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Abstract: The problem of obtaining high range resolution (HRR) profiles for non-cooperative target
recognition by coherently combining data from narrowband radars was investigated using sparse
reconstruction techniques. If the radars concerned operate within different frequency bands, then this
process increases the overall effective bandwidth and consequently enhances resolution. The case of
unknown range offsets occurring between the radars’ range profiles due to incorrect temporal and
spatial synchronisation between the radars was considered, and the use of both pruned orthogonal
matching pursuit and refined l1-norm regularisation solvers was explored to estimate the offsets
between the radars’ channels so as to attain the necessary coherence for combining their data.
The proposed techniques were demonstrated and compared using simulated radar data.

Keywords: radar signal processing techniques; radar imaging; multiband processing; compressive
sensing; sparse reconstruction; bandwidth stitching

1. Introduction

The construction of high range resolution profiles (HRRP) of targets is a precursor to feature
extraction for automatic target recognition (ATR), and normally requires the employment of a
high-bandwidth waveform following detection by a lower resolution radar mode. Examples of recent
papers in the non-cooperative target recognition (NCTR) literature focusing on feature extraction for
ATR following HRRP construction are [1–3]. This paper considers the problem of HRRP construction,
but using low resolution radars operating in different frequency bands for the purpose of combining
their signals to achieve a higher resolution, and examines the problem of their data not being
mutually coherent.

The ability to acquire high resolution range profiles of targets has improved over time as hardware
capability has developed, with higher resolution being achieved by increasing the time-bandwidth
product. In the early approaches, for narrowband radars with very limited instantaneous bandwidth,
stepped-frequency waveforms were used with a single I,Q (that is, baseband quadrature) signal sample
received after each frequency step. The set of samples is effectively used for the Fourier transform of
the slant range profile, enabling the range response to be obtained simply by implementing an inverse
Fourier transform (see, e.g., [4]). The greater the frequency range, the higher the range resolution,
but the downside is that the burst of pulses can be so long that a scatterer may migrate between range
cells, causing smearing of the range profile, and therefore requiring range compensation. An example
of a recent paper involving the use of stepped-frequency waveforms is [5], and recent papers which
have investigated the effects of target motion and aspect sensitivity are [6,7].
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An advance on the stepped-frequency approach is to increase the time-bandwidth product using
stretch processing, whereby a wideband LFM waveform is transmitted, and pulse-compression is
achieved in hardware by mixing the received signal with an extended replica of the transmitted
waveform. A point target at a particular range will manifest itself as a single frequency which
is proportional to its range. The result, which is digitally sampled in time in order to facilitate
the identification of the frequency components, is therefore a superposition of discrete frequencies,
each corresponding to a point target at a different range. An application of the inverse Fourier
transform again recovers the range profile (see, e.g., [4,8,9]).

A spectral analysis technique to improve range resolution was proposed in [10,11] based on
autoregressive linear prediction. The main idea is to combine the mutually coherent signals received
from multiple waveforms transmitted sequentially or concurrently, which have widely separate carrier
frequencies or may even occupy entirely different frequency bands. Viewed in the spectral domain,
the received signals from individual waveforms may be seen to occupy discrete wavebands which are
separate or contiguous. If contiguous, then they can potentially be coherently combined to synthesise
the signals that would have been received from a single wider bandwidth waveform in the manner
presented in [12]. If separate, then presumably this coherent combination of signals would still be
feasible, as would be the interpolation of the frequency response in the gaps between the bands
under the a priori assumption that the signals are returned from discrete scatterers using spectral
estimation techniques (see, e.g., [13]). Alternatively, the signals from different frequency bands can
be jointly processed without explicitly filling the gaps between the bands. Since no new synthetic
frequency band is actually constructed, this approach can be referred to as bandwidth stitching to
distinguish it from bandwidth interpolation and extrapolation. The main challenge of this approach
lies in the presence of phase errors in different frequency bands resulting from post-processed motion
compensation which is often carried out separately for each frequency band. In this paper, we focus
on the problem of bandwidth stitching for radar high-resolution range profiling and explore the use of
sparse reconstruction to deal with the phase error problem.

