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Abstract: In this paper, a dielectric resonator antenna (DRA) with high gain and wide impedance
bandwidth for fifth-generation (5G) wireless communication applications is proposed. The dielectric
resonator antenna is designed to operate at higher-order TEx

δ15 mode to achieve high antenna gain,
while a hollow cylinder at the center of the DRA is introduced to improve bandwidth by reducing
the quality factor. The DRA is excited by a 50 Ω microstrip line with a narrow aperture slot.
The reflection coefficient, antenna gain, and radiation pattern of the proposed DRAs are analyzed
using the commercially available full-wave electromagnetic simulation tool CST Microwave Studio
(CST MWS). In order to verify the simulation results, the proposed antenna structures were fabricated
and experimentally validated. Measured results of the fabricated prototypes show a 10-dB return
loss impedance bandwidth of 10.7% (14.3–15.9GHz) and 16.1% (14.1–16.5 GHz) for DRA1 and DRA2,
respectively, at the operating frequency of 15 GHz. The results show that the designed antenna
structure can be used in the Internet of things (IoT) for device-to-device (D2D) communication in
5G systems.

Keywords: dielectric resonator antenna; higher-order mode; quality factor; gain; bandwidth; 5G
communication

1. Introduction

The presumptions and challenges of the ever-growing traffic explosion drew increased
attention toward the significant research activity and development of fifth-generation (5G) wireless
communication technology [1]. The most effective way to fulfil the needs of the 5G communication
system, which is expected to be launched commercially around 2020 and beyond [2], is to increase
bandwidth [3]. Thus, the migration to a higher-frequency band is essential to support the required
high data rate on the order of gigabits per second (Gbps) [4]. However, the main problem associated
with a higher-frequency band is the high path loss with short distance communication due to the short
wavelengths [5]. To overcome these issues, high-gain antennas are required to solve the problems of
high path loss and increase the transmission range related to the high-frequency band [6,7]. A microstrip
patch antenna (MSA) is considered as a good choice for 5G wireless communication due to its compact
size, light weight, low cost, and ease of fabrication [8,9]. However, at higher frequencies, the microstrip
patch antenna suffers from low radiation efficiency because of the inherent metallic losses [10,11].
Moreover, it offers low gain and narrow bandwidth. In contrast, dielectric resonator antennas (DRAs)
exhibit higher radiation efficiency even at higher frequencies due to the absence of intrinsic conductor
loss and surface wave loss [12]. Dielectric resonator antennas, because of their numerous advantages
and attractive features like light weight, low cost, and relatively wide impedance bandwidth [13–17],
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gained increased attention from antenna designers as a good candidate for 5G wireless communication.
Additionally, they offer flexible excitation schemes such as coaxial feed probes, microstrip feed lines,
aperture coupling, and co-planar waveguides [18–21].

Several approaches were suggested for the gain enhancement of dielectric resonator antennas in
the literature [22–28]. Multi-segment DRAs or stacked DRAs on top of each other were proposed in
References [22,23] to increase the antenna gain. In Reference [23], stacking two rectangular dielectric
resonator antennas (rDRAs) with a very high permittivity of 38 and 80 achieved a gain of 6.2 dBi at
the operating frequency of 1.5 GHz. However, the major drawback of this approach is that it uses
two or more dielectric resonator elements with same or different primitivities; thus, it increases the
size of the antenna, as well as the cost. Another technique used for increasing the gain of the DRA
is the integration of additional structures [24,25]. In this method, additional structures such as a
surface-mounted short horn (SMSH) are placed in the near vicinity of the DR to increase the gain of
the antenna. In Reference [25], the gain of a rectangular DRA was enhanced by integrating it with a
surface-mounted short horn (SMSH). The major drawback of this approach is the higher complexity,
with increased size. Modification of the shape of the dielectric resonator was suggested to enhance the
antenna gain [26]. Recently, the higher-order mode technique has been adopted to enhance the gain
of DRAs [27,28]. This method has distinct benefits compared to other gain enhancement techniques
because it demonstrates high gain and requires a small area with a simple structure, which are attractive
features for modern communication systems. However, this approach has the main problem of narrow
impedance bandwidth.

