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Abstract: Quantitative online detection of microcracks in long-distance oil and gas pipelines is an
international problem, and the effective detection method is still lacking. In this paper, a mathematical
model of non-uniform distribution of crack magnetic charges is established based on the stress
distribution laws of pipeline cracks under internal pressure. The weak magnetic signal characteristics
of pipeline cracks with different sizes are analyzed. The internal pressure increasing factor of weak
magnetic signals are extracted to analyze the corresponding relationship between crack size and
weak magnetic signals. The experimental study of the X70 pipeline is carried out. The results show
that the axial component of the weak magnetic signal at the crack has a maximum value near the tip,
and a minimum value appears in the middle of the crack. The internal pressure increasing factor is
introduced to quantify the weak magnetic signal, the crack is in a safe state (not expanding) when the
internal pressure increasing factor is positive, the weak magnetic signal has a linear relationship with
the crack size. However, the crack is in a dangerous state when the internal pressure increasing factor
is negative, and the pipeline crack will expand as the internal pressure increases.
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1. Introduction

Due to the unreasonable arrangement of pipeline structure or defects in materials, stress
concentration will be formed in the long-distance oil and gas pipelines, and stress cracks will often
occur in the relevant areas, which will affect the stability of the pipeline operation [1–5]. Finally, it will
cause serious damage. Conventional NDT methods, such as magnetic flux leakage, magnetic particle,
eddy current, permeating, ultrasonic, radiographic, etc., have played an important role in pipeline
defect detection and accident prevention [6–12]. However, pipeline internal inspection technology has
non-contact, high-speed detection (the operating speed of the internal detector is 1–5 m/s), dynamic
continuous and other technical requirements. At present, magnetic flux leakage detection technology is
the most widely applied and most mature pipeline internal inspection technology because it meets the
above requirements. Magnetic flux leakage detection technology is adopted by more than 90% of the
pipeline internal detection equipment in the world. But there are limitations to the safety assessment of
microcracks in pipeline magnetic leakage detection technology. The main reason is that the size of the
microcracks is small, resulting in a weak magnetic flux leakage signal generated by the microcracks.
And the magnetic flux leakage signal is easily covered by the exciting field of the excitation device,
which makes the microcracks difficult to identify [13–17].

The principle of weak magnetic microcracks detection is that the stress concentration degree of
the in-service pipeline crack is detected to determine the size characteristics of microcracks in the
geomagnetic field. The weak magnetic method has the characteristics of non-contact, fast acquisition
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of signals, support for dynamic detection, and no excitation structure. It has practical significance to
improve flexibility and reduce the cost of the inspection in oil and gas pipelines [18,19]. However,
weak magnetic signal characteristics can only be used to judge the position of the crack. There is
always a lack of methods for the quantitative determination of cracks [20,21].

In practical engineering applications, the stress concentration near the crack differs greatly under
the action of internal pressure. Generally, the stress at the crack tip and the crack bottom is larger, while
the stress at the crack side surface is smaller. The existing theoretical model calculates the magnetic
signal on the premise that the stress concentration near the crack is approximately uniform. Although
this method simplifies the calculation process and reduces the amount of calculation, the error is large
and it is difficult to accurately describe the weak magnetic signal characteristics of the crack. In this
paper, a numerical model of non-uniform crack magnetic charges is established based on the stress
distribution laws of pipeline cracks under internal pressure. According to the variation of the weak
magnetic signal of pipeline crack with internal pressure, the slope of the radial peak with the change of
internal pressure is exacted to be the crack internal pressure increasing factor, which is introduced as
the characteristic value to quantify the crack. The relationship between the internal pressure increasing
factor and crack size is analyzed. Changes of internal pressure increasing factor before and after crack
propagation are analyzed. The systematic experiment is carried out, which lays a foundation for the
quantitative detection of microcracks.

2. Numerical Model of Non-Uniform Crack Magnetic Charge

In the geomagnetic environment, the magnetic field Hσ generated by the stress can be equal to
the applied external magnetic field when the material is subjected to external stress, which can be
expressed as [22]:

Hσ =
3σ
2µ0

(
dλ
dM

)(cos2 θ− v2 sinθ) (1)

He = H + αM + Hσ (2)

where, α is a coupling parameter, H is the external magnetic field, σ is applied stress, λ is the
magnetostrictive coefficient, M is the magnetization. µ0 is the vacuum permeability. θ is the angle
between the directions of the stress and the He, He is the magnetic field of the material, and v is the
Poisson’s ratio.

