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Abstract: Image segmentation is one of the most important methods for animal phenome research.
Since the advent of deep learning, many researchers have looked at multilayer convolutional neural
networks to solve the problems of image segmentation. A network simplifies the task of image
segmentation with automatic feature extraction. Many networks struggle to output accurate details
when dealing with pixel-level segmentation. In this paper, we propose a new concept: Depth density.
Based on a depth image, produced by a Kinect system, we design a new function to calculate the
depth density value of each pixel and bring this value back to the result of semantic segmentation
for improving the accuracy. In the experiment, we choose Simmental cattle as the target of image
segmentation and fully convolutional networks (FCN) as the verification networks. We proved that
depth density can improve four metrics of semantic segmentation (pixel accuracy, mean accuracy,
mean intersection over union, and frequency weight intersection over union) by 2.9%, 0.3%, 11.4%,
and 5.02%, respectively. The result shows that depth information produced by Kinect can improve the
accuracy of the semantic segmentation of FCN. This provides a new way of analyzing the phenotype
information of animals.
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1. Introduction

In the field of bioscience, phenotype generally refers to the observable morphological characteristics
of individuals or groups under specific conditions [1]. In the 1990s, with the development of gene
research, products of gene expression, and various kinds of genetic association analyses, researchers
proposed the concept of phenomics corresponding to genomics [2,3]. Since then, studies on single
or serial phenomes of humans, animals, and plants have developed into an important branch of
bioscience [4–7].

With the rapid development of computer vision technology, many researchers choose to use
various visual devices to obtain animal and plant phenotypes, which can allow the machine to analyze
their behavior and optimize the process of animal breeding and plant growing automatically [8,9].
At present, computer vision technology has been widely applied in animal and plant phenomics research.
Improvements can be seen in many different aspects. Bauer used an automated and open-source
analytic platform to combine modern computer vision, machine learning, and modular software
engineering and measure yield-related phenotypes from ultra-large aerial imagery [10]. Mochida
reviewed the emerging aspects of computer vision for automated plant phenotyping and give a machine
learning perspective for improvement of plant productivity [11]. Prey evaluated RGB image and
multispectral sensing for assessing early plant vigor [12]. Xiang created a non-destructive 3D scanning
system to capture the sequential images of a plant at different heights [13]. Guan developed a low-cost,
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novel, and efficient imaging system for 3D reconstruction with color information [14]. Zhao proposed
a high throughput prototype that combines stereo vision and grating dispersion to simultaneously
acquire hyperspectral and 3D information [15]. However, traditional methods of computer vision
interpret images by artificial features (color, texture, and shape in image) extractions [16,17]. If the
content of an image is complex, it is very difficult to achieve artificial feature extraction, especially for
image segmentation [18–20].

However, with the development of deep convolutional neural networks (DCNN), the concept
(end-to-end) is introduced into computer vision [21,22]. Based on DCNN, computers learn and find
the most descriptive and prominent features in each image automatically [23–25]. The structure of
neural networks can discover and remember the potential patterns of various objects in an image.
Based on big data, DCNN can be trained sufficiently to give a high accuracy output. With this model,
the main cost is transferred from algorithm design to data collection [26]. Therefore, for the research of
animal phenomes, DCNN has become the main choice in computer vision technology. Hu proposes
a deep learning-based method to gain an accurate count of wheat ears and spikelets. He improves
the generator‘s learning ability and prediction accuracy for occluded wheat ears [27]. Lee used image
processing and machine learning to distinguish ten Fagaceae species. The results indicated that
the proposed approach had an accuracy of 92.8% [28]. Jin proposed a computerized system that is
capable of detecting Fusarium wilt of radishes with high accuracy [29]. Andres proposed a system
that combines vegetation detection and deep learning to obtain a high-quality classification of the
vegetation in the field into value crops and weeds [30].