In this paper, gain and impedance bandwidth enhancements of DRA are proposed and investigated.
Initially, the proposed DRA is designed operating in higher-order TEx

δ15 mode, which enhances the
antenna gain. Next, a hollow cylindrical hole is drilled at the center of the DRA to decrease the radiation
quality factor (Q-factor), which increases bandwidth. All simulations were performed by using the
simulation tool CST Microwave Studio (CST MWS), and the results show good agreement between the
simulation and measurement results. To the best of our knowledge, the narrow impedance bandwidth
issue of DRAs operating in higher-order mode was not previously addressed in the literature.

The organization of the paper is as follows: Section 2 presents the antenna design and analysis of
the proposed DRAs. The measured and simulated results of the antennas are discussed in detail in
Section 3. Finally, Section 4 presents the conclusion of the paper.

2. Antenna Design and Analysis

The configuration of the proposed DRAs with dimensions of length (a), width (b), and height (d)
is shown in Figure 1a,b operating at 15 GHz. The length, width, and height of the designed structure
are represented as a× b× d = 0.2 λ× 0.2 λ× 1 λ. The DRA is made of an ECCOS-TOCK HiK material
with a dielectric constant (εr) of 10 and loss tangent (tan δ) of 0.002. The Rogers™ RT/Duroid 5880
substrate with a permittivity of 2.2 and a loss tangent (tan δ) of 0.0009 is used. The thickness of the
Rogers substrate is 0.254 mm. Each DRA is mounted on a 20 mm× 20 mm = 1λ× 1λ ground plane and
excited by a 50 Ω standard microstrip line with an aperture slot in the ground plane. The ground plane
is printed on the top side of the substrate. It is important to mention here that a microstrip feedline
is used due to the ease of fabrication. The slot length ls, width ws and stub length S are adjusted to
match individual antennas. The detailed optimized dimensions of the proposed antenna structures are
listed in Table 1. All dimensions are in millimeters (mm). In each case, stub length S was adjusted
to optimize the matching impedance of individual DRAs. The resonant frequencies, fo, of the TEx

δnm
mode can be predicted using a dielectric waveguide model (DWM) [29]. The wave numbers kx, ky,
and kz can be deduced by solving the following transcendental equations:

kx tan
(

kxa
2

)
=

√
(εr − 1)k2

o − k2
x, (1)
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where
k2
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y + k2
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a
, ky =
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d

, (3)

fo=
c

2π
√
εr

√
k2

x + k2
y + k2

z, (4)

where c is the velocity of light, εr is the relative permittivity of the DRA, ko is the free space wavenumber,
and m and n are half-wave field variations along the y- and z-directions, respectively. The symbols kx,
ky, and kz represent the wave numbers in the x-, y-, and z-directions, respectively.
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Figure 1. Configuration of the proposed dielectric resonator antennas (DRAs): (a) 𝑇𝐸ఋଵହ  mode 
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Table 1. Optimized dimensions of the proposed DRAs in 𝑇𝐸ఋଵହ௫  mode with and without a cylinder hole. 

                                                                                Unit: mm 

Slot 

Figure 1. Configuration of the proposed dielectric resonator antennas (DRAs): (a) TEδ15 mode without
cylindrical hole (DRA1); (b) TEδ15 mode with a cylindrical hole (DRA2).

Table 1. Optimized dimensions of the proposed DRAs in TEx
δ15 mode with and without a cylinder hole

(Unit: mm).

Resonant Modes a b d ws ls S Cyl. Hole

DRA1 TEx
δ15 without Cyl. hole 3.84 3.84 19.22 0.34 3.2 1.65

DRA2 TEx
δ15 with Cyl. hole 3.84 3.84 19.22 0.35 3.3 1.4 0.8

ws—width of slot; ls—length of slot; S—stub length; Cyl.—cylindrical.

Figure 2 compares the simulated reflection coefficients |S11|of the DRA operating in higher-order
(TEx

δ15) mode without a cylindrical hole (DRA1) and that of the DRA with a cylindrical hole (DRA2).



Sensors 2020, 20, 675 4 of 12

It can be seen from Figure 2 that the DRA operating in higher-order (TEx
δ15) mode without a cylindrical

hole obtained an impedance bandwidth of 1.6 GHz (10.6%), ranging from 14.3 GHz to 15.9 GHz.
The DRA operating in higher-order mode (TEx