The non-hysteresis magnetization Man is expressed as:

Man = Ms(coth(
He

a
) −

a
He

) (3)

where, Ms is the saturation magnetization, and a is a constant [23].

dMirr
dW

=
1
ξ
(Man −Mirr) (4)

where, ξ is a constant, which is related to the energy per unit volume, Mirr is the irreversible component
of the magnetization. The derivative of the magnetization to the stress energy W is expressed as:

dM
dW =

(1−c)
ξ

(Man −Mirr) + c
dMan

dW
(5)

where, c is the reversible coefficient, that is, the parameter of the reversible motion of the magnetic
domain. While, the derivative of stress energy is expressed as:

dW = (
σ
E
)dσ (6)
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where, E is the elastic modulus, substituting the Equation (6) into the Equation (5) to obtain the
relationship between magnetization and stress as following [24]:

dM
dσ

=
1
ε2 σ(1− c)(Man −Mirr) + c

dMan

dσ
(7)

where, ε is a constant. If there is an axial outer surface crack on the pipeline, and the crack size is 2C
long, the width is b, and the depth is d, the stress σ at the crack tip is obtained [25]:

σ =
F
√
πd/QpR

t
(8)

where, Q is an expansion coefficient, which can be express as:

Q =
√

1 + 1.61(d2/Rt) (9)

F is the stress intensity factor at the crack tip, which is only related to the crack size and the
internal pressure. p is the internal pressure, R is the pipeline radius, t is pipe wall thickness, d is the
crack depth.

It can be seen from Equation (8) that the stress at the crack tip of the pipeline is only related to
the internal pressure and the crack size. Since the stress concentration distribution at the crack is not
uniform under the load, the magnetic charge at the crack is accumulated at the crack tip, and the
distribution is less on the side, thereby forming an internal magnetic source.

Because the internal stress distribution of the crack is not uniform, the magnetization of the interior
will be different. The relationship between the magnetic charge density ρ and the magnetization M is
expressed as [26]:

ρ = MtDµ0 (10)

where, D is the diameter of the pipeline, and t is the wall thickness, and the magnetic charge density
throughout the crack is as shown in Figure 1.
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Figure 1. Schematic diagram of pipeline crack magnetic charge model.

Assuming that the center of the bottom of the crack is the origin of the coordinate, the magnetic
field strength generated by the single magnetic charge at the spatial point is:

dH =
ρrdydz

2πµ0|r|3
(11)

where, r is the distance from the spatial point to the origin.
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Due to the correspondence between the magnetic charge density and the magnetization, the
magnetic charge distribution formula can be obtained by the stress distribution, and ρ1, ρ2 are magnetic
charge density at the crack tip and crack side, respectively.

ρ1 = ρmax
m
d

z + (1−
m
d
)ρmax (12)

ρ2 = (1−
m
d
)ρmax − (

n + m
d − 1

d
z)ρmax (13)

where, m, n are constants. The weak magnetic signal generated by the crack tip at point (x0, y0, z0) can
be obtained:

Hr =

b∫
0

dy

d∫
0

ρmax(
m
d )z + (1− m

d )ρmax

2πµ0
[
(x− x0)

2 + (y− y0)
2 + (z− z0)

2
] (z0 − z)dz (14)

Ha =

C∫
−C

dx

d∫
0

ρmax(
m
a )z + (1− m

a )ρmax

2πµ0
[
(x− x0)

2 + (y− y0)
2 + (z− z0)

2
] (x0 − x)dz (15)

where, Hr is the radial component of the weak magnetic signal, Ha is the axial component of the weak
magnetic signal. The weak magnetic signal generated by the both sides of the crack at point (x0, y0, z0)
can be obtained:

Hr =

C∫
−C

dx

d∫
0

(1− m
d )ρmax − (

n+m
d −1
d z)ρmax

2πµ0
[
(x− x0)

2 + (y− y0)
2 + (z− z0)

2
] (z0 − z)dz (16)

Ha =

C∫
−C

dx

d∫
0

(1− m
d )ρmax − (

n+m
d −1
d z)ρmax

2πµ0
[
(x− x0)

2 + (y− y0)
2 + (z− z0)

2
] (x0 − x)dz (17)

The available weak magnetic signals for the crack model in the axial and radial directions are
expressed as:

