
δd =|md − ad|

(9)

where mx and my stand for the manually measured horizontal center position of x and y; md is the
manually measured direction of the pylon; ax and ay stand for the automatically extracted horizontal
center position of x and y; ad is the automatically computed direction of the pylon. The SD stands for
standard deviation value.

Table 4 gives the result of fifteen pylons with four types. The results indicate that the average
distance of line segments to the four side planes is about 0.188 m. The precision of pylon horizontal
position reached 0.07 m, and that of pylon orientation reached 0.65◦.

Table 4. The accuracy of pylon body reconstruction.

Pylon No. Pylon Type Residuals δx (m) δy (m) δd (◦)

1 1 0.164 0.126 0.030 0.781
2 1 0.074 0.001 0.028 0.778
3 1 0.097 0.036 0.046 0.783
4 3 0.240 0.025 0.026 0.794
5 2 0.316 0.005 0.005 0.087
6 2 0.313 0.007 0.026 0.088
7 1 0.246 0.121 0.113 0.789
8 1 0.137 0.049 0.032 0.781
9 1 0.134 0.074 0.012 0.769

10 3 0.268 0.124 0.139 0.081
11 2 0.161 0.073 0.068 0.724
12 2 0.186 0.114 0.120 0.789
13 4 0.230 0.215 0.004 0.732
14 4 0.072 0.001 0.008 0.879
15 4 0.175 0.031 0.117 0.840

Mean – 0.188 0.067 0.052 0.646

SD – 0.079 0.062 0.047 0.292
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In this experiment, fifteen pylons of the four types mentioned above are selected to test the
accuracy of pylon head reconstruction. The 3D coordinates of the mainframe line segments on the pylon
head are manually measured with our self-developed stereo-measurement software. To quantitatively
evaluate the accuracy of the pylon head reconstruction results, the average distance Dave and RMSE
(root-mean-square error) of manually measured line segments to the reconstructed model are calculated
according to Equations (10) and (11) respectively:

Dave =
1

2n

n∑
i=1

2∑
j=1

(dist(mi, j, L)), (10)

δrmse =

√√√√√
1

2n

n∑
i=1

2∑
j=1

(dist(mi, j, L))

2

(11)

where n is the number of manually measured line segment; mi, j is the jth ( j = 1, 2) endpoint of the ith
(0 < i ≤ n) manually measured line segment; dist(mi, j, L) is the closest distance of mi, j to the model L.

In practice, the MCMC algorithm is run for 10,000 iterations and the sample with the highest
probability is regarded as the approximate estimation of the MAP solution. The number of unknown
parameters in type 1, type 2, type 3 and type 4 are 16, 20, 13 and 17, respectively. The accuracy of head
reconstruction is listed in Table 5. The average distance Dave of the pylon head is 0.316 m on average,
while the RMSE is 0.372 m.

Table 5. The accuracy of pylon head reconstruction.

Pylon No. Dave (m) RMSE (m)

1 0.387 0.424
2 0.275 0.321
3 0.336 0.352
4 0.305 0.345
5 0.282 0.343
6 0.381 0.406
7 0.408 0.426
8 0.275 0.309
9 0.296 0.345

10 0.302 0.340
11 0.352 0.407
12 0.277 0.322
13 0.308 0.425
14 0.261 0.391
15 0.293 0.425

Mean 0.316 0.372

SD 0.046 0.044

7. Discussion

This research introduces an automatic model-driven method for pylon reconstruction from oblique
UAV images. The influence of α value for shape contours extraction and the influence factors of pylon
reconstruction are discussed in this section.

7.1. The Influence of α Value in Alpha Shape for Contour Extraction

The shape contours of pylon extraction is a key step for pylon reconstruction. It is closely related
to pylon type identification, and the pylon reconstruction process. If there is great deformation
between the extracted shape contours and the real contours of pylon, the pylon type identification and
reconstruction process may fail. The parameter α in alpha shape controls the desired level of detail.
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For each real number α, when α > 0, it is a closed disk of radius 1/α. To determine the impact of the
parameter α in alpha shape method on the shape contour extraction results, four α values are applied
in images with different pylon types, and the results are shown in Figure 11.

From Figure 13, it can be seen that, when the α value is less than 40, the extracted shape contours
only contain partial region of the pylon, which cannot be used to identify the pylon type and reconstruct
the pylon model. However, if the α value is approaching infinite, the extracted shape contours become
convex hull, which cannot represent the detail features of pylon shape. Thus, the α value should be
cautiously selected. In our experiments, it can be found that the α value in the range (40, 60) can obtain
a better result.
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7.2. The Influence Factors of Reconstruction Errors

Although some details of the pylon shape may be missing and there are some deformed parts in the
extracted shape contours, the IDSC method can still identify the right pylon type and match the pylon
legs successfully. Except for the α value in the pylon shape contour extraction step, which can lead to
failure of pylon reconstruction, there are still other factors that influence the pylon reconstruction errors.