Object recognition and detection are two areas of focus in computer vision. However, based on
DCNN, most object recognition and detection methods are implemented by bounding box methods,
such as RCNN series networks [31–33], SPPNet [34], YOLO [35], and many other detection deep
learning models [36], which are quite different from human vision [37]. With small perception regions
in shallow layers, DCNN can only learn partial features in images. As the convolutional layers
go deeper, more abstract features can be obtained by the larger perception regions. These abstract
features are less sensitive to size, location, and orientations of the object. Neural networks can realize
classification more easily with these features [38].

The methods of image segmentation based on DCNN usually classify a pixel with an around
kernel region as the input for training and prediction. However, there are several disadvantages
to these methods. The cost of storage is large. An n × n size kernel region for each pixel needs
an additional n2 storage space. The efficiency of computation is low. During the training, for each
pixel, the adjacent kernel regions have large overlapping areas, which leads to repeated computation.
The size of the kernel region limits the size of the perception area. Usually, the size of the kernel region
is much smaller than the whole image. Therefore, limited partial features can be extracted, and this
leads to the limitation of the classification performance. In addition, DCNN loses some details during
the training process. It cannot point out which object the pixels belong to. For this reason, it is difficult
for DCNN to implement the classification task at the pixel level.

To avoid these shortcomings, Evan proposed a fully convolutional network (FCN) to realize image
segmentation at the pixel level (semantic segmentation). The FCN attempts to recover the category of
each pixel from the abstract feature maps, which transforms the classification task from the image level
to the pixel level [39]. Compared with other segmentation methods of DCNN, FCN can accept input
images of arbitrary size, without requiring all the training and testing samples to have the same scale.
FCN avoids the problem of repeated computation and storage waste for prediction.

However, the shortcomings of FCN are also obvious: The accuracy of semantic segmentation is
poor. The results generated by up-sampling are still fuzzy and insensitive to details. The FCN does not
take full account of the relationship between pixels. It neglects the spatial regularization and lacks
spatial consistency. Because FCN does not record the position relationship of pixels before and after
the forward convolution. In the process of the up-sampling of FCN, the effective pixels of the heat
maps will be restored to the random position in the segmentation results.
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To solve these problems, we propose a new concept: Depth density. Based on the depth image,
produced by a Kinect system, a new function is designed to calculate the depth density value of each
pixel in depth images. We use the value of depth density to define the probability that a pixel belongs
to the object or the boundary of the object. This method can partially solve the problem of fuzzy
boundaries and detail insensitivity for FCN. The experiment shows that the four metrics of semantic
segmentation have obvious increments.

2. Methods

2.1. Experimental Materials and Setup

We chose Simmental cattle as the target of semantic segmentation. In order to increase the
variety of images, the experiment was carried out in May, August, and October in Shenyang, China.
The images of cattle were obtained from the indoor and outdoor environment during three periods
(8:00–10:00, 11:00–13:00, and 14:00–16:00).

We selected the Kinect sensor (V2.0) to acquire the RGB (three-primary colors) image and depth
image simultaneously. With TOF (time of flight), Kinect can calculate the distance between the object
and camera and give a value for each pixel in depth images. However, Kinect is easily disturbed by
luminous beams, which create lots of noise when using this device in high light intensity environments.

For this experiment, in order to reduce the influence of noise on the depth images, we choose to
carry out the image collection in a light controllable environment (indoor scene without direct sunlight).
There were 30 cows as the candidates in this experiment. We equally divided them into several groups.
During the process of data acquisition, the Kinect is located at a fixed distance. The subjects (cattle) kept
a distance of 0.5–4.5 m from the camera. In the same time trajectory, RGB images and depth images
were extracted from a Kinect video stream at equal intervals (five frames per second). We labeled the
RGB images and divided them into training and testing samples. We selected 3000 images for training
and 600 images for testing.