Hr =
b∫

0
dy

d∫
0

ρ1
2πµ0r1

2 (z0 − z)dz +
b∫

0
dy

d∫
0

ρ1
2πµ0r22 (z0 − z)dz

+
C∫
−C

dx
d∫

0

ρ2
2πµ0r32 (z0 − z)dz +

C∫
−C

dx
d∫

0

ρ2
2πµ0r4

2 (z0 − z)dz
(18)

Ha =
b∫

0
dy

d∫
0

ρ1
2πµ0r1

2 (x0 − x)dz +
b∫

0
dx

d∫
0

ρ1
2πµ0r22 (x0 − x)dz

+
C∫
−C

dx
d∫

0

ρ2
2πµ0r32 (x0 − x)dz +

C∫
−C

dx
d∫

0

ρ2
2πµ0r4

2 (x0 − x)dz
(19)

where, r1, r2, r3, r4 are the distances between the crack tip and the side of the crack to the detection
point (x0, y0, z0), respectively.

Taking the X70 of large-diameter long-distance oil and gas pipeline application as an example, the
outer diameter of the pipe is 1012 mm, the wall thickness is 14.5 mm, and the crack size is 30 mm long,
1 mm wide, and 3 mm deep. When the pressure of the pipe is 3 MPa, the crack signal characteristic of
the non-uniform magnetic charge is shown in Figure 2.
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Figure 2. The characteristics of weak magnetic signal in model of non-uniform crack: (a) axial 
component and (b) radial component. The axial component of the weak magnetic at the crack has a 
maximum value near the crack tip, and a minimum value appears in the middle of the crack. The 
radial component of the weak magnetic at the crack has a peak and a valley at the crack tip. 
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numerical simulation model of magneto-mechanical coupling is established in this paper. The length 
of the pipeline model is 5000 mm, the wall thickness is 14.5 mm, the pipe diameter is 1016 mm, and 
the crack is located at the center of the pipeline surface, which is 30 mm long, 3 mm deep, and 1 mm 
wide. Axial displacement constraints are applied to both sides of the pipeline model to simulate 
pipeline operation. The internal pressure of 3 MPa is applied to the inner wall of the pipeline, and the 
linear elasticity is calculated. The stress diagram at the crack is shown in Figure 3. 
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Figure 2. The characteristics of weak magnetic signal in model of non-uniform crack: (a) axial
component and (b) radial component. The axial component of the weak magnetic at the crack has a
maximum value near the crack tip, and a minimum value appears in the middle of the crack. The radial
component of the weak magnetic at the crack has a peak and a valley at the crack tip.

3. Calculation of the Simulation

To obtain the quantitative relationship between crack size and weak magnetic signal, a numerical
simulation model of magneto-mechanical coupling is established in this paper. The length of the
pipeline model is 5000 mm, the wall thickness is 14.5 mm, the pipe diameter is 1016 mm, and the crack
is located at the center of the pipeline surface, which is 30 mm long, 3 mm deep, and 1 mm wide. Axial
displacement constraints are applied to both sides of the pipeline model to simulate pipeline operation.
The internal pressure of 3 MPa is applied to the inner wall of the pipeline, and the linear elasticity is
calculated. The stress diagram at the crack is shown in Figure 3. 6 of 15 
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Figure 4. The characteristics of weak magnetic signals at the crack: (a) axial component and (b) radial 
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Figure 3. The stress diagram of pipeline crack.

It can be seen from Figure 3 that the maximum stress of the crack occurs at the crack tip. The stress
at the crack tip section decreases as the depth increases, and the stress on both sides of the crack
increases as the depth increases.

In the model space shown in Figure 3, the uniform magnetic field strength is set to 50 nT to
simulate the geomagnetic field environment. The characteristics of the weak magnetic signal at the
crack are simulated as shown in Figure 4.

It can be seen from Figure 4 that the axial component of the weak magnetic at the crack has a
maximum value near the crack tip, and a minimum value appears in the middle of the crack. The radial
component of the weak magnetic at the crack has a peak and a valley at the crack tip. In order to
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study the characteristics of pipeline crack weak magnetic signals under different internal pressures,
the internal pressures of 1 MPa~3 MPa are applied to the pipeline, and the weak magnetic signals
and stresses at the crack are evaluated at an interval of 0.5 MPa, the stress changes at the crack tip are
shown in Figure 5.
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Figure 5. Relationship between the stress at crack tip and the internal pressure.

