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Abstract: To implement fine-grained context recognition that is accurate and affordable for general
households, we present a novel technique that integrates multiple image-based cognitive APIs
and light-weight machine learning. Our key idea is to regard every image as a document by
exploiting “tags” derived by multiple APIs. The aim of this paper is to compare API-based models’
performance and improve the recognition accuracy by preserving the affordability for general
households. We present a novel method for further improving the recognition accuracy based
on multiple cognitive APIs and four modules, fork integration, majority voting, score voting, and
range voting.

Keywords: context recognition; image; cognitive APIs; machine learning; majority voting; score
voting; range voting; smart home

1. Introduction

As Internet of Things (IoT) and Artificial Intelligence (AI) technologies continue to develop,
people have increasing expectations about smart home services. Recognizing fine-grained contexts
within individual houses is a key technology for next-generation smart home services. We use the
term “fine-grained” home context to represent a home context that is more concrete and is specifically
defined by individual houses, residents, and the environment for special purposes of application, such
as elderly monitoring [1–3], autonomous security [4], and personalized healthcare [5,6]. It has been
studied for many years in the field of ubiquitous computing [7,8]. Traditional ubiquitous computing
employs ambient sensors [9,10], wearable sensors [11], and indoor positioning systems [12] that are
installed at home to retrieve various data.

In recent years, the emerging deep learning [13–16] allows the system to recognize multimedia.
Since image, voice, and text usually contain richer information than conventional sensor data, it is
promising to use such multimedia data for recognizing fine-grained home contexts. In our study, we
especially focus on image data with human activities at home for recognising home contexts. For this,
one may try to recognize home contexts via image recognition based on naive deep learning. However,
constructing a custom recognition model dedicated to a single house requires a huge amount of labeled
datasets and computing resources [17,18]. It is not only hard to construct a universal recognition model
from one house to another, but also the security and privacy issues that come with a large amount of
data influence acceptability for the users. Thus, there is still a big gap between research and real life.
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Our interest is to use little image data, applying cognitive services to implement affordable context
sensing that can adapt to custom contexts in every single house. The cognitive service is a cloud
service with cognitive computing functions that provide the capability to understand multimedia data
(i.e., vision (object recognition) [19], speech recognition [20], natural language processing [21], etc.),
based on sophisticated machine-learning algorithms powered by the offered big data and large-scale
computing. They are offered by cloud companies, but the data processing algorithms behind them
are not public. They are also widely used in various fields of research, such as modern knowledge
management solutions [22] and criminal detection and recognition [23]. The cognitive API is an
application program interface via the HTTP/REST protocol [24], with which developers can easily
integrate powerful recognition features in their own applications. An image-based cognitive API
receives an image from an external application, i.e., extracts specific information from the image, and
returns the information in JavaScript Object Notation (JSON) [25] format from the cloud server rather
than the local. The information usually contains a set of words called “tags”, representing objects and
concepts that the API has recognized in the given image. Examples of tags from the API are: [Living,
room, indoors, classroom, basement, supporting structure]. The information of interest and the way of
recognizing the image vary among individual cognitive services. Related work uses image tagging
technology with deep learning, as in [26–28], but the implementation is more complex. In our future
realistic implementation, for security and privacy of the users the images are not saved after sending
the APIs over.

The main contribution of this paper is to present a novel method which is not only affordable but
also has higher accuracy in recognizing fine-grained home contexts. For this purpose, we are currently
investigating techniques that integrate inexpensive camera devices, multiple image-based cognitive
APIs, and light-weight machine learning. We previously encoded the tags of a single API to document
vectors, then applied them into machine learning for the model construction [29]. However, we found
that the accuracy significantly decreased for contexts with multiple people (e.g., “General meeting”,
“Dining together”, “Play games”). In this paper, we define a concept called “image as documents”,
which uses different cognitive APIs for receiving the same image. As the proposed method, we present
four modules, fork integration and three voting approaches (i.e., majority [30], score [31], range [32]),
to integrate multiple models generated from different APIs. In this way, we can not only compare the
difference in API-based models’ performance, but improve the recognition accuracy. Furthermore, we
also discuss the potential implementation of the model simplification as in [33], of the more efficient
process as in [34], and of the other techniques as in [35] and [36], integrated into the proposed method.

In order to evaluate the proposed method, we experimented to recognize the seven contexts of
our laboratory, which use little image data and five cognitive APIs. Based on the proposed method, we
completed the process from each independent model construction to multiple model integration, and
implemented the above four modules. As a result, for each API-based model, the Imagga API-based
model performed best within the five models, and the ParallelDots API-based model was the worst.
Meanwhile, the overall accuracy by majority voting reached 0.9753. Furthermore, the overall accuracy
by score voting reached 0.9776. We also checked the accuracy distribution by range voting, which was
meant to solve the problem of recognition instability in contexts with multiple people. In this way, we
found that the top of overall accuracy reached 0.9833 when the value of the lower limit was between
0.5 and 0.6. Thus, the recognition accuracy was significantly improved by the method proposed in
our experiment.