It is convenient to formulate these ideas in the spectral domain, within which point scatterers
appear as discrete sinusoids and which are amenable to analysis by spectral estimation techniques
such as autoregression, as presented in [10,11]. Compressive sensing and sparse reconstruction,
however, provide for the possibility of alternative signal representations, potentially allowing for
greater flexibility and discriminating between signals of physical origin and receiver noise [13–20].
Instances of non-sinusoidal signals are waveforms in fast-time and signals returned from rotating
objects when the angle of rotation is large. Compressive sensing and sparse reconstruction can also
handle the situation corresponding to data being non-uniformly sampled in time or space, such as
non-uniform PRF (pulse repetition frequency) waveforms and random sparse arrays.

Compressive sensing and sparse reconstruction were exploited in [17,19,21,22] to address the
problem of gaps in the data both in slow-time and in frequency for inverse synthetic aperture radar
(ISAR) imaging. However, these works assumed that the data were coherent across different sub-bands
and that there were no model uncertainties. The work [23] took account of the possible lack of mutual
coherence between the radars operating on the different sub-bands arising from incorrect timing
synchronisation, or, equivalently, errors in antenna phase’s centre-relative locations. This is achieved
by fitting an ultra-wideband all-pole signal model to the mutually-coherent sub-bands, which is then
used for bandwidth interpolation and extrapolation prior to recovering the range profile by means
of an inverse Fourier transform. This paper, however, proposes the use of compressive sensing and
sparse reconstruction to deal with the non-coherence problem between different sub-bands.

To address the sub-band non-coherence problem, two different approaches were explored:
(i) greedy pursuit and (ii) l1-norm regularisation. In the first approach, pruned orthogonal matching
pursuit (POMP) [24], which was originally developed for micro-Doppler parameter estimation,
is adopted to deal with the dictionary mismatch which is due to the phase errors in each sub-band
resulting from the motion-compensation post processing. The main idea is to parameterise the
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dictionary as a function of the phase errors and to construct multiple realisations of the dictionary.
A selective learning process is then used to discard the dictionaries which correspond to incorrect
values of phase errors. Since a straight application of the POMP algorithm to the problem under
consideration would have been computationally expensive, we first applied the POMP algorithm
pairwise to sub-bands in order to estimate the phase errors, and then utilised the conventional
OMP algorithm to determine the range profile based on the estimated phase error values. In the
second approach, an l1-norm regularisation problem can be solved jointly both for the range profile
vector and the phase errors [25]. The work [25] offers two solutions for joint synthetic aperture
radar (SAR) imaging and phase error correction. The first solution is not applicable to the problem
under consideration because a constant phase error in each sub-band is assumed. On the other hand,
the second solution considers general arbitrary phase errors, and thus can be applied to our problem.
Since the phase errors within each sub-band are a linear function of the range error coming from
post-processing motion compensation, we also present refined variants of the second solution of [25]
to take into account this underlying structure of the phase error.

The paper is organised as follows. Section 2 formulates the problem of bandwidth stitching for
HRRP in the presence of phase errors. The POMP algorithm is applied in Section 3 to the bandwidth
stitching problem under consideration. Section 4 presents l1-norm regularisation solvers. Numerical
performance comparisons are provided in Section 5 and conclusions are drawn in Section 6.

2. Problem Formulation

Consider a multistatic radar system consisting of M radar channels on different and distinct
frequency sub-bands, approximately co-located, and illuminating a common target, such that their
radar lines of sight (LoS) coincide but their range profiles are out of alignment. Each channel can
individually produce a one dimensional range profile of the target, but with relatively coarse resolution.
The bandwidth stitching problem can be briefly stated as follows: for the M generally non-coherent
channels, the aim is to coherently combine, or “stitch,“ the channels together so that they can effectively
produce a single range profile with resolution corresponding to the combined overall signal bandwidth.

