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Abstract: Regular crack inspection of tunnels is essential to guarantee their safe operation. At present,
the manual detection method is time-consuming, subjective and even dangerous, while the automatic
detection method is relatively inaccurate. Detecting tunnel cracks is a challenging task since cracks
are tiny, and there are many noise patterns in the tunnel images. This study proposes a deep
learning algorithm based on U-Net and a convolutional neural network with alternately updated
clique (CliqueNet), called U-CliqueNet, to separate cracks from background in the tunnel images.
A consumer-grade DSC-WX700 camera (SONY, Wuxi, China) was used to collect 200 original images,
then cracks are manually marked and divided into sub-images with a resolution of 496 × 496 pixels.
A total of 60,000 sub-images were obtained in the dataset of tunnel cracks, among which 50,000 were
used for training and 10,000 were used for testing. The proposed framework conducted training and
testing on this dataset, the mean pixel accuracy (MPA), mean intersection over union (MIoU), precision
and F1-score are 92.25%, 86.96%, 86.32% and 83.40%, respectively. We compared the U-CliqueNet with
fully convolutional networks (FCN), U-net, Encoder–decoder network (SegNet) and the multi-scale
fusion crack detection (MFCD) algorithm using hypothesis testing, and it’s proved that the MIoU
predicted by U-CliqueNet was significantly higher than that of the other four algorithms. The area,
length and mean width of cracks can be calculated, and the relative error between the detected mean
crack width and the actual mean crack width ranges from −11.20% to 18.57%. The results show that
this framework can be used for fast and accurate crack semantic segmentation of tunnel images.

Keywords: tunnel crack; U-net; CliqueNet; crack measurement

1. Introduction

1.1. Motivation

At present, tunnel construction technology is becoming increasingly sophisticated, but how to
maintain the tunnels is a problem troubling the society [1]. The safety threat of aging tunnels has been
recognized as a growing national public concern, as most tunnels are used for a long time and need
regular inspection and maintenance [2]. Cracks are the main factor affecting the service life of a tunnel.
Traditional monitoring methods rely on manual crack detection [3], but the process is subjective and
operators face very difficult or even dangerous conditions, such as dust conditions, insufficient light
or toxic exposure [4]. Another reason is that it’s time-consuming and laborious to detect the cracks
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from thousands of pictures manually in front of the computer, so researchers are trying to develop
techniques that can detect cracks automatically [5]. How to use the least personnel to continuously
and automatically monitor the building has become an important research direction [6].

Crack detection technology has a long research history, but most of the methods developed are
devoted to the detection of pavement cracks, in other words, there are few algorithms for tunnel crack
detection. Due to the complex internal environment of the tunnel, most automatic crack detection
methods are not accurate or effective enough, so it is a challenging task to detect the length and width
of cracks in tunnel vaults and side walls automatically. In order to realize the study described in
this paper, we built a tunnel image dataset by taking a large number of images in different tunnels.
The camera we used was a consumer-grade DSC-WX700 camera (SONY, Wuxi, China), which was
placed perpendicular to the wall and at about 50 cm from the wall. More details of the data acquisition
method are presented in Section 3.1. Figure 1 shows some of the images, including many of the complex
elements inside the tunnel. For example, Figure 1a,b show the presence of wires and lighting equipment
in the tunnel vault, while Figure 1c,d, demonstrate the side wall with tiles falling off and the patchwork
joint of the wall which is very similar to a crack. In addition, the chromatic aberration of images taken
in different tunnels is very large, which increases the difficulty of tunnel crack identification.
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Figure 1. Some disturbing factors in the tunnel vault: (a) wire, (b) lighting equipment, (c) the calcimine
peels off and tiles, (d) wall joint.

1.2. Related Works

Edge detection methods are widely adopted in early crack detection. One of them is the Laplacian
of the Gaussian algorithm [7,8]. A robotic crack inspection and mapping (ROCIM) system is proposed
to provide an overall solution to the bridge deck crack inspection. Edge detection algorithms such
as Roberts, Prewitt, Sobel, Laplacian of Gaussian, Butterworth, and Gaussian were used to detect
cracks in 3420 concrete sub-images [9]. These methods can accurately detect 53–79% of cracked pixels,
but lead to residual noise in the final binary image. In conclusion, the main drawback of edge detection
methods is that it can only detect a group of disjoint crack patches, which often fail in low-contrast and
high-clutter images.
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Early unsupervised methods of crack detection [10] were normally based on threshold
segmentation. These kinds of methods [11,12] have been widely studied due to their simplicity,
but these methods are sensitive to noise, resulting in unreliable crack detection results, especially in
the case of poor illumination and large visual clutter. Otsu’s threshold is adopted [13] to detect cracks
in 2D images. It has high accuracy but low precision. The application of image threshold segmentation
or edge detection algorithms to the detection of road cracks has achieved good results, but the its
application to the detection of tunnel cracks is completely useless. Li et al. recently proposed an
unsupervised multi-scale fusion crack detection (MFCD) algorithm, which combined the advantages
of large-scale detection and small-scale detection, and achieved good results in a public dataset of
road cracks [14]. The road background is relatively simple, but examining even a common tunnel will
require a lot of electronic equipment and lighting equipment, so this method is completely useless in a
tunnel context.

In recent years, deep neural networks have made great progress in the field of image processing.
They can make an algorithm automatically learn the target to be detected, which also makes it very
adaptable to complex environments. CrackNet, an efficient architecture based on convolutional neural
networks (CNNs), was proposed by Wang et al. to detect 3D asphalt surface cracks at a pixel-level, so it
does not have any polling layers [15], and then CrackNet II was proposed, which has higher accuracy
and a deeper architecture with more hidden layers but fewer parameters [16]. Zhang et al. trained a
deep convolutional neural network with transfer learning to preclassify a pavement image into cracks,
sealed cracks, and background regions [17]. Cha’s CNN has been a success, but this network can only
be used for crack classification, not for crack segmentation [18].

CNNs achieve high detection accuracies whether an image or a sub-image contain cracks or
not, Dorafshan et al. compared the performance of common edge detectors and deep convolutional
neural networks (DCNNs) in the detection of concrete cracks, and their results showed that the
DCNNs method had an important application prospect in the field of damage detection of concrete
structures [9]. Many researchers began to make further improvement based on CNNs, including
changing the structure of the convolutional neural network and combining other algorithm theories to
better realize the prediction of cracks. Hui et al. proposed a modified fusion convolutional neural
network, using three bypass stages to combine the multilevel features, that can divide a sub-image
into three categories: crack elements, handwriting elements and background [19]. After classifying
images by convolutional neural networks, Chen et al. processed the classification results with Naive
Bayes, making the results more robust [20]. All these results indicate that CNNs have great research
prospects, and many researchers have begun to modify the structure of CNNs to achieve better effects.

The previous convolutional neural network is used to classify cracks. Because the shape and color
of cracks are relatively simple, many algorithms can effectively identify whether there are cracks in an
image. However, with the introduction of fully convolutional networks (FCN) [21] and U-net [22],
it is proved that spatial features can be obtained by transposed convolution layer after convolution
and pooling, which can be extended and applied in the field of image segmentation. FCN (fully
convolutional networks ) was adopted in the crack segmentation field by Yang et al. and it achieved
an end-to-end prediction [23]. Huang et al. designed a two-stream FCN model, which can detect
cracks and leakage of metro shield tunnels, respectively [24]. U-net was used for biomedical image
segmentation, where it can be trained end-to-end from very few images and outperforms the prior
best method. The U-net consists of a contracting path to capture context and a symmetric expanding
path that enables precise localization. Liu et al. applied U-Net to detect cracks of concrete pavement
under various conditions [25], and their results showed that this method is more accurate than FCN
when the training set is small.

A recent study developed a convolution neural network with alternately updated clique
(CliqueNet), which has achieved state-of-the-art performance in the field of image classification [26].
There are both forward and backward connections between any two convolution layers in the same
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block, for each layer, it is both the input and output of any other layer. The results show that the
algorithm can highlight the target features and weaken the influence of background and noises.

1.3. Contribution

CliqueNet has achieved good results in image classification because cliqueblock is used instead of
an ordinary convolutional layer, while U-net reaches similar accuracy to FCN under the condition
of fewer datasets. Therefore, based on the ideas of U-net and CliqueNet, this paper proposes a
fused U-CliqueNet which can divide the cracks from the background more accurately and quickly.
The contributions of this study are as follows:

1. A new deep learning network based on Clique-net and U-net called U-CliqueNet is proposed for
semantic segmentation of tunnel cracks from images.

2. The proposed model integrates clique block and into U-net and adds an attention mechanism
in the process of down-sampling, which makes it better than U-net in dealing with crack
segmentation noises.

3. A tunnel crack dataset is established, including various cracks and disturbances. The proposed
model is tested on this dataset, and the length and mean width of cracks can be calculated
automatically.

2. Methodology

As described in Section 1.3, this paper uses some of the techniques in the CliqueNet to improve
the U-net network, forming a new network named U-CliqueNet. In this part, we describe the proposed
method in detail. First, in order to understand the proposed method more clearly, we give a brief
introduction to U-net and CliqueNet. Then, we introduce the specific method of combining U-net with
Cliquenet, that is, the model proposed in this paper.

