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Abstract: In this work an array of chemical sensors for gas detection has been developed, starting
with a commercial sensor platform developed by Microchip (GestIC), which is normally used to
detect, trace, and classify hand movements in space. The system is based on electric field changes,
and in this work, it has been used as mechanism revealing the adsorption of chemical species CO2

and O2. The system is composed of five electrodes, and their responses were obtained by interfacing
the sensors with an acquisition board based on an ATMEGA 328 microprocessor (Atmel MEGA AVR
microcontroller). A dedicated measurement chamber was designed and prototyped in acrylonitrile
butadiene styrene (ABS) using an Ultimaker3 3D printer. The measurement cell size is 120 × 85 mm.
Anthocyanins (red rose) were used as a sensing material in order to functionalize the sensor surface.
The sensor was calibrated using different concentrations of oxygen and carbon dioxide, ranging
from 5% to 25%, mixed with water vapor in the range from 50% to 90%. The sensor exhibits
good repeatability for CO2 concentrations. To better understand the sensor response characteristics,
sensitivity and resolution were calculated from the response curves at different working points.
The sensitivity is in the order of magnitude of tens to hundreds of µV/% for CO2, and of µV/% in the
case of O2. The resolution is in the range of 10−1%–10−3% for CO2, and it is around 10−1% for O2.
The system could be specialized for different fields, for environmental, medical, and food applications.

Keywords: capacitive sensor; oxygen and carbon dioxide sensors; anthocyanins; electric field;
environmental monitoring

1. Introduction

The detection and the measurement of gas concentrations can be carried out using several
principles. The most common working principles, sensors, and systems used for gas detection are:
electrochemical sensors [1,2], systems based on Quartz Crystal Microbalances [3], sensors based
on semiconductors [4,5], optical sensors [6], capacitive sensors [7], cantilever-based sensors [8],
and colorimetric devices [9].

Capacitive sensors used as proximity detectors for tracking and control [10] could be a valid option
for gas detection, due to their simple structure, which allows miniaturization, their high sensitivity and
low cost. In environmental monitoring, indeed, a sensor’s size, simplicity, and cost are strategic to allow
a distributed network of sensing elements in order to monitor and map complex scenarios [11–13].
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This networking inter-operability asks for simplicity, which gains reliability for standalone
functioning; and low cost and size, which allow wide network building.

Starting from the capacity definition:
C = ε0εrA

d where ε0 is the permittivity in vacuum, εr is the relativity permittivity, A the electrode
area and d the distance between the electrodes (dielectric thickness), it could be possible to detect
target molecules by inducing a variation of the dielectric layer in terms of modification of εr or of its
thickness. The latter principle is the most interesting for gas detection.

When the sensor system shows meaningful figures (repeatability, sensitivity, and resolution)
which are relevant for the specific application, it can be used in fields such as the monitoring of air
quality, or in medicine, for example for the analysis of the exhaled breath. This is the application tested
in this work, where a commercial sensor platform developed by Microchip (GestIC), normally used to
detect, trace, and classify hand movements in space [14], has been used as an array of chemical sensors.

It is ambitious to propose a gas sensor which is completely novel (especially for the detection of
oxygen and carbon dioxide) with sensitivity, resolution, selectivity, and repeatability better than the
ones given by the existing technologies (reported in References [1–10]). All the mentioned sensors (not
pretending to be exhaustive) are complementary in terms of pros and cons, and the best solution can be
selected among them for each different application. Thus, the novelty could come from a novel sensing
mechanism or from a sensor normally used to detect a different physical quantity, by transforming
it into a gas sensor. This is the approach of this study, which finds its motivation in the ambition of
exploiting a sensor system that can easily be used in an IoT (Internet of Things) scenario.