2.2. Fully Convolutional Networks (FCN) and up-Sampling

The classification network is the basic model for semantic segmentation. Therefore, we selected
VGG-19 [40] as the basic network, which was born in ILSVRC-2014 [41]. The structure of VGG-19
proved that the number of layers is the key to realize excellent performance for DCNN. However,
during the training of VGG-19, lots of pixel information was dropped, and the model could not achieve
prediction at the pixel level. To solve these problems, FCN converts the last three fully connected layers
into convolutional layers. The kernel size of fully convolutional layers is set into 1 × 1, and the number
of channels remains unchanged. The convolutional layer can retain the spatial property of feature maps
and output the classification results, which are called heat maps. Different classes are represented with
different gray values, which can be shown in heat maps. Through max-pooling (size = 2 × 2), the heat
map would be resized into 1/32 of the input’s size. The details of FCN are shown in Figure 1.
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Figure 1. The procedure for creating heat maps based on FCN. H indicates the height of feature maps, W 
indicates the width of feature maps, and C indicates the channel number of the convolutional kernel. 

The heat maps cannot be directly used in semantic segmentation. The size of the heat maps has 
to be expanded to the same size as the input images. We used up-sampling to finish that process. Up-

Figure 1. The procedure for creating heat maps based on FCN. H indicates the height of feature maps,
W indicates the width of feature maps, and C indicates the channel number of the convolutional kernel.



Sensors 2020, 20, 812 4 of 14

The heat maps cannot be directly used in semantic segmentation. The size of the heat maps has
to be expanded to the same size as the input images. We used up-sampling to finish that process.
Up-sampling can be seen as the inverse process of pooling and can increase the map’s data quantity.
There are three basic up-sampling operations in computer vision: Bilinear [42], de-convolution [43],
and de-pooling [44]. In this paper, unlike FCN, we alternately use bilinear and de-convolution during
the up-sampling, and use the “valid” mode in bilinear and the “full” mode in de-convolution. Figure 2
shows the details of bilinear and Figure 3 shows the details of de-convolution.
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Figure 2. Bilinear with the valid mode (N = 4 in this example). The size of the input feature map is
N × N. We expand the original size of the feature map to (2N + 1) × (2N + 1) and set the value of
intervals with 0. Then, we use a 2 × 2 kernel to carry out the convolutional operation in the “valid”
mode (padding = 0 and step = 1), which could obtain a new 2N × 2N output.
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Figure 3. De-convolution with the full mode (N = 4, M = 3 in this example). The size of the input
feature map is N × N. We expand the original feature maps with M − 1 paddings (padding pixel = 0)
around. Then, we use an M ×M kernel to carry out the convolutional operation with the “full” mode
(padding = M − 1 and step = 1), which could obtain an (M + N − 1) × (M + N − 1) output.

There are five max-pooling layers in FCN. The size of the feature map will reduce to a quarter of
the original size after passing one max-pooling layer. In Figure 4, the size of the input is H ×W. By five
max-pooling operations, the size of the heat map becomes H/32 ×W/32. In order to illustrate the steps
of up-sampling, we assume that the size of the input is 32 × 32. First, we handle the heat map with
de-convolution operations (N = 1, M = 2) and expand its size from 1 × 1 to 2 × 2. Then, we handle the
intermediate map with the bilinear operation to expand its size from 2 × 2 to 4 × 4. To enrich the content
of the heat map, it would be better to add a heat map and a feature map, which is generated during
forward convolutional operations before each operation. We use these two operations alternately until
the size of the heat map is equal to the size of the original input. Finally, each value of gray is assigned
a unique category so that the whole image achieves segmentation at the pixel level.
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2.3. Depth Density

The up-sampling of FCN has two problems, pixel misclassification, and pixel loss. Therefore,
we attempt to use the depth channel of RGBD (RGB and Depth) images (from the Kinect) to solve
these problems.

A depth image is a pseudo image whose depth of pixels are converted from the distance between
object and camera. We transform the depth value into the normalized gray value. In a depth image,
the range of depth is [0, 1]. Pixels that come from the same object would have a continuous gradient of
depth. Conversely, pixels that come from the boundary between the adjacent objects would have a
large gradient change.

Therefore, in order to establish the relationship between adjacent discrete pixels, we propose a
new concept: Depth density. The value of depth density can represent the probability that a pixel
belongs to the category of its adjacent pixel region.