2.1. Review of U-net and CliqueNet

The architecture of the original U-net is illustrated in Figure 2. It consists of a symmetrical
contraction path and an expansive path.
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The contraction path uses the ordinary convolutional layer and pooling layer, while the expansion
path uses deconvolution instead of the maximum pooling layer. In U-net, all convolutional layers
are unpadded convolutions, each followed by a nonlinear activation function Rectified Linear Unit
(ReLU) [27] and a 2 × 2 max pooling operation with steps of 2 for downsampling. After each
deconvolution of the expansion path, the characteristics of the corresponding contraction path before
pooling are merged with it. The copy and crop operation combines the high-resolution characteristics
of the shrink path with the upsampling output, enabling the network to predict a more accurate
output from the assembled information. At the last layer, the 1× 1 convolution is adopted to map each
feature vector to the required number of classes. It is worth mentioning that in the contraction path,
the convolution operation after each downsampling can double the number of channels of the feature
map, while in the expansion path, it is the opposite

The difference between the CliqueNet and the traditional convolutional neural network is that it
proposes the clique block based on the DenseNet, and the output result is obtained by combining the
output feature of each block, as shown in Figure 3. There are three clique blocks in CliqueNet, and the
transition down layer between any two blocks uses a convolution and an average pooling to change
map sizes.
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The clique block is the core of the CliqueNet. The architecture of a clique block with three layers
is presented in Figure 4.
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By linking all layers in the same block, it can acquire more information that is useful for crack
classification. The method is to connect any two layers in the same block except for the input layer,
in other words, every layer is both the input and output of any other layers in the Clique block.
In addition, each convolutional layer will followed by a batch normalization and a ReLU operation.
This kind of network can combine the information learned in the shallow layer with the information
learned in the deep layer to predict the target more accurately

The data entered from the previous block to the next layer will be looped through the block twice,
with the first looping feature called stage-I feature and the second looping feature called stage-II feature.
First, the input layer (X0) input data to this block, and it will be the input of all layers within the block,
each updated layer is concatenated to update the next layer. At the second stage, the input of each
layer is the most recent output of the other layers. According to this principle, the i−th (1 ≤ i ≤ 4)
layer in the first loop can be expressed by Equation (1), and the i−th (1 ≤ i ≤ 4) layer in the second
loop can be calculated by Equation (2):

X(1)
i = σ

(
W0i ⊗X0 +

∑
l<i

Wli ⊗X(1)
l

)
, (1)

X(2)
i = σ

∑
l<i

Wli ⊗X(2)
l +

∑
m>i

Wmi ⊗X(1)
m

 (2)

where ⊗ represents the convolution operation, Wi j denotes the weights of parameters from Xi to
X j, and σ is the RELU function to maintain non-linearity. In all clique blocks, each layer receives
information from the other layers that were recently updated. The spatial attention mechanism is
realized through the top-down refinement brought by each propagation. This repetitive feedback
structure ensures maximum communication between all layers in the block.

The role of the first stage is mainly to initialize all the layers in each block, which will be further
refined in the second stage. Due to the high computational complexity and model complexity of higher
order propagation, we decided to use only the second stages. Considering that the features obtained in
the second stage are more refined than those obtained in the first stage, we take the output of the last
layer of the second stage as the output of each block. The results show that the characteristics of the
second stage do improve the calculation results significantly.

2.2. Overall Architecture of U-CliqueNet

In this section, the proposed model for the semantic segmentation of tunnel crack is described.
Figure 5 demonstrates the overview of the proposed crack segmentation framework called U-CliqueNet,
which consists of a contracting path and an expansive path like U-net. On the basis of U-net, the proposed
model uses clique blocks to replace the ordinary convolutional layer and reduces the number of
down sampling operations. The three main components of the proposed framework are clique block,
transition down layer and transition up layer. The proposed model has five clique blocks with four
layers in each block, and each layer contains 36 filters. There are two transition down layers and two
transition up layers in the proposed networks, the output size of the final layer is the same with input
image. In the down-sampling path, the features output by each block are not only transmitted to the
next layer, but also preserved for feature fusion in the symmetric up-sampling process, so as to obtain
better prediction results. The cropping is adopted in U-net due to the loss of border pixels in every
convolution, but in our model, the padding operation is adopted in every convolution layer. For this
reason, the scale of feature maps will not change, there is no crop operation.

Firstly, a sub-image with a resolution of 496 × 496 × 3 is put into the network. After the first
convolution layer with 3× 3 kernels, the image becomes a feature map of 496× 496× 96. Note that in our
models, every convolution layer is padded by one pixel to maintain the same size of the feature maps.
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The clique block concept will be detailed in Section 2.2, and the output size of clique block1 is
496× 496× 36. The transition down (TD) operation consists mainly of convolution layers and pooling
layers; more details will be introduced in Section 2.2. The feature map size of the first transition down
layer will be reduced by half due to the polling operation. The transition up (TU) layer has only the
transposed convolution operation, the feature map size will be doubled after this layer. The purpose of
copy path is to obtain more useful feature by combining shallow feature with deep feature, the channels
are added behind copy path. Table 1 lists the output sizes and the operations for all convolution,
transition down, and transposed convolution layers. Note that each “conv” operation shown in
the table corresponds the sequence BN-ReLU-Convolution, and each “avp” represents an average
pooling operation.

Table 1. Detailed properties of parameters for all layers.

Block Layers Output Size Operator Height Width Depth No.

Input Input 496× 496× 3 - - - - -
Conv1 496× 496× 36 conv 3 3 3 36

CliqueBlock1 X(1)
1−4

496× 496× 36 conv 3 3 36 36
TD1 (transition down) 248× 248× 36 conv 1 1 36 36

248× 248× 36 avp 2 2 - -
CliqueBlock2 X(2)

1−4
248× 248× 36 conv 3 3 36 36

TD2 124× 124× 36 conv 1 1 36 36
124× 124× 36 avp 2 2 - -

CliqueBlock3 X(3)
1−4

124× 124× 36 conv 3 3 36 36
TU1 248× 248× 36 deconv 3 3 36 36

CliqueBlock4 X(4)
1−4

248× 248× 36 conv 3 3 36 36
TU2 496× 496× 36 deconv 3 3 36 36

CliqueBlock5 X(5)
1−4

496× 496× 36 conv 3 3 36 36
Conv2 496× 496× 36 conv 1 1 36 2
Output 496× 496× 2 - - - - -
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Unlike the traditional pooling layer, our downsampling layer introduces an attentional mechanism,
as shown in Figure 6. This channel-wise attention mechanism is also used in CliqueNet, and the
effectiveness of the attention mechanism is obtained through comparative experiments. First, the input
feature reaches the first convolutional layer, and then it is divided into two outputs. The lower path
is the main feature, while the upper path represents the weight of each channel. If the upper path
weight is dotted with the lower path feature, the background can be reduced and useful features can
be enhanced.
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Figure 6. The transition down layer in down sampling process, it consists of convolution layer, fully
connected layer and average pooling layer. W, h and d are width, height and depths of feature
maps, respectively.

The filters are globally averaged after the convolution layers, and behind them are two fully
connected layers. The first full connection layer reduces the data by half and is activated by RELU
function, while the second fully connected layer doubles the data and is activated by sigmoid function.
The feature in the upper path is scaled to [0, 1], which is multiplied by the features of the lower path in
filter-wise. Average pooling is performed on the obtained result, and the final output of the transition
down layer is obtained. This attention mechanism is only adopted in transition down layers to prevent
the networks overfitting.

Transposed convolution is the only operation in the transition up layer. Common convolution
operation is widely used in convolutional neural network, while transposed convolution is rarely used.
As Figure 7 describes, there is an example of a transposed convolutional layer with a specific stride and
padding, which converts a coarse input feature map into a dense output feature map. The pixel value
of 0 is padded around the input image and between the adjacent two pixels of the input image, and in
order to make the size of the output image twice that of the input, fill in extra 0 pixel on the right and
upper sides. Then apply the convolution operation to the image behind the padding to get the result.
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3. Implementation Details

3.1. Image Acquisition Mechanism

Since there is no publicly available tunnel crack dataset, the dataset we used was obtained through
the crack acquisition mechanism. As different tunnels have various environments, we carried out image
collection and detection from seven different tunnels. Figure 8 shows the interior of an ordinary tunnel
and the process to take images. Capturing images of the tunnel requires the assistance of a climbing
vehicle, which lifts the inspector close to the wall. The camera first needs to be placed on a tripod to
keep the shot steady. During the progress, the inspector places the tripod about 50 cm from the wall to
take images. The inspectors not only took photos of the cracks, but also measured the length and width
of the cracks, so there are some images including cracks and handwriting in our dataset. Two hundred
raw RGB images were taken by SONY DSC-WX700 (SONY, Wuxi, China) consumer-grade camera
while the camera lens was kept perpendicular to the wall. The size of the original images we captured
was 4896 × 3672 pixels, and were taken under different lighting conditions. The cracks in these images
include longitudinal cracks, transverse cracks, oblique cracks, mesh cracks and so on. In addition to
various types of cracks, the obtained crack images also contain various noises, such as electric wires,
the calcimine peeling off and wall joints.
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Figure 8. Schematic diagram of the tunnel crack image acquisition mechanism.