As seen in Figure 5, the stress at the pipeline crack tip increases linearly with the increase of the
internal pressure. The magnetization of the crack increases as the stress at the crack increases, and the
characteristic change of the weak magnetic signal at the crack is shown in Figure 6.
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Figure 6. The weak magnetic signal of pipeline crack with different internal pressures: (a) axial 
component and (b) radial component. The axial maximum and the radial peak of the weak magnetic 
signal at the crack are extracted, and the relationship between the signal and the internal pressure is 
shown in the figure. 
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Figure 6. The weak magnetic signal of pipeline crack with different internal pressures: (a) axial
component and (b) radial component. The axial maximum and the radial peak of the weak magnetic
signal at the crack are extracted, and the relationship between the signal and the internal pressure is
shown in the figure.
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It can be seen from Figure 6 that the characteristics of the weak magnetic signal at the crack vary
with the internal pressure, and the characteristics of the weak magnetic signal at the pipeline crack
change linearly with the internal pressure. That is, the axial maximum and the radial peak of the weak
magnetic signal at the crack increase linearly with the increases of internal pressure.

Since the tip signal at the crack is most sensitive to crack signal changes, the slope of the radial
peak with the change of internal pressure is exacted to be the internal pressure increasing factor k.

In order to study the influence of crack depth on the weak magnetic signal of pipeline cracks, the
characteristics of crack signals at different depths are obtained by simulation. The crack size is 30 mm
long and 1 mm wide, the depth range is 1~3 mm, and the interval is 0.5 mm. The stress change at the
crack tip with the depth is shown in Figure 7.
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Figure 6. The weak magnetic signal of pipeline crack with different internal pressures: (a) axial 
component and (b) radial component. The axial maximum and the radial peak of the weak magnetic 
signal at the crack are extracted, and the relationship between the signal and the internal pressure is 
shown in the figure. 

As seen in Figure 5, the stress at the pipeline crack tip increases linearly with the increase of the 
internal pressure. The magnetization of the crack increases as the stress at the crack increases, and 
the characteristic change of the weak magnetic signal at the crack is shown in Figure 6. 
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In order to study the influence of crack depth on the weak magnetic signal of pipeline cracks, 
the characteristics of crack signals at different depths are obtained by simulation. The crack size is 30 
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As seen in Figure 7 that the stress at the pipeline crack tip also increases linearly as the pipeline 
crack depth increases. The magnetization at the crack increases as the stress at the crack increases. 
The characteristics of the weak magnetic signal at the crack change with the crack depth are shown 
in Figure 8a,b. 
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As seen in Figure 7 that the stress at the pipeline crack tip also increases linearly as the pipeline
crack depth increases. The magnetization at the crack increases as the stress at the crack increases.
The characteristics of the weak magnetic signal at the crack change with the crack depth are shown in
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Figure 8. The weak magnetic signal of pipeline crack with different crack depths: (a) axial component 
and (b) radial component. And the axial maximum and the radial peak of the weak magnetic signal 
at the crack are extracted, and the relationship between the signal and the crack depth is shown in the 
figure. 

It can be seen from Figure 8a,b that the weak magnetic signal characteristics of the pipeline crack 
change with the crack depth. And the weak magnetic axial maximum and the radial peak at the 
pipeline crack are extracted. The crack depth is linearly related to the weak magnetic signal at the 
pipeline crack, that is, the weak magnetic axial maximum and the radial peak at the crack increase 
linearly with the crack depth. 

In order to compare and analyze the effect of crack depth on the characteristic value of the crack 
signal, the peak-to-peak values of the radial weak magnetic signal with different depths are extracted, 
which can be shown in Figure 9. 
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Figure 9. Radial peak-to-peak of weak magnetic signals of different crack depths with internal 
pressure. 

As seen in Figure 9 that the Radial peak-to-peak values of the weak magnetic signal with 
different depth cracks change linearly with the internal pressure. The internal pressure increasing 
factor k of different crack sizes are calculated. The internal pressure increasing factor k of the weak 
magnetic signal at the crack is linear with the crack depth. The relationship between the internal 
pressure increasing factor k and the crack depth d is obtained as follows: 

k f d g   (20) 

where, f and g are constants. 
In order to study the influence of crack length on the weak magnetic signal of pipeline crack, the 

simulation analysis of cracks with different lengths is carried out. The crack size is 3 mm in depth 
and 1mm in width, the crack length range is 20~40 mm, and the interval is 5 mm. The stress change 
at the crack tip under the different lengths is shown in Figure 10. 