2. Related Work

The problem of recognizing fine-grained home contexts with human activities [37–40] has been
widely studied in the field of ubiquitous computing. As described in the introduction, it is defined by
every user depending on a special purpose. However, for realizing a technique that applies for general
households, we consider that it should have several advantages at least: (1) Low cost of devices and
systems in both purchase and maintenance, (2) light-weight and a high-accuracy approach for data
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processing, (3) a stable and secure approach for data communication. In this section, we introduce
some related works from recent years around the above three points.

Nakamura et al. [41] proposed a system that recognizes the activities of residents using big data
accumulated within a smart house. Ueda et al. [42] also proposed an activity recognition system using
ultrasonic sensors and indoor positioning systems within a smart house. While the performance of
these systems is great, they are still too expensive for general households. Sevrin et al. [43] contributed
to the effort of creating an indoor positioning system based on low cost depth cameras (Kinect).
However, for retrieving more specific information on human activities at home (e.g., cleaning, dining,
etc.), embracing the position of users is obviously not enough. In recent years, activity recognition
with deep learning has become a hot topic. Research in [44] built on the idea of 2D representation of an
action video sequence by combining the image sequences into a single image called the Binary Motion
Image (BMI) to perform human activity recognition. Asadi-Aghbolaghi et al. [45] presented a survey
on current deep learning methodologies for action and gesture recognition in image sequences. While
deep learning is a powerful approach for recognizing image data, a huge amount of data is required to
build a high-quality model. Therefore, it is unrealistic for individual households to prepare a huge
amount of labeled datasets for custom fine-grained contexts.

Using cloud services to recognize human activities at home is key for implementing light-weight
data processing. Pham et al. [46] presented a Cloud-Based Smart Home Environment (CoSHE) for
home healthcare. While the effect of the system is good, various basic sensors and devices must be
installed, which is not ideal for implementation and long-term maintenance. Menicatti et al. [47]
proposed a framework that recognizes indoor scenes and daily activities using a cloud-based computer
vision. Their concept and aim are similar to our method. However, the way of encoding tags is based
on a the naive Bayes model where each word is present or not. Moreover, the method is supposed
to be executed on a mobile robot, where the image is dynamically changed. Thus, the method and
the premise are different from ours. Research in [48] investigates the influence of a person’s cultural
information towards vision-based activity recognition at home. The accuracy of the fine-grained
context recognition would be improved by taking such personal information into machine learning.
We would like to investigate this perspective in future work.

Regarding the security of uploading images to cloud services, Qin et al. [49] studied the
design targets and technical challenges that lie in constructing a cloud-based privacy-preserving
image-processing system. There are also some the related works that focus on the security and privacy
of smart homes. Dorri et al. [50] proposed a blockchain-based smart home framework with respect
to the fundamental security goals of confidentiality, integrity, and availability. Geneiatakis et al. [51]
employed a smart home IoT architecture to identify possible security and privacy issues for users.
Through the above articles, we also plan, in future work, to focus more on making computation and
communication practical for the encrypted data of smart homes.

3. Methodology

This section produces a complete description on the preliminary study, proposed method, and
discussion of the related techniques.

3.1. Preliminary Study

Constructing a single classifier model is a basic and essential part of realizing fine-grained home
context recognition. Unlike naive deep learning, we previously dedicated the features of images
extracted from a single cognitive API, to apply to light-weight supervised machine learning [29].
The key step for building the context recognition model is to make every image document covert for a
set of numerical values, which is document vectorization processing (see step 4). In this section, we
describe the method that constructs a recognition model from a single API. It also can be used for
performance comparison among the different cognitive APIs, which has been developed from our
other preliminary study using unsupervised learning [52].
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The procedure consists of the following five steps.

Step 1: Acquiring data
A user of the proposed method first defines a set C = {c1, c2, ..., cl} of home contexts to be recognized.
Then, the user deploys a camera device in the target space to observe. The user configures the device
so as to take a snapshot of the space periodically with an appropriate interval.
Step 2: Creating datasets
For each context ci ∈ C, the user manually selects representative n images IMG(ci) =