3.2. Data Structure

The raw RGB images we obtained are 4896 × 3672, which is too large to be directly input into the
network. To augment the dataset, we cut the original images into sub-images of 496× 496 with a step
of 248. The proposed method obtains the crack location in the image through semantic segmentation of
the crack images, therefore, manual pixel-level labeling of training samples is required. Table 2 shows
two original images with ground truth masks and the sub-images we obtained. All images from the
training and testing sets were cut independently, and each raw image was cut into 234 sub-images.
The cutting of crack pictures plays a certain role in the identification of cracks, because the cracks on the
inner wall of the tunnel are very subtle and not easy to detect. After cutting the picture, the proportion
of cracks in the picture with cracks becomes larger, making it easier to identify the cracks. A total of
200 original images were taken and cut into 46,800 sub-images. Since there are more non-crack images
in these sub-images, in order to detect cracks and eliminate noise more effectively, a rotation operation
is adopted to some sub-images with cracks and noises. The final dataset contains 60,000 sub-images,
and we use 50,000 for training and 10,000 for testing to verify the effectiveness of the network.
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Table 2. The original image and ground truth image is divided into sub-images.

Original Images Ground Truth Sub-Images
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CliqueNet. 
The loss function, also known as the error function, reflects the discrepancy between the 

predicted value and the ground truth. In the training process, the optimal solution needs to be 

obtained by constantly reducing the loss function. Therefore, the selection of different loss functions 

will have different effects on the training effect and what we use here is the cross entropy loss 

function. The parameters 𝑤  and 𝑏 are obtained by training the loss function. In our case, cross 

entropy is defined as: 

𝐿 =  − ∑ (𝑦𝑖 𝑙𝑜𝑔 �̂�𝑖 + (1 − 𝑦𝑖) 𝑙𝑜𝑔( 1 − �̂�𝑖)
𝑆2

𝑖=1 , (3) 

where 𝑦𝑖 and 𝑦�̂� are the ground truth and prediction of the 𝑖th output unit, respectively; 𝑠2 is the 

number of labels. In order to prevent the network from overfitting, our model adopts the method of 

weight attenuation to punish excessively large weight. The 𝐿2 penalty is added into the loss function, 

so that the final loss function 𝐿′ can be expressed as: 

𝐿′ = 𝐿 + 𝛽
1

2
∑ 𝑊𝑗

2
𝑗 , (4) 

where 𝐿 is the cross entropy function, 𝛽 is the 𝐿2 penalty factor and 𝑊𝑗 is the 𝑗th weight in the 

network, including weights in convolutional layers and fully connected layers. In the experiment, 𝛽 

is set to 0.0005 according to [33]. 
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where 𝐿 is the cross entropy function, 𝛽 is the 𝐿2 penalty factor and 𝑊𝑗 is the 𝑗th weight in the 

network, including weights in convolutional layers and fully connected layers. In the experiment, 𝛽 

is set to 0.0005 according to [33]. 

3.3. Training Details

In order to optimize the parameters in the proposed U-CliqueNet, a number of optimization
methods and hyper-parameters need to be set first. Parameters in convolutional layers and FC layers
are initialized using the Xavier initialization [28,29]. When the stochastic gradient descent (SGD)
method with momentum uses the well-designed stochastic initialization method, the performance of
the trained model can be greatly improved [30], this study uses Mini-Batch Gradient Descent (MNGD)
with 0.9 Nesterov momentum [31] to train our model. The batch size was n = 4 and the regularization
weight was λ = 0.0001. The initial learning rate is usually the single most important hyper-parameter,
we should always make sure that it is tuned [32]. There are two structure parameters to set first [26],
T is the sum of the layers of all the blocks, k represents the number of filters per layer in each block.
The kernel size of convolution layers in all blocks are 3 × 3, and we use one-pixel padding to keep the
size of the matrix the same before and after the convolution. The training progress was fulfilled on
the computer which includes an Intel(R) Core(TM) i7-7800 CPU, 256-GB INTEL SSDPEKKR, and a
NVIDIA GeForce 1080Ti GPU (Micro-Star, Beijing, China). The tensorflow framework based on Python
3.6 is used during the training progress of the proposed U-CliqueNet.

The loss function, also known as the error function, reflects the discrepancy between the predicted
value and the ground truth. In the training process, the optimal solution needs to be obtained
by constantly reducing the loss function. Therefore, the selection of different loss functions will
have different effects on the training effect and what we use here is the cross entropy loss function.
The parameters w and b are obtained by training the loss function. In our case, cross entropy is
defined as:

L = −
∑S2

i=1
(yi log ŷi + (1− yi) log(1− ŷi), (3)

where yi and ŷi are the ground truth and prediction of the ith output unit, respectively; s2 is the number
of labels. In order to prevent the network from overfitting, our model adopts the method of weight
attenuation to punish excessively large weight. The L2 penalty is added into the loss function, so that
the final loss function L′ can be expressed as:

L′ = L + β
1
2

∑
j
W2

j , (4)
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where L is the cross entropy function, β is the L2 penalty factor and W j is the jth weight in the network,
including weights in convolutional layers and fully connected layers. In the experiment, β is set to
0.0005 according to [33].

The problem of overfitting often occurs in the training progress of deep neural networks. Here a
simple and effective technique is adopted to solve this problem, a dropout layer [34,35]. It is realized
by randomly disconnecting the connections between neurons at a certain drop rate during training, in
other words, we randomly set the weights of some hidden neurons to zero. It is applied after each
convolution layer following with the probability of 0.2.

3.4. Performance Evaluation Indicators

There are three most commonly used evaluation indicators for the semantic segmentation, the pixel
accuracy (PA), mean pixel accuracy (MPA) and mean intersection over union (MIoU) [36]. In the crack
detection of this study, the crack is separated from the background, which is equivalent to binary
classification. Table 3 lists four different kinds of identification states for each pixel of the input crack
sub-image. True positive (TP) is summation of pixels that is truly recognized as crack. False positive
(FP) represents the number of pixels that are recognized as crack, while they are not crack pixels.
False negative (FN) is the number of pixels wrongly identified as non-cracks. True negative (TN) is the
number of pixels correctly identified as non-cracks.

Table 3. Four identification statuses for each pixel of the input crack sub-image.

Prediction
Ground Truth

Crack (True) Noncrack (False)

Crack (positive) TP (True positive) FP (False positive)
Noncrack (negative) FN (False negative) TN (True negative)

According to these four identification statuses for each pixel of the input crack image, the PA,
MPA and MIoU, respectively, can be formulated as follows:

PA =
TP + TN

TP + TN + FP + FN
, (5)

MPA =
1
2

( TP
TP + FN

+
TN

TN + FP

)
, (6)

MIoU =
1
2

( TP
TP + FN + FP

+
TN

TN + FP + FN

)
, (7)

In addition to the above three evaluation indicators, there are also three general indicators in
crack detection, precision, recall and F1-score [19,25,37]. The precision represents the proportion of
actual crack pixels in the predicted crack pixels, and the recall represents the proportion of correctly
predicted crack pixels in the real crack pixels. The F1-score takes into account both model precision
and recall, which can be regarded as a weighted average of precision and recall.

Precision indicates the proportion of the ground truth crack in the identification crack sets,
while recall represents the percentage of the correctly recognized crack in the ground truth crack sets,
they can be computed using TP, FP and FN as follows:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

, (8)

F1-score is a combination of precision and recall, which measures the average level of the algorithm,
it is defined as:

F1 =
2× Precision×Recall

Precision + Recall
, (9)
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The value of the F1-score ranges from 0 to 1 and is closer to 1 when the proportion of correctly
detected images is higher. It is determined by the relative ratio of error and correct recognition in both
the ground truth and recognition result sets.

4. Experimental Results

First, we selected the best learning rate through training and testing. Then we empirically
demonstrate the effectiveness of the proposed U-CliqueNet on the tunnel crack datasets that we set
up and compared with these most recent algorithms: FCN [23] proposed by Yang et al., U-net [25]
proposed by Liu et al., Bang’s SegNet [38] and the MFCD [14] proposed by Li et al. In addition, skeleton
extraction was carried out for the predicted binary image, next the area, length and width of the crack
are calculated.

4.1. Selection of learning rate

Since the trained model has different performance under various learning rates, the selection of
the learning rate plays a crucial role in the convergence of the loss function [30]. In order to find an
appropriate initial learning rate, we conducted 200 iterations of training under four different learning
rates. These four loss function curves are shown in Figure 9, where the solid red and blue lines
represent the loss functions on the training set and the testing set, respectively. In fact, we only need to
compare the results on the testing set, which is more convincing. When the learning rate is set to 10−3

or 10−4, the fluctuation of the loss function are relatively large, and the loss is between 0.015 and 0.025
after 200 iterations. Meanwhile, when the learning rate is set to 10−5 or 10−6, the loss on the testing
set is stable at about 0.015 after 200 iterations. From the above comparison, it seems that the training
loss is lower when the learning rate is set to 10−6. In order to verify whether the conclusion is right or
wrong, we compare the models from the predicted results.
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The loss value does not fully reflect the effectiveness of the trained model, and another measure is
the MIoU. Figure 10 shows the MIoU curves under four different learning rates, it can be seen that
the MIoU on the testing set is the highest when the learning rate is set to 10−3 or 10−4. If the learning
rate remains unchanged, the training process will fluctuate greatly when the learning rate is large.
Therefore, the learning rate needs to be regulated during the training process.Sensors 2020, 20, x FOR PEER REVIEW 13 of 22 
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Figure 10. Mean intersection over union (MIoU) curves of training and validation datasets under four
different learning rates.