Let fm,n (n = 1, . . . , Nm) denote the nth frequency bin of the mth channel (m = 1, . . . , M).
Here, Nm is the number of frequency bins in the mth channel. We base the formulation on the
point-scatterer model and assume that the target can be defined as consisting of K scattering
centres at local line-of-sight coordinates xk (or local “down ranges”) and having complex-valued
reflectivity coefficients αk, which are also assumed frequency-independent. The down-converted,
pulse-compressed, motion-compensated signals received in each channel, in the frequency domain,
can be written as

Sm = [. . . , Sm,n, . . . ]Tn=1,...,Nm
, (1)

where superscript T denotes the transpose operation, and

Sm,n = |A( fm,n)|2 exp
{
−4π j fm,n

c
∆Rm

} K

∑
k=1

αk exp
{
−4π j fm,n

c
xk

}
. (2)

Here, A( fn,m) represents the transmit radar waveform, the squared amplitude resulting from pulse
compression processing; constant c denotes the speed of light; and ∆Rm accounts for the range errors
in the motion-compensation processing. Bandwidth stitching in this context amounts to estimating
these phase errors as accurately as possible.

The signals Sm in (1) can be rewritten in a more compact form as

Sm = ΛmF†
mα†, (3)

where



Sensors 2020, 20, 665 4 of 20

Λm = diag
{

. . . , exp
{
−4π j fm,n

c
∆Rm

}
, . . .

}
n=1,...,Nm

(4)

F†
m = [. . . , Fm,k, . . . ]k=1,...,K (5)

F†
m,k =

[
. . . , exp

{
−4π j fm,n

c
xk

}
, . . .

]T

n=1,...,Nm

(6)

α† = [. . . , αk, . . . ]Tk=1,...,K (7)

Here, “diag” denotes a diagonal matrix; Λm is referred to as the phase error matrix, of dimension
Nm×Nm; F†

m and α† are respectively, dimensions Nm×K and K× 1; Sm is a column vector of dimension
Nm × 1; and the dagger symbol † refers to the K actual scatterers on the target.

To apply the sparse representation techniques of compressive sensing, we discretise the target’s
local range coordinate x using a regularly-spaced range grid {xl} for l = 1, . . . , Lx, with Lx � K,
and construct the Nm × Lx dictionary matrices

Fm = [. . . , Fm,l , . . . ]l=1,...,Lx , (8)

where

Fm,l =

[
. . . , exp

{
−4π j fm,n

c
xl

}
, . . .

]T

n=1,...,Nm

(9)

Are the “atoms” of dictionary Fm in the frequency domain. The corresponding range profile vector

α = [. . . , αl , . . . ]Tl=1,...,Lx
(10)

Spans over the range grid {xl}. The received signal Sm can also be written as

Sm = ΛmFmα. (11)

Since the target usually contains only a small number of dominant scattering centres relative to
the total number of range resolution cells, the range profile α can be considered sparse (i.e., containing
a small number of non-zero elements).

In the presence of unknown noise, (11) becomes

S̃m = ΛmFmα + nm. (12)

where nm is the additive noise for channel m. Stacking up the individual channel signals S̃m, m =

1, . . . , M, gives
S̃ = ΛFα + n, (13)

where

S̃ = [. . . , S̃T
m, . . . ]Tm=1,...,M (14)

Λ = diag{. . . , Λm, . . . }m=1,...,M (15)

F = [. . . , FT
m , . . . ]Tm=1,...,M (16)

n = [. . . , nT
m, . . . ]Tm=1,...,M. (17)

Note that S̃ and n are column vectors of size (∑m Nm)× 1; diagonal phase error matrix Λ is of size
(∑m Nm)× (∑m Nm); dictionary matrix F is (∑m Nm)× Lx; and the range profile α is again a column
vector of size Lx × 1. Stacking the received signals amounts to a vertical stacking of the dictionary
matrices from all channels and a diagonal concatenation of the corresponding phase error matrices.
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The stacking of multiple channels in this manner can improve the estimation accuracy for α, as will be
demonstrated later in the paper.