{imgi1, imgi2, ..., imgin} that effectively expose ci from all images obtained in step 1. At this time,
the total l × n images are sampled as datasets. Then, the n images in IMG(ci) are split into two
sets, train(ci) an test(ci), which are the training dataset with α images and the test dataset with n− α

images, respectively.
Step 3: Extracting tags as features
For every image imgij in train(ci), the method sends imgij to an image recognition API, and obtains a
set xTag(imgij) = {t1, t2, ...}, where t1, t2, ... are tags that the API has extracted from imgij. The method
performs the same process for test(ci) and obtains yTag(imgi′ j′). At this step, there is a total of l × n
tags in the set.
Step 4: Converting tags into vectors
Regarding every xTag(imgij) as a document, and the whole tag set as a document corpus, the method
transforms xTag(imgij) into a vector representation xVec(imgij) = [v1, v2, ...], where vr represents
a numerical value characterizing the r-th tag. Famous document vectorization techniques include
TF-IDF [53], Word2Vec [54], and Doc2Vec [55]. The selection of the vector representation is up
to the user. Similarly, the method converts yTag(imgi′ j′) into yVec(imgi′ j′) using the same vector
representation.
Step 5: Constructing a classifier
Taking xVec(imgij) (1 ≤ i ≤ l, 1 ≤ j ≤ α) as predictors and ci (1 ≤ i ≤ l) as a target label, the method
executes a supervised machine learning algorithm to generate a multi-class classifier CLS. For a given
vector v = [v1, v2, ...], if CLS returns a context ci, which means that the context of the original image of
v is recognized as ci. The accuracy of CLS can be evaluated by yVec(imgi′ j′) to see if CLS returns the
correct context ci′ .

3.2. Proposed Method

To improve recognition accuracy (especially in the case of Figure 1) based on Section 3.1, this
section describes the most important question in this paper, which is how to construct a whole
recognition model by integrating multiple recognition models (see Figure 2). As we mentioned in
Section 1, the core of our method is to use the image-as-documents concept, which operates with a
fork integration module and a choice among three voting modules. For ensuring that many results of
multiple cognitive APIs accurately correspond to every image, the preliminary stage of the training
classifier is also very important.
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Figure 1. Example of an image with multiple people misrecognized using a single cognitive API.

Dining together

Maj ‘‘ Dining together ’’

‘‘ Dining together ’’

‘‘ General meeting ’’

‘‘ Play games ’’

‘‘ Dining together ’’

‘‘ Room cleaning’’

Cognitive 

API-2

Cognitive 

API-1

Cognitive 

API-3

Cognitive 

API-4

Cognitive 

API-m

Features-1

Features-2

Features-3

Features-4

Features-m

Vector

set-1

Vector

set-2

Vector

set-3

Vector

set-4

Vector

set-m

Model-1

Model-2

Model-3

Model-4

Model-m

Input an image
Recognizing Fine-Grained Home Contexts

Using Multiple Cognitive APIs

A Final Result by 

Majority Voting Approach
Output a text

Figure 2. Example of recognizing an image using multiple cognitive APIs and majority voting.

The specific whole steps are as follows.

Step 6: Constructing multiple classifiers
By repeating steps 3 to 5 of Section 3.1 for different image recognition APIs, the proposed method
constructs m independent recognition models. Note that training and test datasets created in steps 1
and 2 can be reused and shared among different models. As a result of the model construction, we
have a set of classifiers CLS1, CLS2, ..., CLSm.
Step 7: Add vectorizer for new images
For each CLSq, the method generates a vectorizer VECq, which transforms a given image img into a
vector representation xVec(img) through the q-th cognitive API. Now, if we input any new image of
the target space, the concatenation VECq + CLSq outputs ci as a predicted context class.
Step 8: Integrate multiple models
To complete the model construction, the method first adds a fork integration module F, which sends a
given image simultaneously to m recognition models VECq + CLSq (1 ≤ q ≤ m), corresponding to the
image-as-documents concept. Then, the method adds three voting modules, which users choose in
different home contexts, as follows.

• Majority voting: It receives m outputs c1, c2, ..., cm from VECq + CLSq (1 ≤ q ≤ m), and returns
mode(c1, c2, ..., cm) (see Figure 3).

• Score voting: It receives m outputs c1, c2, ..., cm and scores s1, s2, s3, ..., sm of each output from
VECq + CLSq (1 ≤ q ≤ m), and returns max ∑m

i=1 si(ci) by comparing the total of scores with the
same output ci(see Figure 4).
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• Range voting: It receives m outputs c1, c2, ..., cm and scores s1, s2, s3, ..., sm of each output from
VECq + CLSq (1 ≤ q ≤ m), and sets a lower limit for scores si to be used. The output ci will be
used in the score voting if the corresponding score si is above the lower limit (compare Figures 4
and 5).
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3.3. Discussion