In this study, when the iteration reaches 100 times, the learning rate is reduced to 10% of the initial
learning rate. Similarly, when the iteration reaches 150 times, the learning rate is reduced to 1% of the
initial learning rate.

Figure 11 shows the loss function curve and MIoU curve under this learning rate setting method,
it’s clear that the MIoU is much higher when the initial learning rate is set to 10−3 than 10−4. When the
learning rate decreases after 100 epochs, the training range becomes smaller, and the training effect is
significantly improved.
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Figure 11. Loss and MIoU (mean intersection over union) curve after decreasing learning rate are
adopted, (a,b) are the loss and MIoU curve when the initial learning rate is 10−4, (c,d) are the loss and
MIoU curve when the initial learning rate is 10−3.

4.2. Comparison of Prediction Results

As described in Section 3.4, we use PA, MPA, MIoU, precision, recall and F1-score to evaluate a
model. In this stage, we evaluate our method on the test dataset of tunnels that were never used in the
training set and compare with the following recent methods: U-Net, FCN, SegNet and MFCD. Table 4
lists the performance of the five algorithms, it is clear that the MPA, MIoU and F1 of FCN are 88.25%,
83.91% and 78.54% respectively, which are all slightly lower than that of U-net. However, compared
with the proposed U-CliqueNet, MPA, MIoU, precision and F1-score of U-Net are significantly lower,
only PA and recall are relatively close. From the gaps in MIoU and accuracy, it can be seen that
the performance of SegNet and MFCD is also good, but it is inferior to the above three methods.
In MIoU’s evaluation, the calculated result is more representative of the accuracy of the algorithm,
since cracks and backgrounds account for half of each. Therefore, compared with the other algorithms,
the proposed algorithm has obvious advantages.
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Table 4. Performance of these five algorithms: the fully convolutional networks (FCN), U-net,
Encoder–decoder network (SegNet), the multi-scale fusion crack detection (MFCD) algorithm and the
proposed U-CliqueNet.

Method PA MPA MIoU (Mean Intersection
over Union) Precision Recall F1

FCN 0.9538 0.8825 0.8391 0.8269 0.7966 0.7854
U-net 0.9642 0.9059 0.8403 0.8457 0.8068 0.7967

SegNet 0.9385 0.8677 0.8050 0.7968 0.7495 0.7536
MFCD 0.9574 0.8850 0.7987 0.7937 0.8125 0.7808

U-CliqueNet 0.9661 0.9225 0.8696 0.8632 0.8028 0.8340

Among the six indicators, MIoU is the most important evaluation indicator, so we used the method
of proportional hypothesis test to verify whether the MIoU of the proposed model is significantly
larger than that of the other four methods.

We randomly selected 20 images that did not belong to the training set and the test set, used the
trained three models to predict and calculate the MIoU of each image. Table 5 lists the MIoU values
predicted by these five methods for these randomly selected 20 images.

Table 5. The MIoU predicted by FCN, U-net, SegNet, MFCD and U-CliqueNet for randomly selected
20 images.

Image FCN U-net SegNet MFCD U-CliqueNet

1.png 0.838 0.799 0.816 0.772 0.861
2.png 0.836 0.820 0.828 0.779 0.862
3.png 0.763 0.754 0.711 0.696 0.765
4.png 0.748 0.780 0.771 0.758 0.803
5.png 0.819 0.758 0.775 0.761 0.813
6.png 0.717 0.778 0.702 0.744 0.773
7.png 0.802 0.795 0.798 0.767 0.847
8.png 0.834 0.799 0.808 0.775 0.856
9.png 0.843 0.821 0.792 0.797 0.870
10.png 0.892 0.890 0.838 0.790 0.885
11.png 0.832 0.909 0.836 0.813 0.901
12.png 0.863 0.865 0.890 0.791 0.890
13.png 0.909 0.903 0.953 0.863 0.943
14.png 0.919 0.900 0.871 0.947 0.949
15.png 0.910 0.914 0.877 0.855 0.953
16.png 0.900 0.942 0.921 0.896 0.964
17.png 0.867 0.820 0.790 0.783 0.866
18.png 0.798 0.759 0.747 0.763 0.817
19.png 0.813 0.836 0.820 0.862 0.853
20.png 0.777 0.851 0.777 0.762 0.841
average 0.834 0.835 0.816 0.799 0.866
variance 0.00305 0.00361 0.00393 0.00328 0.00306

Based on these data, we use hypothesis testing to determine whether the method in this paper is
really superior to the others. Given a significance level of 0.1, the hypothesis test is performed with a
10% probability of making the second type of error.

Let the MIoU of FCN and U-CliqueNet be X and Y respectively, X ∼ N
(
µ1, σ1

2
)
, Y ∼ N

(
µ2, σ2

2
)
.

(X1, X2, . . . , Xn1) and (Y1, Y2, . . . , Yn2) are subsamples taken from X and Y, respectively. The mean
value of subsamples is denoted as X, Y, and the modified variance of subsamples is denoted as:

S1
∗2 =

n1

n1 − 1
S1

2 = 0.00321, S2
∗2 =

n2

n2 − 1
S2

2 = 0.00322, (10)
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where S1
2 and S2

2 represent the variance of X and Y, respectively.
The hypotheses to be tested are:

H0 : µ1 = µ2, H1 : µ1 , µ2, (11)

Given µ1 = µ2, select the test statistic:

T =
X − Y√

(n1 − 1)S1
∗2 + (n2 − 1)S2∗2

√
n1n2(n1 + n2 − 2)

n1 + n2
∼ t(n1 + n2 − 2), (12)

When the significance level is 0.1, the rejection field is:

|t| ≥ tα(n1 + n2 − 2) = t0.1(38) = 1.686, (13)

If the calculated t is in the rejection field, the null hypothesis is rejected, that is, the performance of
u-Cliquenet is considered to be significantly higher than that of FCN; otherwise, the null hypothesis is
accepted. The data in Table 5 is substituted into Equation (12) for calculation, and the value of t1 is
−1.785. Because t1 = −1.785 < −1.686, H0 is rejected at the significance level of 0.10, and the MIoU
of the proposed method is considered to be significantly higher than that of FCN. We also used the
same method to conduct hypothesis testing analysis with U-net, SegNet and MFCD, and the results
are t2 = −1.693 < −1.686, t3 = −2.607 < −1.686 and t4 = −3.659 < −1.686. This means that the MIoU
of the proposed method is also higher than that of the others. In addition, the p-values of the t-tests are
calculated by MATLAB to determine whether it was significant or not. The calculation results are as
follows: p1 = 0.0861, p2 = 0.0987, p3 = 0.0014 and p4 = 0.0008. The p-values of the four t-tests are all
less than 0.10, therefore, we believe that our method is significantly better than FCN, U-net, SegNet
and MFCD.

The internal environment of the tunnel is usually complex, with many patchwork joints, wires,
etc. In order to verify whether the algorithm can separate cracks from images with noise similar to
cracks, we detected many images with different noises. Table 6 lists five kinds of noises around cracks,
which from left to right are the original sub-image, ground truth and prediction result. There is some
handwriting in the first line of the image, which is very similar to the crack next to it. FCN and u-net
wrongly identify handwriting as cracks, indicating that the robustness of the two algorithms is poor.
Due to the improvement of the model and the enhancement of handwriting in training dataset, cracks
and handwriting were perfectly distinguished from prediction results. On the second line, the crack
is hard to detect because the wire has a high similarity to cracks in color and shape. There are also
some spots around cracks such as in the image on the third line. The wall joint is another type of noise
which is very similar to a crack, except that it is close to a straight line. Under the influence of so
many interferences, the proposed model still correctly classifies these noises as background. Of course,
there are other factors not taken into account, such as tunnel materials, but the above experimental
analysis has shown that the proposed U-CliqueNet has great development potential in the field of
crack segmentation.
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Table 6. Prediction result of cracks with different noises.

Sub-images Ground Truth U-Clique
Net FCN U-Net

Crack with
handwriting
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In the experiment, the skeleton extracted from the ground truth is taken as the real skeleton. The 

skeleton extraction is also conducted to the predict results by the proposed model, as shown in the 
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the specific analysis is described below. On the basis of U-net, the proposed model uses Clique block 
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the morphology of the crack. In this paper, the median-axis skeleton extraction algorithm is used to 

remove the boundary of each crack, which has a good effect on the crack dataset in this paper. Table 7 

lists the ground truth images and prediction images before and after extraction of crack skeleton, the 

single-pixel width cracks obtained after skeleton extraction has the same length as the original cracks. 