We set D to indicate the depth image with the size of h × w. h indicates the row’s number of D,
and w indicates the column’s number of D. (r, c) indicates the position index of a pixel in D. r denotes
the row coordinates and c denotes the column coordinates of D. dr,c indicates the depth value of a pixel
(r, c) in D. ddr,c indicates the value of the depth density for a pixel (r, c) in D. Ks

r,c indicates the partial
region of pixels in D. Its central coordinate is (r, c) and its area is s. The equation of depth density (ddr,c)
is shown in Equation (1):

ddr,c = f
(
dr,c, Ks

r,c

)
. (1)

Equation (1) shows that there are two parameters (dr,c and Ks
x,y) that could affect depth density. For Ks

r,c,
there are two factors that need to be considered:

• The average depth of Ks
r,c, and

• The depth distribution of the central pixel and its adjacent pixels in Ks
r,c.

In order to obtain the solution of depth density, we set dr,c as the average depth of Ks
r,c and the

equation is shown in Equation (2):
dr,c =

∑
i

∑
j

di, j/s, (2)

the range of i is
[
r−
√

s, r +
√

s
]

and the range of j is
[
c−
√

s, c +
√

s
]
. Then we set σr,c as the standard

deviation of depth in Ks
r,c and σ′r,c as the central deviation of depth in Ks

r,c. The two equations are
shown in Equations (3) and (4) separately:

σr,c =
2

√∑
i
∑

j

(
di, j − dr,c

)2

s
, (3)
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σ′r,c =
2

√∑
i
∑

j

(
di, j − dr,c

)2

s
. (4)

We fill the surrounding region of images with
(√

s− 1
)
/2 paddings (gray value = 0) to handle the pixels

on the sides of D. The row’s number of D will change to h +
(√

s− 1
)
/2 and the column’s number of

D will change to w +
(√

s− 1
)
/2. With dr,c, σr,c and σ′r,c, we can get the depth density of every pixel

using Equation (5):

ddr,c =
Gs

(
di, j, dr,c, σr,c

)
×Gs

(
di, j, dr,c, σ′r,c

)
(
max

[
Gs

(
dr,c, dr,c, σr,c

)
, Gs(dr,c, dr,c, σ′r,c)

])2 , (5)

where the range of i is
[
r−
√

s, r +
√

s
]
, the range of j is

[
c−
√

s, c +
√

s
]
. Gs(x,µ, σ) is a standard Gauss

function, which is shown in Equation (6):

Gs(x,µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 . (6)

Gs
(
di, j, dr,c, σr,c

)
can be regarded as the key factor to measure the difference between dr,c and dr,c of Ks

r,c.

Gs
(
di, j, dr,c, σ′r,c

)
can be regarded as the key factor to measure the difference between dr,c and other

surrounding pixels of Ks
r,c.

2.4. Analysis and Improvement of Depth Density

According to Equation (1), we select several group parameters to calculate the value of depth
density and set the size s to 3 × 3, 5 × 5, 7 × 7, 9 × 9, and 11 × 11, respectively. Then, we crop two
regions (R1 and R2) from the same original depth image. R1 (which comes from the surface of an
object) contains a continuous gradient of depth. R2 (which comes from the boundary between two
objects) contains a large gradient change. Figure 5 shows the depth density distribution of R1 and R2
with different kernel sizes.
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5 × 5, 7 × 7, 9 × 9, and 11 × 11, respectively. The depth density range of R1 is [0, 1]. The depth density
range of R2 is [0, 0.5]. The pixel index represents the total number of pixels obtained by R1 or R2.
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In the region of R1, all pixels come from the surface of the same object. So we know that the adjacent
pixels have similar values of depth. Therefore, when calculating ddr,c, the values of Gs

(
di, j, dr,c, σr,c

)
,

Gs
(
dr,c, dr,c, σr,c

)
, Gs

(
di, j, dr,c, σ′r,c

)
and Gs(dr,c, dr,c, σ′r,c) are close. So as shown from the top 5 graphs

of Figure 5, the depth density value of R1 is distributed in the range [0.6, 1]. On the contrary, in the
region of R2, there are a large number of boundary pixels that contain big gaps in depth value. The
values of Gs

(
di, j, dr,c, σr,c

)
, Gs

(
dr,c, dr,c, σr,c

)
, Gs

(
di, j, dr,c, σ′r,c

)
, and Gs(dr,c, dr,c, σ′r,c) are quite different.