To construct a model using multiple cognitive APIs, another method is combining the tags of
different cognitive API models, which come from each image (see Figure 6). However, this will
increase the dimension of the input data of the built model. The related techniques for dimensionality
reduction include Principal Component Analysis (PCA) [33], Locally Linear Embedding (LLE) [56],
Latent Semantic Analysis (LSA) [57] and so on. We would like to experiment with them for model
simplification and accuracy in our future work. In addition, for dimension reduction [58–60] of
document vectors, the Restricted Boltzmann Machines (RBMs) [61,62] is a good method. In the existing
research, many models only use a small number of features as input; hence, there may not be enough
information to classify documents accurately. Conversely, if more features are input, as we discussed
earlier, it will increase the dimension of input data, resulting in a large increase in the training time of
the model, and its recognition accuracy may also lower. Therefore, we also would like to use RBMs to
extract highly distinguishable features from the combined input features, and use them as input to the
corresponding model in our future work. We believe that this will greatly improve the efficiency of
model construction. Furthermore, conducting the proposed method using the other machine learning
techniques (e.g., Hidden Markov Model (HMM) [63], regression, graphical models [64], etc.) is also
feasible. We will conduct experiments to compare these technologies combined with the proposed
method in future work.
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Figure 6. Example of constructing a model by combining the features of multiple cognitive APIs.

4. Experimental Evaluation

This section introduces results, discussion, and an experiment conducted for comparing the
difference in API-based models’ performance and improving the recognition accuracy.

4.1. Experimental Setup

The experiment was conducted in a shared space of our laboratory. First, we installed a USB
camera in a fixed position to acquire images of the space. We then developed a program that takes a
snapshot with the camera every five seconds, and uploads the image to a server. The image resolution
is 1280 × 1024. The images were accumulated from July 2018 to March 2019. The target shared space is
used by members of our laboratory for various activities. In this experiment, we chose the seven kinds
of fine-grained contexts: “Dining together”, “General meeting”, “Nobody”, “One-to-one meeting”,
“Personal study”, “Play games”, and “Room cleaning”. The detail of each context is as in Table 1. For
each context, we selected and labeled 100 representative images from the server, taken on different
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dates. We then randomized the order of a total of 700 image data, and split them into half, as training
data and test data.

Table 1. The detail of each defined context in this experiment.

Context Labels The Contents of What the Images of Each Context Represent

Dining together We often cook by ourselves to dining together in our laboratory
General meeting We are sitting together in a general meeting every Monday

Nobody There is also the nobody situation during the weekend or holidays
One-to-one meeting We often have a one-to-one meeting for the study discussion

Personal study Sometimes the public computer is used for personal study
Play games We often gather around and play games to relax in our spare time

Room cleaning The staff twice a week come for room cleaning in our laboratory

4.2. Building and Combining API-Based Models

We first built a recognition model for the seven contexts. The following five cognitive APIs
were used to extract tags from images referring to each context: Microsoft Azure Computer Vision
API [65], IBM Watson Visual Recognition API [66], Clarifai API [67], Imagga REST API [68], and
ParallelDots API [69]. Tables 2 and 3 show the representative images of seven contexts (including tag
results) and USB camera. We can see that the different APIs recognized the same image from different
perspectives. Each tag set extracted from an image was then transformed into a vector representation
using TF-IDF (Term Frequency–Inverse Document Frequency) [53]. We then imported the datasets and
the corresponding context labels to Microsoft Azure Machine Learning Studio [70]. For each cognitive
API, we trained a classifier using the Multiclass Neural Network with the default setting. Each of the
five trained models was evaluated by the test data to observe the performance of individual models.
We finally used four modules to build a whole recognition model by integrating five individual models.
To check accuracy distribution, we adjusted the lower limit of scored class probabilities to between 0
and 0.9.



Sensors 2020, 20, 666 9 of 16

Table 2. The representative images of the four contexts (including tag results from different APIs).