Figure 8. The weak magnetic signal of pipeline crack with different crack depths: (a) axial component
and (b) radial component. And the axial maximum and the radial peak of the weak magnetic signal
at the crack are extracted, and the relationship between the signal and the crack depth is shown in
the figure.

It can be seen from Figure 8a,b that the weak magnetic signal characteristics of the pipeline crack
change with the crack depth. And the weak magnetic axial maximum and the radial peak at the
pipeline crack are extracted. The crack depth is linearly related to the weak magnetic signal at the
pipeline crack, that is, the weak magnetic axial maximum and the radial peak at the crack increase
linearly with the crack depth.
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In order to compare and analyze the effect of crack depth on the characteristic value of the crack
signal, the peak-to-peak values of the radial weak magnetic signal with different depths are extracted,
which can be shown in Figure 9.
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Figure 8. The weak magnetic signal of pipeline crack with different crack depths: (a) axial component 
and (b) radial component. And the axial maximum and the radial peak of the weak magnetic signal 
at the crack are extracted, and the relationship between the signal and the crack depth is shown in the 
figure. 
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linearly with the crack depth. 
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Figure 9. Radial peak-to-peak of weak magnetic signals of different crack depths with internal 
pressure. 

As seen in Figure 9 that the Radial peak-to-peak values of the weak magnetic signal with 
different depth cracks change linearly with the internal pressure. The internal pressure increasing 
factor k of different crack sizes are calculated. The internal pressure increasing factor k of the weak 
magnetic signal at the crack is linear with the crack depth. The relationship between the internal 
pressure increasing factor k and the crack depth d is obtained as follows: 
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where, f and g are constants. 
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simulation analysis of cracks with different lengths is carried out. The crack size is 3 mm in depth 
and 1mm in width, the crack length range is 20~40 mm, and the interval is 5 mm. The stress change 
at the crack tip under the different lengths is shown in Figure 10. 

Figure 9. Radial peak-to-peak of weak magnetic signals of different crack depths with internal pressure.

As seen in Figure 9 that the Radial peak-to-peak values of the weak magnetic signal with different
depth cracks change linearly with the internal pressure. The internal pressure increasing factor k of
different crack sizes are calculated. The internal pressure increasing factor k of the weak magnetic
signal at the crack is linear with the crack depth. The relationship between the internal pressure
increasing factor k and the crack depth d is obtained as follows:

k = f ·d + g (20)

where, f and g are constants.
In order to study the influence of crack length on the weak magnetic signal of pipeline crack, the

simulation analysis of cracks with different lengths is carried out. The crack size is 3 mm in depth and
1mm in width, the crack length range is 20~40 mm, and the interval is 5 mm. The stress change at the
crack tip under the different lengths is shown in Figure 10. 9 of 15 
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Figure 11. The weak magnetic signal of pipeline crack with different crack lengths: (a) axial 
component and (b) radial component. And the axial maximum and the radial peak of the weak 
magnetic signal at the crack are extracted, and the relationship between the signal and the crack length 
is shown in the figure. 

It can be seen from Figure 11a,b that the weak magnetic signal characteristics of the pipeline 
crack change with the crack length. And the weak magnetic axial maximum and the radial peak at 
the crack increase linearly with the crack length. 

In order to compare and analyze the effect of crack length on the characteristic value of the crack 
signal, the peak-to-peak values of the radial weak magnetic signal with different lengths are 
extracted, which are shown in Figure 12. 

It can be seen from Figure 12 that the weak magnetic radial peak signal at the crack changes 
linearly with the internal pressure. The internal pressure increasing factor k of the weak magnetic 
signal at different cracks is calculated. That is, the internal pressure increasing factor k of the weak 
magnetic signal at the crack also has a linear change trend with the crack length. And the influence 
of depth and length on the internal pressure increasing factor k of the weak magnetic signal at the 
crack is compared. The crack depth has a greater influence on the internal pressure increasing factor 
k of the weak magnetic signal at the crack. 
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Figure 10. Relationship between the stress at crack tip and the crack length.

It can be seen from Figure 10 that the stress at the crack tip increases linearly as the crack length
increases, and the magnetization at the crack also increases as the stress increases. The relationship
between the weak magnetic signal characteristics and the crack length at the crack is shown in
Figure 11a,b.