(1) The pylon consists of metal structures with a certain width. The edges of such structures in
different images are not in strictly the same position in the object coordinate space. In this respect,
the width of metal structures increase the errors between the reconstructed pylon model fitting
by the edges and the manually measured line segments by stereo-measurement software.

(2) The pylon is usually vertical. However, due to some complicated reasons, the pylon may be
inclined. The model-driven method cannot adapt this situation. In addition, if there are some
small irregular parts that are not defined in the pylon library, the proposed method cannot
reconstruct the irregular parts. As shown in Figure 14a, the pylon head is inclined, which causes
the related cross arms in the pylon head to deviate from the projected line segments of the
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reconstructed pylon model. In addition, the right bottom cross arm is unsymmetrical with the
left one, there is an affiliated structure connected with the cross arm. The affiliated structure
in different pylons with the same type always changes, which is improper for defining such
structures in the model. One solution to this problem is to introduce a primitive-based model
library to enhance the adaptability of the pylon model.

(3) For the small parts in the pylon head, the 2D line segments are visible only in a few images.
These small parts contribute little to the energy term calculation, which affects the final accuracy.
In addition, the MCMC sampler usually finds an approximate global optimization, but not an
absolute optimization in the finite iteration. In addition, the uncertainty of the line segments’
endpoints and the occlusion issues also affect the fitting accuracy of pylon head. As shown in
Figure 14b, in the pylon head of type 1, the small structures are obscured by the others, affecting
the reconstructed accuracy.

(4) The images of the fifteen pylons in the experiments are collected in well-conditioned situations.
However, for some adverse situations (such as encroaching vegetation, weather and light
conditions, the pylon in images overlapped in the direction of the line of sight), the problems of
serious occlusion and bad image quality would affect the pylon reconstruction results and could
even lead to the failure of pylon reconstruction.
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accuracy of pylon head. As shown in Figure 14b, in the pylon head of type 1, the small 
structures are obscured by the others, affecting the reconstructed accuracy. 

4) The images of the fifteen pylons in the experiments are collected in well-conditioned 
situations. However, for some adverse situations (such as encroaching vegetation, 
weather and light conditions, the pylon in images overlapped in the direction of the line 
of sight), the problems of serious occlusion and bad image quality would affect the pylon 
reconstruction results and could even lead to the failure of pylon reconstruction.  
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8. Conclusions

In this paper, a new model-driven framework for pylon reconstruction from oblique UAV images
is proposed. This framework mainly consists of three parts: efficient pylon detection, pylon body
reconstruction, and pylon head reconstruction. Considering the features of pylons in UAV images,
the proposed regions which may contain pylons are obtained. The DPM method is applied to detect
the pylon only in these proposed regions, instead of the whole image region, which improves the
efficiency of pylon detection and saves memory. Once the shape contours of the pylons in the images
are extracted, the IDSC method is employed to identify the pylon type, and meanwhile, for the
pylon legs, the correlation of the extracted 2D line segments in the different images and the 3D line
segments of the pylon model is confirmed in order to recover the 3D line coordinates. With the
constraint of the pylon body structures, the line segments on the pylon body are matched. Then the
pylon body is reconstructed by fitting the four principle legs and four side planes. As shown in the
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experiments, the average distance of line segments to the four side planes of pylon body is about
0.188 m. The precision of pylon horizontal position reached 0.07 m and the pylon orientation reached
0.65◦. For the pylon head reconstruction, a MCMC sampler is designed to approximate the parameters
of pylon head. In each sampling step, the parameters of the pylon body are kept fixed, which reduces
the parameters for optimization. The pylon head reconstruction experiments demonstrate that the
average distance of the measured line segments from the reconstructed pylon head model is 0.316 m.
Experiments on the five flight datasets suggest that the proposed method can reconstruct the pylon
body and pylon head automatically.

However, the proposed method also has several limitations. First, the shape contours of pylon
extracted by the alpha shape method cannot strictly fit the edges of pylon shape. In recent years,
deep learning methods have achieved promising results in object detection and segmentation fields.
The deep learning method would be applied for the pylon detection and segmentation in our future
work. Second, as the five flight data in our experiments contains four types of pylon, the model library
only defines four types of pylon, which is able to satisfy the pylon reconstruction of the five flight data.
To improve the adaptive ability, more types of pylon should be added to the library. Third, another
limitation is that the proposed model-driven method is only applicable for pylons that fit the parametric
model, which is also one limitation of most model-driven methods. As the pylon types vary greatly in
different situations, a more generalized parametric pylon library, such as a primitive-combining model,
could be considered. Finally, our method only reconstructs the main line structure without considering
the material width and auxiliary structures. In future work, the ALS data and UAV images will be
combined together to reconstruct higher accuracy models in more detail.
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