As shown from the bottom five graphs of Figure 5, the depth density value of R2 is distributed in the
range [0, 0.15].

Since the influence of pixel space distance on the depth density is not considered in Equation
(5), ddr,c does not change much with the increase of s. Therefore, we propose a new concept of “pixel
distance difference” in this paper, where the value can be shown by Equations (7) and (8):

di f i, j =

∣∣∣∣di, j − dr,c

∣∣∣∣
disti. j

, (7)

di f ′i, j =

∣∣∣di, j − dr,c
∣∣∣

disti, j
, (8)

in Equations (7) and (8), disti, j indicates the distance between pixel (i, j) and pixel (r, c), and the value of
disti, j is shown in Equation (9):

disti, j = |r− i|i∈Ks
r,c
+

∣∣∣c− j
∣∣∣
j∈Ks

r,c
. (9)

We import Equations (7) and (8) into Equation (5), and get a new improvement of ddr,c, which is shown
in Equation (10):

ddr,c =
Gs

(
di, j − di f i, j, dr,c, σr,c

)
×Gs

(
di, j − di f ′i, j, dr,c, σ′r,c

)
(
max

[
Gs

(
dr,c, dr,c, σr,c

)
, Gs(dr,c, dr,c, σ′r,c)

])2 . (10)

We use Equation (14) to recalculate the depth density of R1 and R2. For R1, as shown at the top
five graphs of Figure 6, the distance factor is taken into account in Equation (14). The depth difference
between pixels with a long distance is reduced by di f i, j and di f ′i, j when s is increasing. This also
reduces the influence of noise when calculating ddr,c with a smaller s. However, there are still some
fluctuations, which are mainly caused by the noise in this region. With the increase of s, most noises
regarding image depth are removed. Thus, besides the noise, the depth density values of pixels from
the same object surface are distributed between 0.9 and 1. For R2, in the depth image, there are lots of
zero-value pixels near the boundary between different objects. Therefore, the depth density values in
this region are closer to 0. It has been calculated that most pixels of R2 have the depth density value
range of [0, 0.15].

The higher the depth density value of a pixel, the higher the probability that it belongs to the
same category as other surrounding pixels. On the contrary, the lower the depth density value of a
pixel, the higher the probability that it belongs to different objects. In addition, the size of the Ks

r,c also
affects ddr,c. When the size is small, the method is more sensitive to the edge or tiny pixels of an object.
When the size is large, the method is more sensitive to the consecutive surface of the object. Depth
density can prove that the spatially adjacent pixels have an approximate value of depth density and
likely belong to the same object in the image. Based on this principle, we can use depth density to
refine the results of semantic segmentation with FCN.
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Figure 6. The depth density of all pixels in R1 and R2 by Equation (14). We set the size s to 3 × 3, 5 × 5,
7 × 7, 9 × 9, and 11 × 11, respectively. The depth density range of R1 is [0, 1]. The depth density range
of R2 is [0, 0.5]. The pixel index represents the total number of pixels obtained by R1 or R2.