In the experiment, the skeleton extracted from the ground truth is taken as the real skeleton. The 
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The above experiments show that the proposed U-CliqueNet is excellent in reducing noise, and 

the specific analysis is described below. On the basis of U-net, the proposed model uses Clique block 

to replace the ordinary convolutional layer and reduces the number of down sampling. There are 

four convolution layers in each block, and the output of each layer is the input of all the other layers. 
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obtained, the length can be obtained by crack skeleton extraction. The skeleton of crack is extracted, 

that is, the crack of pixel level is converted to the width of single pixel level, which mainly reflects 

the morphology of the crack. In this paper, the median-axis skeleton extraction algorithm is used to 

remove the boundary of each crack, which has a good effect on the crack dataset in this paper. Table 7 

lists the ground truth images and prediction images before and after extraction of crack skeleton, the 

single-pixel width cracks obtained after skeleton extraction has the same length as the original cracks. 

In the experiment, the skeleton extracted from the ground truth is taken as the real skeleton. The 

skeleton extraction is also conducted to the predict results by the proposed model, as shown in the 
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The above experiments show that the proposed U-CliqueNet is excellent in reducing noise, and 

the specific analysis is described below. On the basis of U-net, the proposed model uses Clique block 

to replace the ordinary convolutional layer and reduces the number of down sampling. There are 

four convolution layers in each block, and the output of each layer is the input of all the other layers. 
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the morphology of the crack. In this paper, the median-axis skeleton extraction algorithm is used to 

remove the boundary of each crack, which has a good effect on the crack dataset in this paper. Table 7 

lists the ground truth images and prediction images before and after extraction of crack skeleton, the 

single-pixel width cracks obtained after skeleton extraction has the same length as the original cracks. 

In the experiment, the skeleton extracted from the ground truth is taken as the real skeleton. The 

skeleton extraction is also conducted to the predict results by the proposed model, as shown in the 

Sensors 2020, 20, x FOR PEER REVIEW 16 of 22 

 

the above experimental analysis has shown that the proposed U-CliqueNet has great development 

potential in the field of crack segmentation. 

Table 6. Prediction result of cracks with different noises. 

 Sub-images 
Ground 

Truth 

U-Clique 

Net 
FCN U-Net 

Crack with 

handwriting 

 

    

Crack with 

wire 

 

    

Crack with 

spots 

 

    

Crack with 

wall joint 

 

    

Crack near 

the light 

 

    

The above experiments show that the proposed U-CliqueNet is excellent in reducing noise, and 

the specific analysis is described below. On the basis of U-net, the proposed model uses Clique block 

to replace the ordinary convolutional layer and reduces the number of down sampling. There are 

four convolution layers in each block, and the output of each layer is the input of all the other layers. 

The acquired features show more obvious differences between cracks, noises and background, which 

can be used to carry out crack segmentation more effectively. Different from FCN which only replaces 

the fully connected layer with the transposed convolution layer in the VGG16 network, this paper 

not only considers the feature learning in the downsampling process, but also considers the feature 

fusion in the upsampling process. Therefore, the proposed algorithm in this paper achieves better 

results in complex tunnel environment. 

4.3. Crack Skeleton Extraction and Measurement 

The purpose of crack semantic segmentation is not only to detect whether there are cracks in the 

image, but also to obtain the length or even width of cracks. Once the binary image of the crack is 

obtained, the length can be obtained by crack skeleton extraction. The skeleton of crack is extracted, 

that is, the crack of pixel level is converted to the width of single pixel level, which mainly reflects 

the morphology of the crack. In this paper, the median-axis skeleton extraction algorithm is used to 

remove the boundary of each crack, which has a good effect on the crack dataset in this paper. Table 7 

lists the ground truth images and prediction images before and after extraction of crack skeleton, the 

single-pixel width cracks obtained after skeleton extraction has the same length as the original cracks. 

In the experiment, the skeleton extracted from the ground truth is taken as the real skeleton. The 

skeleton extraction is also conducted to the predict results by the proposed model, as shown in the 

Crack with
spots

Sensors 2020, 20, x FOR PEER REVIEW 16 of 22 

 

the above experimental analysis has shown that the proposed U-CliqueNet has great development 

potential in the field of crack segmentation. 

Table 6. Prediction result of cracks with different noises. 

 Sub-images 
Ground 

Truth 

U-Clique 

Net 
FCN U-Net 

Crack with 

handwriting 

 

    

Crack with 

wire 

 

    

Crack with 

spots 

 

    

Crack with 

wall joint 

 

    

Crack near 

the light 

 

    

The above experiments show that the proposed U-CliqueNet is excellent in reducing noise, and 

the specific analysis is described below. On the basis of U-net, the proposed model uses Clique block 

to replace the ordinary convolutional layer and reduces the number of down sampling. There are 

four convolution layers in each block, and the output of each layer is the input of all the other layers. 

The acquired features show more obvious differences between cracks, noises and background, which 

can be used to carry out crack segmentation more effectively. Different from FCN which only replaces 

the fully connected layer with the transposed convolution layer in the VGG16 network, this paper 

not only considers the feature learning in the downsampling process, but also considers the feature 

fusion in the upsampling process. Therefore, the proposed algorithm in this paper achieves better 

results in complex tunnel environment. 

4.3. Crack Skeleton Extraction and Measurement 

The purpose of crack semantic segmentation is not only to detect whether there are cracks in the 

image, but also to obtain the length or even width of cracks. Once the binary image of the crack is 

obtained, the length can be obtained by crack skeleton extraction. The skeleton of crack is extracted, 

that is, the crack of pixel level is converted to the width of single pixel level, which mainly reflects 

the morphology of the crack. In this paper, the median-axis skeleton extraction algorithm is used to 

remove the boundary of each crack, which has a good effect on the crack dataset in this paper. Table 7 

lists the ground truth images and prediction images before and after extraction of crack skeleton, the 

single-pixel width cracks obtained after skeleton extraction has the same length as the original cracks. 

In the experiment, the skeleton extracted from the ground truth is taken as the real skeleton. The 

skeleton extraction is also conducted to the predict results by the proposed model, as shown in the 
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The above experiments show that the proposed U-CliqueNet is excellent in reducing noise, and 

the specific analysis is described below. On the basis of U-net, the proposed model uses Clique block 

to replace the ordinary convolutional layer and reduces the number of down sampling. There are 

four convolution layers in each block, and the output of each layer is the input of all the other layers. 

The acquired features show more obvious differences between cracks, noises and background, which 

can be used to carry out crack segmentation more effectively. Different from FCN which only replaces 

the fully connected layer with the transposed convolution layer in the VGG16 network, this paper 

not only considers the feature learning in the downsampling process, but also considers the feature 

fusion in the upsampling process. Therefore, the proposed algorithm in this paper achieves better 

results in complex tunnel environment. 

4.3. Crack Skeleton Extraction and Measurement 

The purpose of crack semantic segmentation is not only to detect whether there are cracks in the 

image, but also to obtain the length or even width of cracks. Once the binary image of the crack is 

obtained, the length can be obtained by crack skeleton extraction. The skeleton of crack is extracted, 

that is, the crack of pixel level is converted to the width of single pixel level, which mainly reflects 

the morphology of the crack. In this paper, the median-axis skeleton extraction algorithm is used to 

remove the boundary of each crack, which has a good effect on the crack dataset in this paper. Table 7 

lists the ground truth images and prediction images before and after extraction of crack skeleton, the 

single-pixel width cracks obtained after skeleton extraction has the same length as the original cracks. 

In the experiment, the skeleton extracted from the ground truth is taken as the real skeleton. The 

skeleton extraction is also conducted to the predict results by the proposed model, as shown in the 
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The above experiments show that the proposed U-CliqueNet is excellent in reducing noise, and 

the specific analysis is described below. On the basis of U-net, the proposed model uses Clique block 
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fusion in the upsampling process. Therefore, the proposed algorithm in this paper achieves better 
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obtained, the length can be obtained by crack skeleton extraction. The skeleton of crack is extracted, 

that is, the crack of pixel level is converted to the width of single pixel level, which mainly reflects 

the morphology of the crack. In this paper, the median-axis skeleton extraction algorithm is used to 

remove the boundary of each crack, which has a good effect on the crack dataset in this paper. Table 7 

lists the ground truth images and prediction images before and after extraction of crack skeleton, the 

single-pixel width cracks obtained after skeleton extraction has the same length as the original cracks. 

In the experiment, the skeleton extracted from the ground truth is taken as the real skeleton. The 

skeleton extraction is also conducted to the predict results by the proposed model, as shown in the 
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The above experiments show that the proposed U-CliqueNet is excellent in reducing noise, and 

the specific analysis is described below. On the basis of U-net, the proposed model uses Clique block 

to replace the ordinary convolutional layer and reduces the number of down sampling. There are 

four convolution layers in each block, and the output of each layer is the input of all the other layers. 
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obtained, the length can be obtained by crack skeleton extraction. The skeleton of crack is extracted, 

that is, the crack of pixel level is converted to the width of single pixel level, which mainly reflects 

the morphology of the crack. In this paper, the median-axis skeleton extraction algorithm is used to 

remove the boundary of each crack, which has a good effect on the crack dataset in this paper. Table 7 

lists the ground truth images and prediction images before and after extraction of crack skeleton, the 

single-pixel width cracks obtained after skeleton extraction has the same length as the original cracks. 