Images

Contexts Dining together General meeting Play games One-to-One meeting

Tag results of 

Microsoft Azure 

Computer Vision 

API

indoor, person, ceiling, table, 

room, living, people, food, sitting, 

filled, items, cluttered, group, 

woman, man, large, place, several, 

television, fire, many, kitchen, 

fireplace, pizza, crowded, plate, 

bed

indoor, room, table, living, 

computer, sitting, cluttered, 

laptop, desk, woman, man, dog, 

people, office, kitchen, filled, 

food, playing, furniture, standing, 

television, large, wooden, young, 

group, cat, holding, video, fire

indoor, ceiling, person, room, 

living, table, sitting, child, young, 

computer, small, cluttered, 

woman, food, filled, boy, man, 

desk, kitchen, television, playing, 

people, laptop, little, standing, 

girl, furniture, large, fireplace, 

fire, video, bed, game, holding, 

group, bedroom

indoor, table, room, ceiling, 

computer, desk, living, cluttered, 

office, sitting, laptop, television, 

area, filled, monitor, equipment, 

screen, large, people, several, 

video, standing, playing, woman, 

game, keyboard, man, desktop, 

bed, group

Tag results of 

IBM Watson 

Visual 

Recognition API

control room, indoors, newsroom, 

office, building, television 

equipment, control center, 

workstation, digital computer, 

computer, machine, equipment, 

ultramarine color

newsroom, office, building, 

classroom, indoors, beauty salon, 

shop, retail store, war room, 

workroom, control room, sage 

green color

television room, indoors, control 

room, workstation, digital 

computer, computer, machine, 

audiovisual aid, television 

equipment, newsroom, office, 

building, equipment, system, 

electronic equipment, ultramarine 

color

control room, indoors, microfiche, 

photographic film, photographic 

equipment, control center, 

building, workstation, digital 

computer, computer, machine, 

television equipment, system, 

electronic equipment, ultramarine 

color

Tag results of 

Clarifai API

room, furniture, education, 

indoors, school, people, 

exhibition, adult, desk, group, 

production, computer, commerce, 

class, vehicle, technology, 

election, classroom, healthcare

room, indoors, desk, furniture, 

table, exhibition, technology, 

computer, business, chair, interior 

design, office, production, 

education, industry, people, 

commerce, seat, classroom

room, computer, technology, desk, 

indoors, furniture, education, 

group, table, people, exhibition, 

business, adult, school, television, 

medicine, commerce, production, 

industry

room, furniture, indoors, desk, 

table, chair, seat, technology, 

education, interior design, office, 

hospital, trading floor, school, 

business, university, computer, 

classroom, exhibition

Tag results of 

Imagga REST 

API

office, business, corporate, 

teamwork, building, businessman, 

people, man, meeting, team, work, 

group, men, happy, 

businesswoman, professional, 

male, executive, success, working, 

women, center, job, 

businesspeople, adult, person, 

indoors, shop, hall, 

communication, modern, 

restaurant, passenger, training, 

attractive, interior, smiling, 

colleagues, lifestyle, suit, career, 

room, table, successful, worker, 

manager, handshake, 

businessmen, computer, 

partnership, company, portrait, 

smile, indoor, partner, workplace, 

barbershop, place of business, 

strength, education, structure, 

occupation, laptop, corporation, 

adults, equipment, diverse, 

support, handsome, exercising, 

diversity, gym, boss, pretty, 

commerce, power, light, workers, 

standing, sitting, two, 20s, hand, 

confident, fitness, employee, 

associate, 20 24 years, coworkers, 

determination, conference, 40s, 

hands, mercantile establishment, 

happiness, counter, ethnic, black, 

health, chair, health spa, looking, 

together, seminar, healthy 

lifestyle, agreement, leadership, 

establishment, talking, desk, 

horizontal, presentation, lady, 

exercise, bright, day, architecture

room, classroom, office, center, 

interior, table, chair, furniture, 

computer, modern, desk, indoors, 

business, home, work, house, 

design, working, meeting, floor, 

monitor, professional, empty, 

corporate, group, people, decor, 

laptop, man, businessman, 

education, businesswoman, sitting, 

light, executive, restaurant, 

person, indoor, window, 

teamwork, building, seat, team, 

male, inside, smiling, 

communication, technology, 

wood, contemporary, success, 

sofa, keyboard, screen, learning, 

luxury, school, residential, lamp, 

display, mouse, confident, 

structure, equipment, board, 

chairs, engineer, job, class, 

businesspeople, living, nobody, 

couch, together, workplace, 

women, wall, glass, teacher, 

manager, coffee, adult, living 

room, lighting, comfortable, 

architecture, talking, career, pen, 

showing, study, occupation, 

successful, style, happy, kitchen, 

worker, decoration, associate, 

conference, discussion, partners, 

colleagues, student, cooperation, 

corporation, employee, alcove, 

presentation, training, book, suit

office, room, table, interior, 

furniture, desk, monitor, modern, 

computer, chair, center, home, 

business, indoors, classroom, 

work, house, decor, working, 

design, floor, window, light, 

wood, lamp, inside, corporate, 

laptop, people, technology, seat, 

education, empty, professional, 

sofa, living, equipment, indoor, 

luxury, comfortable, television, 

executive, screen, keyboard, 

display, chairs, apartment, 

nobody, meeting, sitting, school, 

3d, worker, mouse, residential, 

person, alcove, occupation, 

architecture, businesswoman, 

decoration, man, job, 

businessman, success, adult, 

restaurant, learning, wall, smiling, 

relax, building, pillow, workplace, 

furnishing, contemporary, glass, 

place, teamwork, communication, 

network, style, carpet, vase, 

couch, male, structure, elegance, 

training, board, group, women, 

notebook, living room, 

conference, class, desktop, 

businesspeople, career, pen, 

relaxation, presentation, book, 

data, confident, stylish, lifestyle, 

electronic equipment, suit, team, 

kitchen

room, interior, monitor, furniture, 

office, table, modern, computer, 

desk, home, house, decor, indoors, 

design, lamp, living, mouse, floor, 

light, sofa, 3d, chair, work, luxury, 

center, window, business, 

apartment, equipment, display, 

comfortable, wall, wood, 

keyboard, television, screen, 

architecture, technology, 

classroom, working, desktop 

computer, residential, decoration, 

living room, seat, carpet, building, 

liquid crystal display, inside, 

home theater, corporate, device, 

personal computer, structure, 

theater, empty, domestic, 

contemporary, electronic 

equipment, elegance, relaxation, 

nobody, education, indoor, 

electronic device, glass, lifestyle, 

armchair, school, pillow, vase, 

render, sitting, place, laptop, relax, 

digital computer, furnishings, 

ceiling, chairs, reflection, couch, 

lighting, desktop, people, learning, 

alcove, fashion, network, 

bedroom, parquet, estate, space, 

lifestyles, style, success, smiling, 

pillows, life, residence, class, 

workplace, hand, bed, 

communication, pen, horizontal, 

training, executive, data, new, 

board, machine, family

Tag results of 

ParallelDots API

Room, Sport venue, Person, 

Machine, Clothing, Interior 

design, Physical fitness, Sports, 

Vehicle

Room, Person, Convention, Sport 

venue, Clothing, Classroom, 

Academic conference, Man, 

Interior design

Room, Sport venue, Person, 

Clothing, Machine, Interior 

design, Classroom, Furniture, 

Physical fitness

Room, Sport venue, Person, 

Interior design, Clothing, 

Machine, Furniture, Classroom, 

Physical fitness
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Table 3. The representative images of the other three contexts (including tag results) and USB camera.