A problem statement can thus be expressed as follows: given S̃ as the measured signal,

find α and Λ, subject to

{
S̃ ≈ ΛFα,
α is sparse

. (18)

The estimation of α over {xl} is the process of range profiling, giving the main desired output,
whereas the estimation of the phase error matrix Λ is really only a necessary intermediate result; it is a
function of ∆R1, ∆R2, . . . , and ∆RM (recall that ∆Rm is the range estimation error resulting from the
motion-compensation process for channel m). Furthermore, since these errors arise from a lack of
precise knowledge of the relative locations of the radar channels’ phase centres and are small relative
to a range resolution cell, we may assume, without loss of generality, that ∆R1 = 0.

3. Greedy Pursuit Solutions

In this section, we adopt the pruned OMP (POMP) technique, which was originally proposed for
micro-Doppler parameter estimation, [24], for the problem of bandwidth stitching for range profiling.
We start with the simplest case of two channels and then generalise it to the multiple channel case.

3.1. The Two-Channel Case

For this case, the signal model in (13) can be expressed as

S̃ = Λ(∆R2)Fα + n, (19)

where Λ(∆R2) is a function of the single unknown relative range error ∆R2,

Λ(∆R2) = diag{IN1 , Λ2(∆R2)}, (20)

with

Λ2(∆R2) = diag
{

. . . , exp
{
−4π j f2,n

c
∆R2

}
, . . .

}
n=1,...,N2

. (21)

In addition to the sparse range profile vector α, ∆R2 is the only additional unknown parameter to
be estimated. Let us rewrite (19) as

S̃ = Φ(∆R2) α + n (22)

where
Φ(∆R2) = Λ(∆R2) F.

In this form, the problem can be viewed as a joint sparse reconstruction and parameter estimation
problem with the parametric dictionary Φ(∆R2) itself a function of the parameter ∆R2. This can be
considered as a special dictionary learning problem where the objective is to solve simultaneously for
both the sparse solution of α and the range error ∆R2.

To solve this problem, we adopt the POMP technique [24], which embeds a pruning operation
into the iterative process of OMP. The main idea of POMP is to construct multiple realisations of the
dictionary Φ based on a number L∆ of candidate values of ∆R2; the OMP algorithm is applied to each
dictionary realisation to find the atom which correlates most strongly with the current residual for
that dictionary, and to recompute the residual with that atom’s contribution to the residual removed.
To overcome possible excessive computations arising from outlier candidate values of ∆R2, a pruning
operation is performed to exclude the half of the dictionaries which yield the largest residual errors,
until a single dictionary realisation remains. The OMP iterations for the remaining dictionary are
continued until a termination criterion is satisfied. The candidate value of ∆R2 corresponding to this
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dictionary gives the final estimate of ∆R2. The basic POMP algorithm is summarised in Table 1 and its
computational cost is shown in Appendix C to be of the order of L∆NmLx.

Table 1. The pruned orthogonal matching pursuit (POMP) algorithm (M = 2).

INPUT:
• Noisy signal data vector S̃
• Candidate dictionaries Φ1, Φ2, . . . , ΦL∆ , corresponding to L∆ candidate values of ∆R2

PROCEDURE:
• Initialization:

- set the initial indexes of active dictionaries to Θ1 = {1, . . . , L∆};
- set the corresponding residual vectors to r1 = · · · = rL∆ = S̃;
- set the initial support Λ to ∅, the null set;

• for i = 1; i := i + 1 until |Θi| == 1 (the cardinality of Θi) and |rl | < ε for l ∈ Θi,
for every l ∈ Θi, perform OMP as follows

- Identify:
cl = ΦH

l rl
jl = arg maxj

∣∣cj
∣∣

- Merge supports:
Λl = Λl ∪ jl

- Update∗:
α̂l,Λl

=
(

ΦH
l,Λl

Φl,Λl

)−1
ΦH

l,Λl
S̃

rl = S̃−Φl,Λl
α̂l,Λl

end for

if |Θi| > 1

Remove indices of d|Θi|/2e candidate dictionaries that correspond to d|Θi|/2e largest
residual errors from |Θi|

end if

end for

OUTPUT:
• The range profile estimate α̂l? ,Λl?

where l? is the last remaining element of Θi
• The estimate of ∆R2 is the value of ∆R2 corresponding to Φl?