3. Results

3.1. Training of FCN

The training of FCN is carried out by optimizing the multinomial logistic regression objective
using a mini-batch gradient descent with momentum. The batch size is set to 64. Momentum is set to
0.9. The learning rate is initially set to 0.001, and then decreased by a factor of 10 when the accuracy of
the validation set stops improving. The learning rate could decrease three times, and learning would
stop after 100,000 iterations. Figure 7 shows the training loss and validation loss of FCN (based on
VGG-19). Since the scale of the data set used in this experiment is far less than in ImageNet, the loss
has essentially reached the classification requirement after 70,000 iterations.
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3.2. Metrics of Semantic Segmentation

We report four metrics from the common semantic segmentation and scene parsing evaluations
that are variations on pixel accuracy and the region intersection over union (IoU). All the metrics are
shown in Equations (11)–(14):
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pa =

∑
i nii∑
i ti

, (11)

ma =
1

ncl
×

∑
i

nii
ti

, (12)

mIU =
1

ncl
×

∑
i

nii
ti +

∑
j n ji − nii

, (13)

f.w.IU =
1∑
k tk
×

∑
i

ti × nii
ti +

∑
j n ji − nii

, (14)

where ni j is the number of pixels of class-i predicted to belong to class-j. ti =
∑

j ni j indicates the
total number of pixels of class-I, and ncl is the total number of class. We use ‘pa’, ‘ma’, ‘mIU’, and
‘f.w.IU’ to be the abbreviations of ‘pixel accuracy’, ‘mean accuracy’, ‘mean intersection over union ’,
and ‘frequency weighted intersection over union’.

3.3. The Improvement of Semantic Segmentation by Depth Density

In order to get a better semantic segmentation result, we want to use the depth density of depth
images to improve the output accuracy of up-sampling with FCN. In Section 2.4, we already proved
that if the depth density of a pixel is high, there is a high probability that it could be the same category
as its surrounding pixels. Therefore, we refine our segmentation results based on this principle.

According to Equation (10), in order to have a moderate computation cost of this algorithm
without accuracy loss, we set the s value to 3, 5, 7, 9, and 11, respectively, and use the depth density
value of each pixel to generate the pseudo image. As shown in Figure 8, we compare a series of
test results and the running time of the program. With the increase of s, the noises on the surface of
the object decrease (the body area of cattle in image), while the boundary of the object is still clear.
However, the increase of s adds to the running time of the program (as shown in Table 1). Considering
the effect and time cost of this algorithm, we set s = 7.

Table 1. The time cost for the algorithm to process one image, when s takes different values.

The Value of s Time Cost (s)

s = 3 16
s = 5 37
s = 7 69
s = 9 111

s = 11 163

FCN-8s (the best result of FCN) was selected to verify the effectiveness of this algorithm. We used
the depth density of pixels to adjust the category of pixels. If the value of depth density were in
the range of [0.9, 1], the pixel would have the same category as the surrounding pixels with a high
probability. If the value of depth density were in the range of [0, 0.15], the pixel’s category would
belong to the boundary, noise, or background with a high probability. We set all these kinds of pixels
to the category of background. With depth density, the algorithm can remove discrete noise pixels of
the object surface when ddr,c is less than 0.9 and remove noise pixels around the boundary between
objects when ddr,c is less than 0.2.

As shown in Figure 9, compared with FCN-8s, the algorithm gives a better result for semantic
segmentation, which is closer to the ground-truth. After the processing by depth density, the appearance
of boundary blur in the original FCN-8s is distinctly improved. This is mainly due to the fact that
the pixels with small spatial distance can be re-clustered by depth density. We judge the correlation
between two pixels according to the depth values and the spatial distance on the image, and give the
probability that two pixels belong to the same category. Using this probability, the results of FCN
semantic segmentation can be improved.
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(a) (b) (c)
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 Figure 8. Pseudo images of depth image processed by the depth density algorithm. We set the size s to
3, 5, 7, 9, and 11, respectively. The value range of the depth density range is [0, 1]. (a) The original
depth image. (b) The pseudo image of depth density (s = 3). (c) The pseudo image of depth density
(s = 5). (d) The pseudo image of depth density (s = 7). (e) The pseudo image of depth density (s = 9).
(f) The pseudo image of depth density (s = 11).
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Figure 9. The comparison of semantic segmentation results. (a) Original RGB images. (b) The semantic
segmentation results of fully convolutional networks. (c) The semantic segmentation results of depth
density. (d) Ground truth of semantic segmentation.
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With the validation dataset, we calculated the four metrics of semantic segmentation results.
As shown in Table 2, the method improved on four metrics with depth density. Pixel accuracy
increased by 2.9%. Mean accuracy increased by 0.3%. The mean intersection over union increased
by 11.4%. The frequency weight intersection over union increased by 5.02%. This indicates that the
depth density can be used to optimize the semantic segmentation results of the FCN and improve the
segmentation accuracy.