It can be seen from Figure 11a,b that the weak magnetic signal characteristics of the pipeline crack
change with the crack length. And the weak magnetic axial maximum and the radial peak at the crack
increase linearly with the crack length.
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Figure 11. The weak magnetic signal of pipeline crack with different crack lengths: (a) axial 
component and (b) radial component. And the axial maximum and the radial peak of the weak 
magnetic signal at the crack are extracted, and the relationship between the signal and the crack length 
is shown in the figure. 

It can be seen from Figure 11a,b that the weak magnetic signal characteristics of the pipeline 
crack change with the crack length. And the weak magnetic axial maximum and the radial peak at 
the crack increase linearly with the crack length. 

In order to compare and analyze the effect of crack length on the characteristic value of the crack 
signal, the peak-to-peak values of the radial weak magnetic signal with different lengths are 
extracted, which are shown in Figure 12. 

It can be seen from Figure 12 that the weak magnetic radial peak signal at the crack changes 
linearly with the internal pressure. The internal pressure increasing factor k of the weak magnetic 
signal at different cracks is calculated. That is, the internal pressure increasing factor k of the weak 
magnetic signal at the crack also has a linear change trend with the crack length. And the influence 
of depth and length on the internal pressure increasing factor k of the weak magnetic signal at the 
crack is compared. The crack depth has a greater influence on the internal pressure increasing factor 
k of the weak magnetic signal at the crack. 
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Figure 11. The weak magnetic signal of pipeline crack with different crack lengths: (a) axial component
and (b) radial component. And the axial maximum and the radial peak of the weak magnetic signal
at the crack are extracted, and the relationship between the signal and the crack length is shown in
the figure.

In order to compare and analyze the effect of crack length on the characteristic value of the crack
signal, the peak-to-peak values of the radial weak magnetic signal with different lengths are extracted,
which are shown in Figure 12.
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Figure 12. Radial peak-to-peak of weak magnetic signals of different crack lengths with internal 
pressure. 

When the crack is in a dangerous state, the weak magnetic signal at the crack decreases with the 
internal pressure increases because of the large plastic deformation at the crack. That is, the 
characteristic value of the weak magnetic signal at the crack decreases as the internal pressure 
increases. The internal pressure increasing factor of the weak magnetic signal at the crack is less than 
0, which can be shown as: 
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The internal pressure increasing factor of the weak magnetic signal at the crack is negative. 

4. Experiment 

In order to verify the correctness of theoretical calculations and simulation results, a pipeline 
pressure test is designed in this paper. The experimental material is X70 pipeline (6 m long) 
prefabricated with artificial cracks, with a diameter of 1016 mm and a wall thickness of 14.5 mm. 
Weak magnetic signals of different crack sizes are detected under different pressures during the 
experiment. Magnetic signal acquisition is performed using a weak magnetic detection device with 
an accuracy of 0.001 A/mm. In the pipeline experiment, the internal pressure range is 0~3 MPa, and 
the weak magnetic signals of the pipeline crack are detected at intervals of 0.5 MPa. Crack numbers 
of different sizes in the experiment are shown in Table 1. The experimental pipeline and weak 
magnetic detection device are shown in Figure 13. 

Table 1. Numbering table for cracks of different sizes. 

Number Length（mm） width（mm） Depth（mm） 

1 30 1 1 
2 30 1 2 
3 30 1 3 
4 35 1 3 
5 40 1 3 

Figure 12. Radial peak-to-peak of weak magnetic signals of different crack lengths with internal pressure.

It can be seen from Figure 12 that the weak magnetic radial peak signal at the crack changes
linearly with the internal pressure. The internal pressure increasing factor k of the weak magnetic
signal at different cracks is calculated. That is, the internal pressure increasing factor k of the weak
magnetic signal at the crack also has a linear change trend with the crack length. And the influence of
depth and length on the internal pressure increasing factor k of the weak magnetic signal at the crack is
compared. The crack depth has a greater influence on the internal pressure increasing factor k of the
weak magnetic signal at the crack.

When the crack is in a dangerous state, the weak magnetic signal at the crack decreases with
the internal pressure increases because of the large plastic deformation at the crack. That is, the
characteristic value of the weak magnetic signal at the crack decreases as the internal pressure increases.
The internal pressure increasing factor of the weak magnetic signal at the crack is less than 0, which
can be shown as:

k < 0 (21)

The internal pressure increasing factor of the weak magnetic signal at the crack is negative.