In the experiment, the skeleton extracted from the ground truth is taken as the real skeleton. The 

skeleton extraction is also conducted to the predict results by the proposed model, as shown in the 
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The above experiments show that the proposed U-CliqueNet is excellent in reducing noise, and 

the specific analysis is described below. On the basis of U-net, the proposed model uses Clique block 

to replace the ordinary convolutional layer and reduces the number of down sampling. There are 
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The above experiments show that the proposed U-CliqueNet is excellent in reducing noise, and 

the specific analysis is described below. On the basis of U-net, the proposed model uses Clique block 

to replace the ordinary convolutional layer and reduces the number of down sampling. There are 

four convolution layers in each block, and the output of each layer is the input of all the other layers. 

The acquired features show more obvious differences between cracks, noises and background, which 

can be used to carry out crack segmentation more effectively. Different from FCN which only replaces 

the fully connected layer with the transposed convolution layer in the VGG16 network, this paper 

not only considers the feature learning in the downsampling process, but also considers the feature 

fusion in the upsampling process. Therefore, the proposed algorithm in this paper achieves better 

results in complex tunnel environment. 

4.3. Crack Skeleton Extraction and Measurement 

The purpose of crack semantic segmentation is not only to detect whether there are cracks in the 

image, but also to obtain the length or even width of cracks. Once the binary image of the crack is 

obtained, the length can be obtained by crack skeleton extraction. The skeleton of crack is extracted, 

that is, the crack of pixel level is converted to the width of single pixel level, which mainly reflects 

the morphology of the crack. In this paper, the median-axis skeleton extraction algorithm is used to 

remove the boundary of each crack, which has a good effect on the crack dataset in this paper. Table 7 

lists the ground truth images and prediction images before and after extraction of crack skeleton, the 

single-pixel width cracks obtained after skeleton extraction has the same length as the original cracks. 

In the experiment, the skeleton extracted from the ground truth is taken as the real skeleton. The 

skeleton extraction is also conducted to the predict results by the proposed model, as shown in the 
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The above experiments show that the proposed U-CliqueNet is excellent in reducing noise, and 

the specific analysis is described below. On the basis of U-net, the proposed model uses Clique block 

to replace the ordinary convolutional layer and reduces the number of down sampling. There are 

four convolution layers in each block, and the output of each layer is the input of all the other layers. 

The acquired features show more obvious differences between cracks, noises and background, which 

can be used to carry out crack segmentation more effectively. Different from FCN which only replaces 

the fully connected layer with the transposed convolution layer in the VGG16 network, this paper 

not only considers the feature learning in the downsampling process, but also considers the feature 

fusion in the upsampling process. Therefore, the proposed algorithm in this paper achieves better 

results in complex tunnel environment. 

4.3. Crack Skeleton Extraction and Measurement 

The purpose of crack semantic segmentation is not only to detect whether there are cracks in the 

image, but also to obtain the length or even width of cracks. Once the binary image of the crack is 

obtained, the length can be obtained by crack skeleton extraction. The skeleton of crack is extracted, 

that is, the crack of pixel level is converted to the width of single pixel level, which mainly reflects 

the morphology of the crack. In this paper, the median-axis skeleton extraction algorithm is used to 

remove the boundary of each crack, which has a good effect on the crack dataset in this paper. Table 7 

lists the ground truth images and prediction images before and after extraction of crack skeleton, the 

single-pixel width cracks obtained after skeleton extraction has the same length as the original cracks. 

In the experiment, the skeleton extracted from the ground truth is taken as the real skeleton. The 

skeleton extraction is also conducted to the predict results by the proposed model, as shown in the 
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the specific analysis is described below. On the basis of U-net, the proposed model uses Clique block 
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The acquired features show more obvious differences between cracks, noises and background, which 

can be used to carry out crack segmentation more effectively. Different from FCN which only replaces 

the fully connected layer with the transposed convolution layer in the VGG16 network, this paper 

not only considers the feature learning in the downsampling process, but also considers the feature 

fusion in the upsampling process. Therefore, the proposed algorithm in this paper achieves better 

results in complex tunnel environment. 

4.3. Crack Skeleton Extraction and Measurement 

The purpose of crack semantic segmentation is not only to detect whether there are cracks in the 

image, but also to obtain the length or even width of cracks. Once the binary image of the crack is 

obtained, the length can be obtained by crack skeleton extraction. The skeleton of crack is extracted, 

that is, the crack of pixel level is converted to the width of single pixel level, which mainly reflects 

the morphology of the crack. In this paper, the median-axis skeleton extraction algorithm is used to 

remove the boundary of each crack, which has a good effect on the crack dataset in this paper. Table 7 

lists the ground truth images and prediction images before and after extraction of crack skeleton, the 

single-pixel width cracks obtained after skeleton extraction has the same length as the original cracks. 

In the experiment, the skeleton extracted from the ground truth is taken as the real skeleton. The 

skeleton extraction is also conducted to the predict results by the proposed model, as shown in the 

Sensors 2020, 20, x FOR PEER REVIEW 16 of 22 

 

the above experimental analysis has shown that the proposed U-CliqueNet has great development 

potential in the field of crack segmentation. 

Table 6. Prediction result of cracks with different noises. 

 Sub-images 
Ground 

Truth 

U-Clique 

Net 
FCN U-Net 

Crack with 

handwriting 

 

    

Crack with 

wire 

 

    

Crack with 

spots 

 

    

Crack with 

wall joint 

 

    

Crack near 

the light 

 

    

The above experiments show that the proposed U-CliqueNet is excellent in reducing noise, and 

the specific analysis is described below. On the basis of U-net, the proposed model uses Clique block 

to replace the ordinary convolutional layer and reduces the number of down sampling. There are 

four convolution layers in each block, and the output of each layer is the input of all the other layers. 

The acquired features show more obvious differences between cracks, noises and background, which 

can be used to carry out crack segmentation more effectively. Different from FCN which only replaces 

the fully connected layer with the transposed convolution layer in the VGG16 network, this paper 

not only considers the feature learning in the downsampling process, but also considers the feature 

fusion in the upsampling process. Therefore, the proposed algorithm in this paper achieves better 

results in complex tunnel environment. 

4.3. Crack Skeleton Extraction and Measurement 

The purpose of crack semantic segmentation is not only to detect whether there are cracks in the 

image, but also to obtain the length or even width of cracks. Once the binary image of the crack is 

obtained, the length can be obtained by crack skeleton extraction. The skeleton of crack is extracted, 

that is, the crack of pixel level is converted to the width of single pixel level, which mainly reflects 

the morphology of the crack. In this paper, the median-axis skeleton extraction algorithm is used to 

remove the boundary of each crack, which has a good effect on the crack dataset in this paper. Table 7 

lists the ground truth images and prediction images before and after extraction of crack skeleton, the 

single-pixel width cracks obtained after skeleton extraction has the same length as the original cracks. 

In the experiment, the skeleton extracted from the ground truth is taken as the real skeleton. The 

skeleton extraction is also conducted to the predict results by the proposed model, as shown in the 

Sensors 2020, 20, x FOR PEER REVIEW 16 of 22 

 

the above experimental analysis has shown that the proposed U-CliqueNet has great development 

potential in the field of crack segmentation. 

Table 6. Prediction result of cracks with different noises. 

 Sub-images 
Ground 

Truth 

U-Clique 

Net 
FCN U-Net 

Crack with 

handwriting 

 

    

Crack with 

wire 

 

    

Crack with 

spots 

 

    

Crack with 

wall joint 

 

    

Crack near 

the light 

 

    

The above experiments show that the proposed U-CliqueNet is excellent in reducing noise, and 

the specific analysis is described below. On the basis of U-net, the proposed model uses Clique block 

to replace the ordinary convolutional layer and reduces the number of down sampling. There are 

four convolution layers in each block, and the output of each layer is the input of all the other layers. 

The acquired features show more obvious differences between cracks, noises and background, which 

can be used to carry out crack segmentation more effectively. Different from FCN which only replaces 

the fully connected layer with the transposed convolution layer in the VGG16 network, this paper 

not only considers the feature learning in the downsampling process, but also considers the feature 

fusion in the upsampling process. Therefore, the proposed algorithm in this paper achieves better 

results in complex tunnel environment. 

4.3. Crack Skeleton Extraction and Measurement 

The purpose of crack semantic segmentation is not only to detect whether there are cracks in the 

image, but also to obtain the length or even width of cracks. Once the binary image of the crack is 

obtained, the length can be obtained by crack skeleton extraction. The skeleton of crack is extracted, 

that is, the crack of pixel level is converted to the width of single pixel level, which mainly reflects 

the morphology of the crack. In this paper, the median-axis skeleton extraction algorithm is used to 

remove the boundary of each crack, which has a good effect on the crack dataset in this paper. Table 7 

lists the ground truth images and prediction images before and after extraction of crack skeleton, the 

single-pixel width cracks obtained after skeleton extraction has the same length as the original cracks. 