2. Materials and Methods

In this experimental set-up, a capacitive sensor, based on a Microchip Gest-IC platform, has
been employed as a gas sensor array in order to measure oxygen and carbon dioxide in different
concentrations. The device is based on 3D proximity sensing technology [14], which uses an electric
field to detect, trace, and classify hand movements in space. Two overlapped layers comprise the
MGC-3030 electrodes system. The first Tx layer shields the ground to allow a propagation of the E-field
and grant a better acquisition of the signal. On top of the transmission layer is stacked the Rx layer,
which is composed of five electrodes providing spatial resolution. An insulation layer separates the Tx
and Rx layers. The five Rx electrodes are placed according to the configuration reported in the Figure 1.
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Figure 1. (a) Frame Shape electrodes, (b) electrode system with characteristic capacitance (VTx: Tx 
electrode voltage; VRx: Rx electrode voltage; CRxTx: capacitance between the receive and transmit 
electrodes; CTxG: capacitance of the transmit (Tx) electrode to the system ground; CRxG: capacitance of 
the receive (Rx) electrode to the system ground; CH: capacitance between the receive electrode and 
the hand (earth ground); eRx: Rx electrode; eTx: Tx electrode). 

Figure 1. (a) Frame Shape electrodes, (b) electrode system with characteristic capacitance (VTx: Tx
electrode voltage; VRx: Rx electrode voltage; CRxTx: capacitance between the receive and transmit
electrodes; CTxG: capacitance of the transmit (Tx) electrode to the system ground; CRxG: capacitance of
the receive (Rx) electrode to the system ground; CH: capacitance between the receive electrode and the
hand (earth ground); eRx: Rx electrode; eTx: Tx electrode).

The responses of the individual electrodes were obtained by interfacing the MGC3030 (I2C serial
communication) with an acquisition board based on an ATMEGA 328 microprocessor. A GUI was
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developed to handle the responses from the five electrodes placed inside the measuring chamber.
The interface was developed using MATLAB.

The measuring chamber was designed using Solidworks and it was fabricated using an Ultimaker3
3D printer. It has dimensions of 120 × 85 mm and it is made of acrylonitrile butadiene styrene (ABS).

Anthocyanins extracted from red roses [15] were used as a sensing material in order to functionalize
the sensor surface. The composition of red rose anthocyanin is widely reported in literature. The most
significant amount of red rose anthocyanins was characterized as cyanidin 3,5-di-O-glucoside and
pelargonidin 3,5-di-O-glucoside using reversed-phase C18 column chromatography. In particular,
the cyanidin 3,5-di-O-glucoside is the predominant constituent, representing about 85% of total
content [16].

The results shown in a previous research paper [15], agreed with already-published results.
To obtain a uniform and reproducible bioactive layer, an adhesive mask was placed above the

surface of the Rx electrode and it was used to support manual casting by restricting the functionalization
only to the exposed area. A volume of 1 mL of the anthocyanin mixture was poured onto the masked
surface and it was allowed to air dry at room temperature. Finally, when the solvent was completely
evaporated, the adhesive mask was removed.

The sensor was calibrated using different concentrations of oxygen and carbon dioxide, ranging
from 5% to 25%. A flow-meters system was used to control the flow speed and the composition of the
gas mixture inside the measuring chamber. The different concentrations were obtained by mixing the
gases with inert gas (nitrogen). Nitrogen was also used for sensor recovery after each measurement.
The measurement setup is reported in Figure 2.
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Figure 2. Measurement setup.

In a second phase, the sensor was calibrated to different O2 and CO2 concentrations with different
humidity levels, from 50% to 90% relative humidity (RH). Each measurement lasted 2 minutes and
each recovery phase lasted 5 minutes. Five measurements were executed for each concentration.
The output consisted of a voltage signal, which is the result of the electric field perturbation given
by the interaction of the sensing material with the gas molecules (see Figure 3). This perturbation is
sensed by the electrodes and transduced in a capacitance shift, which is readable by the voltage output
of the electronic circuit interface.
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Figure 3. Schematic representation of the sensing mechanism and transduction.