Table 2. Four metrics of FCN-8s and the refined results by depth density on the validation set.

Results of Method pa 1 ma 2 mIU 3 f.w.IU 4

FCN-8s 0.963 0.961 0.857 0.935
Depth density 0.991 0.964 0.955 0.982

Increment 2.9% 0.3% 11.4% 5.02%
1 pa: Pixel accuracy. 2 ma: Mean accuracy. 3 mIU: Mean intersection over union. 4 f.w.IU: Frequency weight
intersection over union.

4. Discussion

In this paper, we use depth images to prove that the depth information of images can be used to
improve the effect of semantic segmentation with fully convolutional networks. The principle is to use
the depth change between two pixels in the depth image to determine whether these two pixels come
from the same object. Therefore, the concept of depth density is proposed in this paper. Using the
depth value distribution of surrounding pixels, we can calculate the depth density of each pixel in the
depth image. The value of depth density can directly reflect whether the pixel has the same category
of the other pixels in this region. In the process of designing the depth density function, we add a
concept of “pixel distance difference”, which increases the threshold value of judging whether a pixel
belongs to the same category from [0.6, 1] to [0.9, 1]. This improves the accuracy of pixel classification.

When comparing the effect of segmentation between the method of depth density and FCN,
four metrics are selected, respectively: Pixel accuracy (pa), mean accuracy (ma), mean intersection
over union (mIU), and frequency weight intersection over union (f.w.IU). We found that the depth
density of pixels can be used to re-classify the misclassified pixels in the semantic segmentation results
of FCN, and the four metrics are increased by 2.9%, 0.3%, 11.4%, and 5.02%, respectively. Among
these four metrics, mIU increases the most. As the pixels belonging to the background and the ones
belonging to objects (cattle in this paper) can be clearly separated using the value of depth density,
many misclassified pixels are corrected. However, the improvement of ma is relatively small. As we
test the effect of semantic segmentation based on one category (cattle) in this paper, there are only
two types of pixels in any single image. Therefore, in the calculation of ma, the category of pixels can
only belong to the background or cattle, so the improvement of ma is small. This problem will be
significantly solved after an increase in category number.

We analyze the image of semantic segmentation and find that the output of FCN can only give the
basic shape of cattle, such as the position of head, legs, and trunk. The details of cattle are not clear.
When we use the depth density of the pixel to refine the output of FCN, it can be seen that the details of
cattle are clearer than before, especially the pixels of limbs. From the perspective of human vision, this
result is very close to the ground truth. We provide a new method to improve the accuracy of semantic
segmentation of fully convolutional networks and prove that using multimodal methods (for example:
Depth and RGB in this paper) can achieve a better result with deep convolutional neural networks.

5. Conclusions

In this paper, we propose a new method for solving a problem (blur in semantic segmentation) of
FCN. We alternately use bilinear (valid mode) and deconvolution (full mode) during up-sampling to
get better results than using deconvolution only. In order to avoid the misclassification of pixels and
increase the accuracy of FCN, we created an algorithm to calculate the depth density of pixels based
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on the depth images. The value of depth density can be used to determine whether pixels belong to
the objects or background. This method can remove most noise pixels from the surface of an object.
Compared with the results of FCN, this method is more sensitive to the boundary and can obtain a
clearer visualization effect. The experimental results show that the pixel accuracy is improved by 2.9%,
the mean accuracy is increased by 0.3%, the mean intersection over union is increased by 11.4%, and
the frequency weight intersection over union is increased by 5.02%. These results prove that using
depth density can improve the segmentation accuracy of FCN.
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