δ15) with a cylindrical hole at the center achieved a
comparatively wider impedance bandwidth of 2.6 GHz (17.4%), operating from 14.3 GHz to 16.9 GHz.
The bandwidth of DRA2 was relatively larger than DRA1 because a hollow cylindrical hole was
drilled at the center of the DRA2, which reduced the radiation Q-factor of the antenna; therefore, the
impedance bandwidth was enhanced. Figure 3a,b present the electric field (E-field) distribution in
the XY plane for DRA1 (without a cylindrical hole) and DRA2 (with a cylindrical hole), respectively.
The electric field distribution was stronger in DRA2 compared to DRA1. The cylindrical hole at the
center of DRA2 strengthened the electric field near the center of the DRA. This helped in increasing
the bandwidth and efficiency of the DRA. The simulated magnetic fields (H-fields) of both antennas
are plotted in Figure 4a,b, respectively, at the operating frequency of 15 GHz. Figure 4a,b show the
magnetic field distribution in higher-order

(
TEx

δ15

)
mode.
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3. Measurement Results and Discussion

In this section, the simulated and measured results are analyzed and discussed in detail.
The performance of the antenna prototypes was designed and simulated using the commercial
three-dimensional (3D) electromagnetic (EM) Computer Simulation Technology (CST) Microwave
Studio software. Based on the parameters given in Table 1, prototypes of the proposed DR antennas
were fabricated and tested to validate the simulated results. The photographs of the fabricated
proposed DR antennas are shown in Figure 5. The reflection coefficients were measured using a vector
network analyzer (VNA), while antenna gain and the radiation patterns were measured in an anechoic
chamber. The simulated and measured results of reflection coefficients S11 of the DRA prototypes
are depicted in Figure 6. It can be seen from Figure 6 that DRA1 obtained a simulated and measured
−10-dB impedance bandwidth of 10.6% and 10.7%, respectively. On the other hand, DRA2 achieved a
simulated and measured −10-dB bandwidth of 17.4% and 16.1%, respectively. The slight difference
between the simulated and measured results can be attributed to fabrication imperfections.
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Figure 5. Photos of the fabricated proposed antenna prototypes: (a) DRA1 without cylindrical hole
(three-dimensional (3D) view); (b) DRA2 with cylindrical hole (3D view); (c) top view without DRA;
(d) back view.
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Figure 6. Simulated and measured reflection coefficients |S11| of DRA1 and DRA2.

For comparison, the measured and simulated results of the reflection coefficient of DRA1 without
a cylindrical hole and DRA2 with a cylindrical hole are given in Table 2.

Table 2. Comparison of the impedance bandwidth (BW) of the two DRAs in TEx
δ15 mode with and

without a cylindrical hole.

Resonant Modes fr(GHz) BW (Simulated) BW (Measured)

DRA1 TEx
δ15 without hole 15 10.6% (14.3–15.9 GHz) 10.7% (14.3–15.9 GHz)

DRA2 TEx
δ15 with cyl. hole 15 17.4%(14.3–16.9 GHz) 16.1%(14.1–16.5 GHz)

fr—resonant frequency; BW—bandwidth; %—percentage.

3.1. TEx
δ15 without Cylindrical Hole (DRA1)

The simulated and measured reflection coefficients versus frequency plots of the TEx
δ15 mode

without a cylindrical hole (DRA1) are represented in Figure 7. It can be seen from Figure 7 that the
proposed antenna attained simulated and measured −10-dB impedance bandwidths of 10.6% and
10.7%, respectively. The plot of the simulated and measured antenna gain and radiation efficiency as a
function of frequency is depicted in Figure 8. With reference to the plot, the simulated and measured
antenna gains were 10.5 dBi and 10.4 dBi, respectively. As presented in Figure 8, the measured and
simulated radiation efficiencies were 97% and 95%, respectively.
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3.2. TEx
δ15 with Cylindrical Hole (DRA2)

Figure 11 demonstrates the simulated and measured reflection coefficients of the proposed
antenna. With reference to Figure 11, the proposed antenna structure achieved simulated and measured
bandwidths (S11<−10) of 17.4% (14.3–16.9 GHz) and 16.1% (14.1–16.5GHz), respectively. The slight
difference in the measured and simulated results occurred because of the fabrication of the DRA
during its assembly process. Figure 12 shows the simulated and measured gain and efficiency of
DRA2. It can be seen from Figure 12 that the simulated and measured antenna gains were 10.5 dBi
and 10.4 dBi, respectively, while the simulated and measured radiation efficiencies were 98% and 96%,
respectively. The simulated three-dimensional (3D) radiation pattern of DRA2 is demonstrated in
Figure 13. Figure 14 shows the simulated and measured normalized radiation pattern of DRA2 in the
E-plane and H-plane at 15 GHz. Figure 14 shows the normalized radiation pattern for DRA2 with a
cylindrical hole along the H-plane, where the half-power beam width was 54.1