4. Experiment

In order to verify the correctness of theoretical calculations and simulation results, a pipeline
pressure test is designed in this paper. The experimental material is X70 pipeline (6 m long) prefabricated
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with artificial cracks, with a diameter of 1016 mm and a wall thickness of 14.5 mm. Weak magnetic
signals of different crack sizes are detected under different pressures during the experiment. Magnetic
signal acquisition is performed using a weak magnetic detection device with an accuracy of 0.001 A/mm.
In the pipeline experiment, the internal pressure range is 0~3 MPa, and the weak magnetic signals
of the pipeline crack are detected at intervals of 0.5 MPa. Crack numbers of different sizes in the
experiment are shown in Table 1. The experimental pipeline and weak magnetic detection device are
shown in Figure 13.

Table 1. Numbering table for cracks of different sizes.

Number Length (mm) Width (mm) Depth (mm)

1 30 1 1
2 30 1 2
3 30 1 3
4 35 1 3
5 40 1 3

 11 of 15 
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Figure 13. The experimental pipeline and weak magnetic detection device: (a) the experiment pipeline 
and (b) the weak magnetic detection device. 
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Figure 14. The characteristics of weak magnetic signal at the crack: (a) axial component and (b) radial 
component. An error bar illustrates standard deviation for the standard signal. 

To study the characteristics of weak magnetic signals at the pipeline cracks under internal 
pressure, the weak magnetic signal of the No. 3 crack is extracted under the pressure of 3 MPa as 
shown in Figure 14. 

It can be seen from Figure 14 that the axial component has a maximum value near the crack tip, 
and a minimum value appears in the middle of the crack. The radial component has a peak and a 
valley at the crack tip. The experimental error has been shown in the figure with an error bar. 
Comparing the experimental and simulation results, the characteristics are highly consistent. 
However, there are certain errors in the initial cracks made during the experiment, and impact factors, 
such as fluctuations in the water pressure of the pipeline and different initial magnetization states of 
the pipeline, will affect the detection results. 

In order to further study the relationship between the crack signal and the internal pressure, the 
weak magnetic signals at the crack under different internal pressures are extracted, which is shown 
in Figure 15. 

Figure 13. The experimental pipeline and weak magnetic detection device: (a) the experiment pipeline
and (b) the weak magnetic detection device.

To study the characteristics of weak magnetic signals at the pipeline cracks under internal pressure,
the weak magnetic signal of the No. 3 crack is extracted under the pressure of 3 MPa as shown in
Figure 14.
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Figure 14. The characteristics of weak magnetic signal at the crack: (a) axial component and (b) radial 
component. An error bar illustrates standard deviation for the standard signal. 

To study the characteristics of weak magnetic signals at the pipeline cracks under internal 
pressure, the weak magnetic signal of the No. 3 crack is extracted under the pressure of 3 MPa as 
shown in Figure 14. 

It can be seen from Figure 14 that the axial component has a maximum value near the crack tip, 
and a minimum value appears in the middle of the crack. The radial component has a peak and a 
valley at the crack tip. The experimental error has been shown in the figure with an error bar. 
Comparing the experimental and simulation results, the characteristics are highly consistent. 
However, there are certain errors in the initial cracks made during the experiment, and impact factors, 
such as fluctuations in the water pressure of the pipeline and different initial magnetization states of 
the pipeline, will affect the detection results. 

In order to further study the relationship between the crack signal and the internal pressure, the 
weak magnetic signals at the crack under different internal pressures are extracted, which is shown 
in Figure 15. 

Figure 14. The characteristics of weak magnetic signal at the crack: (a) axial component and (b) radial
component. An error bar illustrates standard deviation for the standard signal.

It can be seen from Figure 14 that the axial component has a maximum value near the crack tip,
and a minimum value appears in the middle of the crack. The radial component has a peak and a valley
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at the crack tip. The experimental error has been shown in the figure with an error bar. Comparing
the experimental and simulation results, the characteristics are highly consistent. However, there are
certain errors in the initial cracks made during the experiment, and impact factors, such as fluctuations
in the water pressure of the pipeline and different initial magnetization states of the pipeline, will affect
the detection results.

In order to further study the relationship between the crack signal and the internal pressure, the
weak magnetic signals at the crack under different internal pressures are extracted, which is shown in
Figure 15. 12 of 15 
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Figure 16. The weak magnetic signal of pipeline crack with different crack depths: (a) axial component 
and (b) radial component. 