Images

Contexts Personal study Room cleaning Nobody USB camera

Tag results by 

Microsoft Azure 

Computer Vision 

API

indoor, living, table, room, 

television, furniture, items, sitting, 

cluttered, filled, computer, desk, 

bed, fire, large, kitchen, several, 

screen, laptop, wooden, fireplace, 

standing, suitcase, refrigerator, 

white, luggage, bedroom

indoor, table, living, room, 

computer, desk, sitting, window, 

laptop, television, large, office, 

wooden, monitor, furniture, 

screen, keyboard, video, man, 

fireplace, game, fire, people, 

kitchen, white, playing, plate

indoor, table, room, desk, 

computer, living, monitor, sitting, 

small, cluttered, office, area, 

filled, food, laptop, furniture, 

wooden, keyboard, television, 

home, large, video, game, kitchen, 

screen, mouse, standing, desktop, 

white, fire, playing, remote, 

refrigerator, plate, man

Tag results by 

IBM Watson 

Visual 

Recognition API

workroom, indoors, office, 

building, workstation, digital 

computer, computer, machine, 

control room, microfiche, 

photographic film, photographic 

equipment, equipment, sage green 

color

control room, indoors, 

workstation, digital computer, 

computer, machine, television 

equipment, beauty salon, shop, 

retail store, building, control 

center, equipment, system, 

electronic equipment

control room, indoors, living 

room, television room, 

workstation, digital computer, 

computer, machine, office, 

building, electronic equipment, 

gray color

Tag results by 

Clarifai API

indoors, room, furniture, desk, 

table, technology, chair, trading 

floor, computer, business, 

production, seat, hospital, 

television, exhibition, industry, 

interior design, office, cabinet

room, furniture, indoors, table, 

seat, chair, desk, interior design, 

sofa, trading floor, computer, 

window, technology, office, 

contemporary, business, 

television, inside, hospital

indoors, room, furniture, trading 

floor, table, chair, desk, hospital, 

cabinet, window, home, seat, 

interior design, inside, business, 

production, exhibition, people, 

medicine

Tag results by 

Imagga REST 

API

furniture, room, interior, table, 

home, monitor, house, modern, 

decor, desk, office, lamp, floor, 

sofa, light, living, 3d, apartment, 

design, home theater, wood, chair, 

comfortable, luxury, indoors, 

inside, theater, center, wall, living 

room, window, carpet, pillow, 

building, decoration, architecture, 

computer, equipment, relax, 

television, residential, furnishings, 

vase, structure, rest, glass, seat, 

comfort, work, bedroom, lifestyle, 

relaxation, bed, reflection, 

electronic equipment, domestic, 

technology, couch, display, 

furnishing, estate, indoor, ceiling, 

entertainment center, mouse, 

render, business, fireplace, 

parquet, lighting, working, mirror, 

space, drawing room, spacious, 

chairs, residence, plant, 

illumination, objects, rendering, 

lifestyles, contemporary, elegance, 

family, niche, situation, pillows, 

cabinet, armchair, area, 

decorating, keyboard, shade, 

sitting, nobody, laptop, book, 

style, stylish, new, minimalism, 

blind, tables, cozy, corporate, 

empty, real, horizontal, fashion, 

device, leisure, screen

interior, room, table, furniture, 

office, modern, home, house, 

decor, lamp, light, sofa, design, 

indoors, floor, chair, desk, living, 

wood, 3d, center, apartment, 

comfortable, window, luxury, 

monitor, wall, inside, computer, 

architecture, glass, residential, 

home theater, building, seat, 

decoration, structure, living room, 

business, carpet, pillow, theater, 

relax, equipment, work, domestic, 

comfort, lifestyle, empty, chairs, 