◦

in the major lobe, and
radiated power in the side lobe level was −13.6 dB. In the E-plane, the half-power beam width in major
lobe was 48.6

◦

, and the radiated power in the side lobe level was -10.4dB. The major lobe was located
at 0

◦

.
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In Table 3, the simulated and measured results of the proposed DRA prototypes are summarized.
An expression that shows the relationship between the bandwidth (BW) and radiation Q-factor (Q) of
the DRA is as follows [30]:

Q =

√
VSWR− 1

VSWR(BW)
(5)

Table 3. Result summary of simulated and measured results of design antenna structures in TEx
δ15

mode with and without a cylinder hole.

Parameter Mode fr (GHz) BW (%) Gain
(dBi) Efficiency (%)

DRA1 (TEx
δ15) 10.6% 10.5 97

Simulated 15
DRA2 (TEx

δ15) with cyl. hole 17.4% 10.5 98

DRA1 (TEx
δ15) 10.6% 10.4 95

Measured 15
DRA2 (TEx

δ15) with cyl. hole 16.1% 10.4 96

BW—bandwidth; fr—resonant frequency.

Equation (5) defines the Q-factor in terms of VSWR and bandwidth (BW). With reference to
Equation (5), the radiation Q-factor is inversely proportional to the bandwidth. Thus, the equation
clearly shows that the radiation Q-factor of the antenna is reduced and, thus, the impedance bandwidth
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enhanced. In Table 4, the comparison of volume-to-surface ratio of the DRA with and without a
cylindrical hole is given.

Table 4. Comparison of the volume-to-surface ratio of the two DRAs based on the TEx
δ15 mode with

and without a cylinder hole at 15 GHz.

Resonant Mode Dimensions (a×b×d) (mm) Cyl. Hole Radius
(mm)

( Volume,V
Surface,S ) Ratio

DRA1 (TEx
δ15) 3.84× 3.84× 19.22 ——- 0.87

DRA2 (TEx
δ15) with cyl. hole 3.84× 3.84× 19.22 0.8 0.67

Cyl.—cylindrical; V—volume (mm3); S—surface (mm2).

Finally, a performance comparison between the proposed DRA and previously published work
was carried out [31–33], as given in Table 5. From Table 5, it can be found that the proposed antenna
structure exhibits a wider bandwidth, higher gain, and higher radiation efficiency relative to the
aforementioned work. The proposed structure shows better performance compared to previous work.

Table 5. Performance comparisons between the proposed structures and previous work.

Ref εr Shape Mode fr (GHz) BW (%) Gain (dBi) Eff. (%) Area (λ2) Height (λ)

[31] 10 Rect.
TEy

δ15 5.75 5.8 NM 0.5λ

TEy
δ19 24 1.6λ×

1.6λ
3.4 6.3 NM 0.9λ

[32] 11.9 Rect. TEx
δ17 341 7.3 7.9 74 0.5λ×

0.5λ 0.5λ

[33] 10 Rect.
TEx

δ13 7 6.2 46 0.6λ

135 0.4λ×
0.4λ

TEx
δ15 7 7.5 42 1λ

PS 10 Rect.
TEx

δ15 10.7 10.4 95
15 1λ× 1λ 0.9

TEx
δ15 With cyl.

hole 16.1 10.4 96

εrdielectric constant; Rect.—rectangular; fr—resonant frequency (GHz); BW—bandwidth (%); gain is measured in
dBi; Eff. —efficiency (%); NM—not mentioned; PS—proposed structure.

4. Conclusions

A high-gain and wideband dielectric resonator antenna was designed, simulated, fabricated,
and experimentally verified. The proposed structure achieved a wide bandwidth and high gain
operating in higher-order mode using a new approach of putting a cylindrical hole at the center of
the DRA. The DRAs were designed at the operating frequency of 15 GHz. The DRAs were fabricated
and measured to validate the proposed design concept. Measured results of the fabricated antenna
prototypes showed an impedance bandwidth of 10.7% from 14.3-15.9GHz and 16.1% from 14.1-16.5GHz
with a high gain of 10.4dBi for DRA1 and DRA2, respectively. The measured and simulated results of
the DRA were in good agreement. Furthermore, the results show that the designed antenna is suitable
for future 5G communication applications.
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