In the experiment, the skeleton extracted from the ground truth is taken as the real skeleton. The 

skeleton extraction is also conducted to the predict results by the proposed model, as shown in the 

Crack near
the light

Sensors 2020, 20, x FOR PEER REVIEW 16 of 22 

 

the above experimental analysis has shown that the proposed U-CliqueNet has great development 

potential in the field of crack segmentation. 

Table 6. Prediction result of cracks with different noises. 

 Sub-images 
Ground 

Truth 

U-Clique 

Net 
FCN U-Net 

Crack with 

handwriting 

 

    

Crack with 

wire 

 

    

Crack with 

spots 

 

    

Crack with 

wall joint 

 

    

Crack near 

the light 

 

    

The above experiments show that the proposed U-CliqueNet is excellent in reducing noise, and 

the specific analysis is described below. On the basis of U-net, the proposed model uses Clique block 

to replace the ordinary convolutional layer and reduces the number of down sampling. There are 

four convolution layers in each block, and the output of each layer is the input of all the other layers. 

The acquired features show more obvious differences between cracks, noises and background, which 

can be used to carry out crack segmentation more effectively. Different from FCN which only replaces 

the fully connected layer with the transposed convolution layer in the VGG16 network, this paper 

not only considers the feature learning in the downsampling process, but also considers the feature 

fusion in the upsampling process. Therefore, the proposed algorithm in this paper achieves better 

results in complex tunnel environment. 

4.3. Crack Skeleton Extraction and Measurement 

The purpose of crack semantic segmentation is not only to detect whether there are cracks in the 

image, but also to obtain the length or even width of cracks. Once the binary image of the crack is 

obtained, the length can be obtained by crack skeleton extraction. The skeleton of crack is extracted, 

that is, the crack of pixel level is converted to the width of single pixel level, which mainly reflects 

the morphology of the crack. In this paper, the median-axis skeleton extraction algorithm is used to 

remove the boundary of each crack, which has a good effect on the crack dataset in this paper. Table 7 

lists the ground truth images and prediction images before and after extraction of crack skeleton, the 

single-pixel width cracks obtained after skeleton extraction has the same length as the original cracks. 

In the experiment, the skeleton extracted from the ground truth is taken as the real skeleton. The 

skeleton extraction is also conducted to the predict results by the proposed model, as shown in the 

Sensors 2020, 20, x FOR PEER REVIEW 16 of 22 

 

the above experimental analysis has shown that the proposed U-CliqueNet has great development 

potential in the field of crack segmentation. 

Table 6. Prediction result of cracks with different noises. 

 Sub-images 
Ground 

Truth 

U-Clique 

Net 
FCN U-Net 

Crack with 

handwriting 

 

    

Crack with 

wire 

 

    

Crack with 

spots 

 

    

Crack with 

wall joint 

 

    

Crack near 

the light 

 

    

The above experiments show that the proposed U-CliqueNet is excellent in reducing noise, and 

the specific analysis is described below. On the basis of U-net, the proposed model uses Clique block 

to replace the ordinary convolutional layer and reduces the number of down sampling. There are 

four convolution layers in each block, and the output of each layer is the input of all the other layers. 

The acquired features show more obvious differences between cracks, noises and background, which 

can be used to carry out crack segmentation more effectively. Different from FCN which only replaces 

the fully connected layer with the transposed convolution layer in the VGG16 network, this paper 

not only considers the feature learning in the downsampling process, but also considers the feature 

fusion in the upsampling process. Therefore, the proposed algorithm in this paper achieves better 

results in complex tunnel environment. 

4.3. Crack Skeleton Extraction and Measurement 

The purpose of crack semantic segmentation is not only to detect whether there are cracks in the 

image, but also to obtain the length or even width of cracks. Once the binary image of the crack is 

obtained, the length can be obtained by crack skeleton extraction. The skeleton of crack is extracted, 

that is, the crack of pixel level is converted to the width of single pixel level, which mainly reflects 

the morphology of the crack. In this paper, the median-axis skeleton extraction algorithm is used to 

remove the boundary of each crack, which has a good effect on the crack dataset in this paper. Table 7 

lists the ground truth images and prediction images before and after extraction of crack skeleton, the 

single-pixel width cracks obtained after skeleton extraction has the same length as the original cracks. 

In the experiment, the skeleton extracted from the ground truth is taken as the real skeleton. The 

skeleton extraction is also conducted to the predict results by the proposed model, as shown in the 

Sensors 2020, 20, x FOR PEER REVIEW 16 of 22 

 

the above experimental analysis has shown that the proposed U-CliqueNet has great development 

potential in the field of crack segmentation. 

Table 6. Prediction result of cracks with different noises. 

 Sub-images 
Ground 

Truth 

U-Clique 

Net 
FCN U-Net 

Crack with 

handwriting 

 

    

Crack with 

wire 

 

    

Crack with 

spots 

 

    

Crack with 

wall joint 

 

    

Crack near 

the light 

 

    

The above experiments show that the proposed U-CliqueNet is excellent in reducing noise, and 

the specific analysis is described below. On the basis of U-net, the proposed model uses Clique block 

to replace the ordinary convolutional layer and reduces the number of down sampling. There are 

four convolution layers in each block, and the output of each layer is the input of all the other layers. 

The acquired features show more obvious differences between cracks, noises and background, which 

can be used to carry out crack segmentation more effectively. Different from FCN which only replaces 

the fully connected layer with the transposed convolution layer in the VGG16 network, this paper 

not only considers the feature learning in the downsampling process, but also considers the feature 

fusion in the upsampling process. Therefore, the proposed algorithm in this paper achieves better 

results in complex tunnel environment. 

4.3. Crack Skeleton Extraction and Measurement 

The purpose of crack semantic segmentation is not only to detect whether there are cracks in the 

image, but also to obtain the length or even width of cracks. Once the binary image of the crack is 

obtained, the length can be obtained by crack skeleton extraction. The skeleton of crack is extracted, 

that is, the crack of pixel level is converted to the width of single pixel level, which mainly reflects 

the morphology of the crack. In this paper, the median-axis skeleton extraction algorithm is used to 

remove the boundary of each crack, which has a good effect on the crack dataset in this paper. Table 7 

lists the ground truth images and prediction images before and after extraction of crack skeleton, the 

single-pixel width cracks obtained after skeleton extraction has the same length as the original cracks. 

In the experiment, the skeleton extracted from the ground truth is taken as the real skeleton. The 

skeleton extraction is also conducted to the predict results by the proposed model, as shown in the 

Sensors 2020, 20, x FOR PEER REVIEW 16 of 22 

 

the above experimental analysis has shown that the proposed U-CliqueNet has great development 

potential in the field of crack segmentation. 

Table 6. Prediction result of cracks with different noises. 

 Sub-images 
Ground 

Truth 

U-Clique 

Net 
FCN U-Net 

Crack with 

handwriting 

 

    

Crack with 

wire 

 

    

Crack with 

spots 

 

    

Crack with 

wall joint 

 

    

Crack near 

the light 

 

    

The above experiments show that the proposed U-CliqueNet is excellent in reducing noise, and 

the specific analysis is described below. On the basis of U-net, the proposed model uses Clique block 

to replace the ordinary convolutional layer and reduces the number of down sampling. There are 

four convolution layers in each block, and the output of each layer is the input of all the other layers. 

The acquired features show more obvious differences between cracks, noises and background, which 

can be used to carry out crack segmentation more effectively. Different from FCN which only replaces 

the fully connected layer with the transposed convolution layer in the VGG16 network, this paper 

not only considers the feature learning in the downsampling process, but also considers the feature 

fusion in the upsampling process. Therefore, the proposed algorithm in this paper achieves better 

results in complex tunnel environment. 

4.3. Crack Skeleton Extraction and Measurement 

The purpose of crack semantic segmentation is not only to detect whether there are cracks in the 

image, but also to obtain the length or even width of cracks. Once the binary image of the crack is 

obtained, the length can be obtained by crack skeleton extraction. The skeleton of crack is extracted, 

that is, the crack of pixel level is converted to the width of single pixel level, which mainly reflects 

the morphology of the crack. In this paper, the median-axis skeleton extraction algorithm is used to 

remove the boundary of each crack, which has a good effect on the crack dataset in this paper. Table 7 

lists the ground truth images and prediction images before and after extraction of crack skeleton, the 

single-pixel width cracks obtained after skeleton extraction has the same length as the original cracks. 

In the experiment, the skeleton extracted from the ground truth is taken as the real skeleton. The 

skeleton extraction is also conducted to the predict results by the proposed model, as shown in the 

Sensors 2020, 20, x FOR PEER REVIEW 16 of 22 

 

the above experimental analysis has shown that the proposed U-CliqueNet has great development 

potential in the field of crack segmentation. 

Table 6. Prediction result of cracks with different noises. 