3. Results

In the initial calibration phase, the sensor was not functionalized. The aim of this initial phase was
to explore the sensitivity of the system to the target gases without the presence of a chemically active
layer. In these conditions, the system did not show the ability to measure different gas concentrations.

In the second calibration phase, the central Rx electrode of the sensor was functionalized using
anthocyanins (see the Methods section).

Additionally, in these conditions, the system did not show the ability to measure different
gas concentrations.

Thus, in the third calibration phase, two different mixtures were used:
(1) oxygen, nitrogen, and moisture, ranging from 50% to 90% RH.
(2) carbon dioxide, nitrogen, and moisture, ranging from 50% to 90% RH.
The raw data relative to the sensor responses are shown in Figure 4.
In these conditions, the sensor showed different behaviors for CO2 and O2 at different moisture

concentrations, as displayed by the response curves in Figures 5 and 6. The sensor exhibits a better
repeatability with CO2 concentrations.
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Curve fitting models for CO2 and O2 are reported below in Tables S1 and S2 (in the Supplementary
Materials). The p1 coefficient always exhibits a far less relevant contribution than p2 and p3, thus all
models show a quasi-linear behavior in the concentration range of interest.

To more deeply investigate the sensor response characteristics, sensitivity and resolution were
calculated from the curve fitting models at different working points (Tables 1 and 2).

Table 1. Resolution and sensitivity of the CO2. The VNoise is the fluctuation observed in the output
voltage signal in the absence of CO2 input for the different experimental conditions of 50%, 65%, 75%,
80%, and 90% of relative humidity.

50% RH 65% RH 75% RH 80% RH 90% RH

Sensitivity Resolution Sensitivity Resolution Sensitivity Resolution Sensitivity Resolution Sensitivity Resolution

%CO2 [V/%] [%] [V/%] [%] [V/%] [%] [V/%] [%] [V/%] [%]
5 1.76 × 10−5 3.73 × 10−1 2.57 × 10−5 2.55 × 10−1 5.24 × 10−5 1.81 × 10−2 1.49 × 10−4 5.42 × 10−3 4.14 × 10−4 6.32 × 10−3

10 1.52 × 10−5 4.32 × 10−1 2.50 × 10−5 2.62 × 10−1 4.31 × 10−5 2.20 × 10−2 1.38 × 10−4 5.84 × 10−3 4.14 × 10−4 6.32 × 10−3

15 1.28 × 10−5 5.13 × 10−1 2.44 × 10−5 2.70 × 10−1 3.38 × 10−5 2.81 × 10−2 1.28 × 10−4 6.33 × 10−3 - -
20 1.04 × 10−5 6.32 × 10−1 2.37 × 10−5 2.77 × 10−1 2.45 × 10−5 3.88 × 10−2 1.17 × 10−4 6.91 × 10−3 - -
25 7.98 × 10−6 8.23 × 10−1 2.30 × 10−5 2.85 × 10−1 1.52 × 10−5 6.26 × 10−2 - - - -

VNoise [V] 6.56 × 10−6 7.91 × 10−6 9.50 × 10−7 8.08 × 10−7 2.61 × 10−6

Table 2. Resolution and sensitivity of the O2. The VNoise is the fluctuation observed in the output
voltage signal in the absence of O2 input for the different experimental conditions of 50%, 65%, 75%,
80%, and 90% of relative humidity.

50% RH 65% RH 75% RH 80% RH

Sensitivity Resolution Sensitivity Resolution Sensitivity Resolution Sensitivity Resolution

%O2 [V/%] [%] [V/%] [%] [V/%] [%] [V/%] [%]
5.0 9.07 × 10−6 1.66 × 10−1 1.46 × 10−5 6.21 × 10−2 3.51 × 10−5 5.03 × 10−2 6.82 × 10−5 2.27 × 10−1

10.0 8.61 × 10−6 1.74 × 10−1 1.34 × 10−5 6.76 × 10−2 3.42 × 10−5 5.16 × 10−2 5.53 × 10−5 2.81 × 10−1