vase, indoor, couch, lighting, 

furnishings, ceiling, relaxation, 

space, television, reflection, rest, 

style, classroom, elegance, 

working, lifestyles, technology, 

render, display, contemporary, 

fireplace, stylish, area, spacious, 

cozy, armchair, plant, keyboard, 

rendering, mirror, estate, 

corporate, mouse, desktop 

computer, nobody, drawing room, 

residence, illumination, 

furnishing, kitchen, fashion, 

situation, tables, parquet, urban, 

device, objects, screen, shade, bed, 

horizontal, personal computer, 

restaurant, broadcasting, laptop, 

family, electronic equipment, 

bedroom, life

table, furniture, interior, room, 

pool table, game equipment, 

equipment, home, house, modern, 

decor, lamp, wood, indoors, light, 

apartment, luxury, design, kitchen, 

furnishing, 3d, chair, floor, 

comfortable, inside, office, sofa, 

glass, living, residential, 

architecture, window, wall, 

decoration, indoor, domestic, 

render, chairs, living room, 

relaxation, seat, building, 

bedroom, comfort, relax, pillow, 

style, vase, lighting, nobody, bed, 

contemporary, rest, area, empty, 

carpet, lifestyle, steel, stove, 

mirror, dining, structure, 

refrigerator, furnishings, cabinet, 

ceiling, bowling pin, couch, tile, 

restaurant, clean, stylish, shelf, 

reflection, oven, sink, business, 

monitor, theater, center, desk, 

home theater, dinner, counter, 

device, elegance, parquet, fashion, 

new, tables, hotel, estate, 

lifestyles, brown, bowling 

equipment, wooden, blind, 

television, food, mansion, granite, 

real estate, residence, marble, 

illumination, health spa, 

expensive, decorate, real, 

computer, plant, lights, appliance, 

mouse, family, night

Tag results by 

ParallelDots API

Room, Interior design, Design, 

Machine, Person, Art, Furniture, 

Sport venue, Classroom

Room, Vehicle, Transport, Interior 

design, Machine, Sport venue, 

Furniture, Person, Public transport

Room, Vehicle, Interior design, 

Property, Transport, Building, 

Furniture, Public transport, Sport 

venue
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4.3. Results

Table 4 shows the accuracy results of each cognitive API-based model and three voting modules.
Among the five models, the Imagga API-based model was the best (0.9429), while the ParalleDots
API-based model scored the lowest (0.7718). These results can be used as reference values for model
performance comparison. As for the context-wise accuracy, the performances of the five models
were each different (see Table 4). For instance, let us compare the Watson API-based model and the
ParalleDots API-based model. The Watson model was bad at recognizing “General meeting” (0.6730),
compared to the ParalleDots model (0.8910). Interestingly, however, the Watson model was better at
recognizing “One-to-one meeting” (0.8040) than the ParalleDots model (0.4460).

Table 4. The accuracy results of each cognitive API-based model and three voting modules.

Model or Voting Names Overall Accuracy Dining Together General Meeting Nobody One-to-one Meeting Personal Study Play Games Room Cleaning

Azure API – model 0.8543 0.9550 0.8910 1.0000 0.6610 0.9170 0.8430 0.7650
Watson API – model 0.8000 0.8860 0.6730 0.8230 0.8040 0.9380 0.8040 0.7060
Clarifai API – model 0.9143 0.9090 0.9820 0.9110 0.8390 0.9170 0.9220 0.9220
Imagga API – model 0.9429 0.9550 0.9270 1.0000 0.8930 0.9580 0.9220 0.9610
ParalleDots API – model 0.7718 0.7950 0.8910 0.9330 0.4460 0.8750 0.6670 0.8040
Majority voting 0.9753 0.9565 1.0000 1.0000 1.0000 0.9561 1.0000 0.9572
Score voting 0.9776 1.0000 0.9685 1.0000 1.0000 0.9751 1.0000 0.9720
Range voting (0.5 to 0.6) 0.9833 1.0000 0.9836 1.0000 1.0000 0.9800 1.0000 1.0000