It can be seen from Figure 16 that the pipeline crack depth under the internal pressure is deeper, 
the weak magnetic signal characteristic at the crack is more obvious. To further compare and analyze 
the influence of crack depth on the characteristics of the weak magnetic signal, the radial peak-to-
peak values of weak magnetic signals with different depth cracks are extracted, which is shown in 
Figure 17. 
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Figure 15. The weak magnetic signal of pipeline crack with different internal pressures: (a) axial
component and (b) radial component. And the axial maximum and the radial peak of the weak
magnetic signal at the crack are extracted, the relationship between the signal and the internal pressure
is shown in the figure.

In order to study the influence of crack depth on the weak magnetic signal characteristics of cracks
under internal pressure, the weak magnetic signals of cracks with different depths are extracted. The
characteristic changes of crack signals of different depths are shown in Figure 16.
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Figure 16. The weak magnetic signal of pipeline crack with different crack depths: (a) axial component
and (b) radial component.

It can be seen from Figure 16 that the pipeline crack depth under the internal pressure is deeper,
the weak magnetic signal characteristic at the crack is more obvious. To further compare and analyze
the influence of crack depth on the characteristics of the weak magnetic signal, the radial peak-to-peak
values of weak magnetic signals with different depth cracks are extracted, which is shown in Figure 17.
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Figure 17. Radial peak-to-peak of weak magnetic signals of different crack depths with internal pressure.
And the deeper the crack depth is, the faster radial peak-to-peak of magnetic weak signal changes with
the internal pressure.

As seen in Figure 17 that the radial peak-to-peak of weak magnetic signal increases at the crack
as the internal pressure increases, and the internal pressure increasing factor k of the different cracks
are obtained by calculation. The relationship of the internal pressure increasing factor k and the crack
depth is obtained, which is shown in Figure 18.
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It can be seen from Figure 18 that the internal pressure increasing factor k at the crack increases
as the crack depth increases. And the internal pressure increasing factor k at the crack has a linear
relationship with the crack depth. The formula can be obtained by fitting:

k = 0.7d + 2.37 (22)

The same method is used to calculate the internal pressure increase factors k for cracks of different
lengths, which is shown in Figure 19.
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It can be seen from Figure 19 that the internal pressure increasing factor k at the crack increases
as the crack length increases. And the internal pressure increasing factor k at the crack has a linear
relationship with the crack length. The formula can be obtained by fitting:

k = 0.08C + 1.27 (23)

Therefore, it can be seen that the weak magnetic signal at the crack has a linear relationship with
the internal pressure when the crack does not start to expand. Because the crack size has a linear
relationship with the weak magnetic signal at the crack, the crack size can be effectively evaluated by
the internal pressure increasing factor k.

To compare and analyze the changes of the weak magnetic signal before and after the crack
expands, a pipeline pressure test is performed on the pipeline. During the experiment, the weak
magnetic detection device and the strain gauge are attached to the crack tip to monitor the stress and
the weak magnetic signal at the crack tip. When the crack begins to expand under the action of internal
pressure, the change of the weak magnetic signal at the crack is shown in Figure 20. That is, as the
stress increases, the weak magnetic signal at the crack decreases. The internal pressure increasing
factor k of the weak magnetic signal at the crack is negative. Thus, the internal pressure increasing
factor k can effectively determine if the crack will expand.
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5. Conclusions 

In this paper, a non-uniform magnetic charge model is established based on the stress 
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5. Conclusions

In this paper, a non-uniform magnetic charge model is established based on the stress distribution
laws of pipeline cracks under internal pressure. The corresponding relationship between the crack size
and the weak magnetic signal of the crack is quantitatively analyzed. The signal characteristics at the
crack are extracted to determine the safety of the crack. The results show that: the axial component of
the weak magnetic signal at the pipeline crack has a maximum value near the tip, a small value appears
in the middle of the crack, and the radial component has a peak and a valley at the tip. The slope
of the radial peak with the change of internal pressure is exacted to be the crack internal pressure
increasing factor, which is mainly affected by the crack size. When the internal pressure increasing
factor of the crack is positive, the crack is in a safe state, and the internal pressure increasing factor k
of the crack has a linear relationship with the crack size. In detail, the internal pressure increasing
factor k of the crack increases linearly as the crack size increases. The crack is in danger when the
internal pressure increasing factor k of the crack is negative. That is, the pipeline crack will expand as
the internal pressure increases.
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