 Sub-images 
Ground 

Truth 

U-Clique 

Net 
FCN U-Net 

Crack with 

handwriting 

 

    

Crack with 

wire 

 

    

Crack with 

spots 

 

    

Crack with 

wall joint 

 

    

Crack near 

the light 

 

    

The above experiments show that the proposed U-CliqueNet is excellent in reducing noise, and 

the specific analysis is described below. On the basis of U-net, the proposed model uses Clique block 

to replace the ordinary convolutional layer and reduces the number of down sampling. There are 

four convolution layers in each block, and the output of each layer is the input of all the other layers. 

The acquired features show more obvious differences between cracks, noises and background, which 

can be used to carry out crack segmentation more effectively. Different from FCN which only replaces 

the fully connected layer with the transposed convolution layer in the VGG16 network, this paper 

not only considers the feature learning in the downsampling process, but also considers the feature 

fusion in the upsampling process. Therefore, the proposed algorithm in this paper achieves better 

results in complex tunnel environment. 

4.3. Crack Skeleton Extraction and Measurement 

The purpose of crack semantic segmentation is not only to detect whether there are cracks in the 

image, but also to obtain the length or even width of cracks. Once the binary image of the crack is 

obtained, the length can be obtained by crack skeleton extraction. The skeleton of crack is extracted, 

that is, the crack of pixel level is converted to the width of single pixel level, which mainly reflects 

the morphology of the crack. In this paper, the median-axis skeleton extraction algorithm is used to 

remove the boundary of each crack, which has a good effect on the crack dataset in this paper. Table 7 

lists the ground truth images and prediction images before and after extraction of crack skeleton, the 

single-pixel width cracks obtained after skeleton extraction has the same length as the original cracks. 

In the experiment, the skeleton extracted from the ground truth is taken as the real skeleton. The 

skeleton extraction is also conducted to the predict results by the proposed model, as shown in the 

The above experiments show that the proposed U-CliqueNet is excellent in reducing noise, and the
specific analysis is described below. On the basis of U-net, the proposed model uses Clique block
to replace the ordinary convolutional layer and reduces the number of down sampling. There are
four convolution layers in each block, and the output of each layer is the input of all the other layers.
The acquired features show more obvious differences between cracks, noises and background, which
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obtained, the length can be obtained by crack skeleton extraction. The skeleton of crack is extracted,
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the last column, of the five images, four had a prediction error of less than 10%, while only one had a
prediction error of more than 10%. By comparing the predicted results with the real results, it can be
seen that the predicted crack skeleton is basically consistent with the real skeleton, which proves the
effectiveness of the proposed algorithm and the skeleton algorithm.

Table 7. Crack skeleton extraction of ground truth and prediction results.

Ground Truth
Masks

Ground Truth
Skeleton

Prediction
Masks

Prediction
Skeleton

Transverse
crack
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where 𝑓(𝑥, 𝑦)  is the geometric calibration index and dl represents the finite length of skeleton 

elements. In addition, the average width of cracks can be calculated as follows: 

�̅� =
∫ 𝑓2(𝑥,𝑦)𝑑𝑆𝑆

𝐿
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, (15) 

where 𝐿 and 𝑑𝑆 represents the crack length and finite area of crack elements, respectively. 
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𝐿 =  ∫ 𝑓(𝑥, 𝑦)𝑑𝑙 ≅ ∑ 𝑓(𝑥, 𝑦)𝑑𝑙
𝑐
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where 𝑓(𝑥, 𝑦)  is the geometric calibration index and dl represents the finite length of skeleton 

elements. In addition, the average width of cracks can be calculated as follows: 

�̅� =
∫ 𝑓2(𝑥,𝑦)𝑑𝑆𝑆

𝐿
≅

∑ 𝑓2(𝑥,𝑦)𝑑𝑆

∑ 𝑓(𝑥,𝑦)𝑑𝑙
, (15) 

where 𝐿 and 𝑑𝑆 represents the crack length and finite area of crack elements, respectively. 

After using the median-axis skeleton extraction algorithm for the prediction results, the area,
length and average width of the crack can be calculated. The calculation method of crack length and
width proposed in [23] is used, since the width of the crack skeleton is one pixel, the length of the crack
can be obtained by calculating the number of all pixels in the skeleton images. The calculation formula
of crack length L is as follows:

L =

∫
c

f (x, y)dl �
∑

f (x, y)dl, (14)
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where f (x, y) is the geometric calibration index and dl represents the finite length of skeleton elements.
In addition, the average width of cracks can be calculated as follows:

W =

∫
S f 2(x, y)dS

L
�

∑
f 2(x, y)dS∑
f (x, y)dl

, (15)

where L and dS represents the crack length and finite area of crack elements, respectively.
According to the above method, 500 sub-images were randomly selected from the test set for

measurement. The area, length and mean width of cracks are measured in pixels. Figure 12 shows the
scatter diagram of the real crack characteristics and the predicted crack characteristics by U-CliqueNet.
The horizontal coordinate represents the ground truth value and the vertical coordinate represents the
predicted value. After these corresponding points are obtained, we use linear regression to analyze the
slope of these three histograms. The dashed lines in Figure 12a–c indicate that the predicted value is
equal to the real value, while the solid lines represent the results after linear fitting. The slope of the
histogram of crack area is 1.11, and its confidence interval is [1.097, 1.130]. The slopes of the histogram
of length and width were 1.04 and 1.06, respectively, and the confidence intervals were [1.029, 1.055]
and [1.036, 1.092] when the significance level was 0.95. The above research data show that the crack
properties detected by this method are slightly larger than the real values. Furthermore, we use R2

statistic, the F-statistic and its p-value to measure the effectiveness of linear fitting, the calculated
results are shown in Table 8. The R2 statistic and the p-value can reflect the fitting degree of linear
regression. If the value of the R2 statistic is larger, the fitting degree is higher, and if the p-value < 0.001,
the fitting is effective. The results in Table 8 show that the results of linear regression fitting are highly
effective. By comparing the real value with the test results, it is found that the predicted area and
length are often larger than the real value, that’s because some non-crack pixels at the edge of the crack
have features very similar to those of the crack. As can be seen from Figure 12b, the proposed method
is very accurate in predicting crack length, with an average relative error of 9.65% and a maximum
relative error of 27.77%. In the detection of crack mean width, the prediction results are stable near
the real value, as shown in Figure 12c. For the calculation of mean crack width, only a few points are
deviated significantly, the relative error of the other points is between −11.20% and 18.57%, while the
average absolute error is 8.95%.

Table 8. Linear regression analysis of fracture measurement results.

Area Length Mean Width

slope 1.11 1.04 1.06
confidence intervals [1.097, 1.130] [1.029, 1.055] [1.036, 1.092]

R2 statistic 0.922 0.943 0.706
F-statistic 100 743 531
p-value <0.001 <0.001 <0.001

A histogram is an accurate graphical representation of the distribution of numerical data. Figure 13
shows the histogram of crack measurement, which clearly reflects the difference between the predicted
results and the ground truth value. As can be seen from Figure 13a,b the proposed algorithm has a small
error in predicting the crack area and width. When the crack width is less than 2 pixels, the predicted
result is lower than the real value, while when the crack width is more than 2 pixels, the predicted
result is slightly larger and the real value. The predicted crack length is basically consistent with the
real value, as shown in Figure 13b. According to the above analysis, it can be concluded that the
proposed U-CliqueNet is accurate enough for the detection of cracks
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5. Conclusions

In this study, a new deep learning framework called U-CliqueNet is proposed to detect tunnel
cracks from images. It implements end-to-end crack prediction through a down-sampling path and
an up-sampling path. Clique block and attention mechanism are introduced into U-net. There are
two clique blocks in each path, where the input of each convolution layer is the input of other layers.
The output of the clique block is the output of the last layer after two loops. A Sony DSC-WX700
camera was used to collect 200 raw images with a 4896 × 3672 pixels resolution. For the collected
images, the corresponding labels are manually labeled at a pixel level. The raw images and labeled
images are cut into sub-images of 496 × 496 pixels to increase the crack dataset and reduce the memory
for each training session. The number of sub-images used for training and testing were 50,000 and
10,000, respectively. In order to find the optimal training model, the optimal learning rate of 0.0001 was
obtained by setting different learning rates for experimental comparison. Based on the best training
model, the U-CliqueNet achieves the highest MPA of 92.25%, MIoU of 86.96% and precision of 86.32%.
Here, we use the method of hypothesis testing to analyze and conclude that the MIoU predicted by
this model is significantly higher than that of FCN, U-net, SegNet and MFCD. The comparative study
shows that the proposed method can provide better crack detection results than FCN and U-net in a
dataset containing various noises. What’s more, skeleton extraction based on the segmented image
can be used to calculate the crack area, length and average width, which greatly facilitates the actual
crack detection. The relative measurement error of crack average width varies from −11.20% to 18.57%,
which proves the reliability of the proposed method.

The proposed U-CliqueNet has a strong ability to detect internal cracks in tunnels, and with
the expansion of datasets, the detection accuracy will be increasingly high. The nice thing about
U-CliqueNet is that it is simple and efficient, requiring no extra processing. As long as the original
images are input into the trained network, the prediction of cracks can be achieved. Although many
kinds of complex crack images are collected in this study, they are still not completely satisfied
in practice.

In future research, more images with more noises will be added to the existing tunnel dataset.
Considering different damage inside the tunnel, multiple damage detection will be carried out.
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