With regard to the overall accuracy with three voting modules, the majority voting achieved an
accuracy of 0.9753, the score voting achieved an accuracy of 0.9776, and the range voting achieved the
top accuracy of 0.9833 with the range 0.5 to 0.6. Regarding the context-wise accuracy with the majority
voting, these limitations of the individual models were mutually complemented. The recognition
accuracy of “Dining together” was 0.9565, “Personal study” was 0.9561, and “Room cleaning” was
0.9572, while the accuracy of “General meeting”, “Nobody”, “One-to-one meeting”, and “Play games”
were 1.0000. Regarding the context-wise accuracy with score voting, it further made up for the shortage
of simply obtaining the final result by the quantity. The recognition accuracy of “General meeting”
was 0.9685, “Personal study” was 0.9751, and “Room cleaning” was 0.9720, while the accuracy of
“Dining together”, “Nobody”, “One-to-one meeting”, and “Play games” were 1.0000. Regarding the
context-wise accuracy with the range voting, it excludes some low-score API results before voting,
which further promotes the improvement of the accuracy. The recognition accuracy of “General
meeting” was 0.9836 and of “Personal study” was 0.9800, while the accuracy of “Dining together”,
“Nobody”, “One-to-one meeting”, “Play games”, and “Room cleaning” were 1.0000. Figure 7 presents
the distribution of accuracy results using range voting within the range 0 to 0.9, and includes the
overall accuracy and the context-wise accuracy. We can see the top of the overall accuracy was 0.9833
when the lower limit was between 0.5 and 0.6. The entire accuracy of “Dining together” stabilized at
1.0000. However, the accuracy of “Play games” and “General meeting” were unstable, especially for
“Play games”, which had the lowest accuracy, 0.9608.
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Figure 7. The distribution of accuracy results using range voting within the range 0 to 0.9.

4.4. Discussion

In the proposed method, the recognition accuracy heavily depends on the quality of tags extracted
by the cognitive API. The reason why the ParalleDots-based model was bad at “One-to-one meeting”
(0.4460) was that (1) no distinctive word characterizing of the context was found, and (2) the number of
words in the tag sets was relatively small. The accuracy also depends on the nature of the context. We
found that contexts where people are dynamically moving (e.g., “Dining together”, “Room cleaning”)
were relatively difficult to recognize. In such contexts, observable features are frequently changed from
one image to another; for instance, positions of people, visible furniture and background. Therefore,
the API may produce variable tag sets for the same context, which decreases the internal cohesion of
the feature vectors.

Including majority voting was a great solution to improve the accuracy. In the typical ensemble
learning, the individual classifiers should be weak to avoid overfitting. This is because the classifiers
use the same features for the training. in our case, we extract different features by different APIs. Since
the individual models are trained by different features, it does not cause the overfitting problem. It was
seen from the results of naive majority voting that the accuracy of “Dining together”, “Personal study”,
and “Room cleaning” were not perfect. The reason is that some situations of the majority results of an
image were wrong. The recognition accuracy of “Personal study” and “Room cleaning” improved
significantly using score voting. However, there was greater instability in the contexts with multiple
people (e.g., “Dining together”, “General meeting”) compared with the results of majority voting. On
adjusting the lower limit of scored class probabilities to between 0 and 0.9, there was instability in the
accuracy of “Play games” and “General meeting” but not for “Dining together”. One of the reasons for
this is that the context richness of “Dining together” was prominent compared to others. This means
the output tags of “Dining together” were many, whether by the total or the semantic (see Table 2).
The other reason is there were some difficulties in recognizing the contexts with no big change in the
number of persons and objects (e.g., “Play games”, “General meeting”). With regard to the top of the
overall accuracy, 0.9833, by range voting with the range 0.5 to 0.6, it means that some situations in
the majority results of an image were wrong when the scored class probabilities were less than 0.5 or
above 0.6.

5. Conclusions

In this paper, a method that integrated models based on multiple cognitive APIs and four
presented modules for improving the recognition accuracy is proposed. From experimental evaluation,
the difference in API-based models’ performance is compared, confirming the advantage that the
recognition accuracy is improved by the proposed method.
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The image recognition method is different from one API to another. By constructing multiple
classifiers with different perspectives, taking majority voting derives the context with a maximum
likelihood for the same image. However, there are also some images with recognition difficulty;
hence, the case of the false results being output by the majority APIs. Using score voting, we could
reduce false results determined by only the number of outputs within the same context to some extent.
Furthermore, by setting the different range of lower limits, we deeply understood the recognition
difficulty for each context by finding the range with the highest accuracy. This is of great significance
for improving the proposed method in our future study. As to the topic of fine-grained home context
recognition for general households, this paper has some points that need to be improved. While the
different cognitive APIs were used for building models and performance evaluation, the different
experimental spaces have not yet been used. Moreover, to build the model of context recognition in
future different households, how to select the representative data of context more scientifically is still a
task directly related to recognition accuracy. These are the directions of our future work. In addition,
to achieve effective application, it is necessary to consider both the retrieval of more features from the
data, and the development of various algorithms. Therefore, investigating more ways to use cloud
resources to retrieve feature values of local images will also be a topic of future work.
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