15.0 8.15 × 10−6 1.84 × 10−1 1.22 × 10−5 7.41 × 10−2 3.34 × 10−5 5.29 × 10−2 4.24 × 10−5 3.66 × 10−1

20.0 7.70 × 10−6 1.95 × 10−1 1.10 × 10−5 8.21 × 10−2 3.25 × 10−5 5.43 × 10−2 2.95 × 10−5 5.26 × 10−1

VNoise [V] 1.50 × 10−6 9.05 × 10−7 1.76 × 10−6 1.55 × 10−5

Sensor performances for CO2 and for O2 monitoring are summarized below:

• For CO2, resolution ranges from about 0.8% at 50% RH to about 0.006% at 90% RH
• For O2, resolution ranges from about 0.2% at 50% RH to about 0.05% at 75% RH

According to the performances listed above, the sensor could be exploited in different fields such
as: environmental applications, related to the monitoring of air-quality [17]; medical applications,
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related to the study of the exhaled breath composition and to the monitoring of exhaled breath sampling
procedures [18]; and agri-food applications, related to the monitoring of process quality, product
packaging, and the assessment of product safety [19]. Moreover, a proper functionalization of the
sensor, using an application-specific chemically active layer, will lead to the maximization of the
sensing performances, in terms of sensitivity, resolution, and response speed.

4. Discussion

In this paper, a capacitive proximity sensor (which exploits an electric field’s variations) was
used as a chemical sensor. The system was calibrated to oxygen and carbon dioxide, functionalizing
the central sensing electrode with a biological sensing material. As shown by the response curves,
the sensing system was able to measure both carbon dioxide and oxygen concentrations.

The sensor showed different behaviors to target gases when different moisture concentrations
were used. In particular, sensor repeatability was reduced when measuring oxygen concentrations
with high moisture levels. To understand this, it is relevant to discuss the role of RH in the sensing
mechanism. Potentially, water molecules might act at least at two levels: the first through a direct
interaction with gas compounds, and the second by dealing with the anthocyanin sensing layer. In the
former case, it is extensively reported by literature that CO2 can react with water, forming carbonic
acid (H2CO3), which in turn can release up to two protons (H+) per molecule, thus contributing to
the generation of the signal. However, the sole RH is not enough to induce a significant electric field
modification, as demonstrated by the absence of a signal when the non-functionalized Rx electrode
is challenged with both carbon dioxide and oxygen gases. The fundamental role exploited by the
anthocyanin sensing layer is indeed to enhance such electric field interference, through one of the many
chemical reactivity groups typical of the flavonoid classes. The latter level of interaction is between
water molecules and the pyrylium ring (C-ring) of the flavylium ion, which is able to alter the chemical
structure of anthocyanins by nucleophilic addition at C2 [20].

On the basis of these results, it will be important to functionalize the system with more sensitive
materials to improve sensor performances and allow the measurement of other gases.

Given the ability of the sensor to measure oxygen and carbon dioxide concentrations in the
presence of moisture, an interesting future development could also be the application of this device for
the analysis of the human exhaled breath, with the aim of including this device in the measuring chain
used for breathprinting [21,22].

This is a pilot study focused on understanding sensors’ relevance in the detection of the selected
gases for different applications. The core of the study was the novelty of the sensors (in gas detection),
which shows key features for the current sensor technology: low-cost, low-power, and connectivity.
No specific applications have been selected here, even if exhaled breath analysis and environmental
monitoring have been cited as most attractive. A broad concentration range of CO2 has been tested in
order to investigate possible applications, also including food production and preservation, incubator
atmospheres, CO2 entrapment technologies, and monitoring of hazardous sites (mines, etc.). Of course,
for a specific application, sensor performances could be improved and tailored in terms of resolution,
but the goal of this work was feasibility.

The optimization of the system will allow it to be used in different fields: environmental, medical,
and food.
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