∗ Φl,Λl
consists of the columns of Φl with indices belonging to Λl and α̂Λl consists of the elements of

α̂l with indices belonging to Λl .

3.2. The Multi-Channel Case

For this case, the noisy signal model (19) becomes

S̃ = Φ(∆R2, . . . , ∆RM)α + n (23)

where
Φ(∆R2, . . . , ∆RM) = diag{IN1 , Λ2(∆R2), . . . , ΛM(∆RM)} F. (24)

Here, the dictionary matrix is a function of the (M− 1) unknowns ∆R2, ∆R3, . . . and ∆RM.
The POMP algorithm could be extended to multiple channels by computing candidate dictionaries

based on a multi-dimensional grid of candidate values for ∆R2, ∆R3, . . . , and ∆RM. The grid would
consist of a total of (M− 1) dimensions, where the mth dimension corresponds to the unknown range
error ∆Rm+1 of the (m + 1) channel. Note that only a one-dimensional grid for ∆R2 is required for the
case of two channels. However, the cardinality of the dictionary set is exponentially dependent on
the number of available channels; i.e., V(M−1), where V denotes the number of grid points in each
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parameter dimension. As a result, although this extension would be simple and straightforward, it is
computationally expensive.

To alleviate this computational burden, we instead apply the POMP algorithm pairwise to
channels in order to estimate the range errors ∆R2, . . . , ∆RM relative to the first channel, and then
utilise the conventional OMP algorithm to determine the range profile vector α based on these estimated
values of ∆R2, . . . , ∆RM. The procedure is summarised as below:

STEP 1: Estimation of range errors.
• For each pair between the 1st and mth channel, m ∈ {2, . . . , M}:

- Calculate input signal:

S̃1m = [S̃T
1 , S̃T

m]
T (25a)

F1m = [FT
1 , FT

m ]T . (25b)

- Construct candidate dictionaries based on a grid of L candidate values of ∆R(l)
m (l = 1, . . . , L):

Φ1m,l = diag{IN1 , Λm(∆R(l)
m )}F1m. (25c)

- Perform POMP given S̃1m and Φ1m,1, . . . , Φ1m,L to obtain an estimate of ∆Rm (denoted as
∆̂Rm).

End for.

STEP 2: Estimation of range profile vector.
• Compute signal and dictionary.

S̃ = [. . . , S̃T
m, . . . ]Tm=1,...,M (26)

F = [. . . , FT
m , . . . ]Tm=1,...,M (27)

Λ = diag{. . . , Λm(∆̂Rm), . . . }m=1,...,M (28)

Φ = ΛF. (29)

• Estimate α using OMP given S̃ and Φ.

The computational cost of the general POMP algorithm is shown in Appendix C to be of the order
of (M− 1)L∆NmLx.

4. L1-Norm Regularisation Approach

The sparse reconstruction problem (18) can be solved via the following l1 regularised optimisation:

min
α,Λ

{
‖S−ΛFα‖2

2 + µ‖α‖1

}
, (30)

where µ is a regularisation parameter. It should be emphasized that this is not a conventional l1
regularisation formulation because of the unknown phase error matrix Λ resulting from the estimation
error of the motion-compensation phase. Therefore, Λ must be jointly estimated with α:

{α̂, Λ̂} = arg min
α,Λ

{
‖S−ΛFα‖2

2 + µ‖α‖1

}
. (31)

Two solutions for this joint estimation problem were presented in [25]. The first solution assumes
that the phase error matrix for the mth sub-band is modelled as

Λm = exp{jφm} INm×Nm . (32)
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In other words, the phase errors for different frequency bins of a particular sub-band are identical.
However, this assumption is invalid in the problem under consideration because the phase error is
a function of frequency and thus has different values for different frequency bins. Therefore, that
solution is not applicable in this case. The second solution considers a general phase error matrix

Λm = diag{. . . , exp{jφm,n}, . . . }n=1,...,Nm (33)

where the phase errors φm,n can be arbitrary. Although this solution can be used, it does not exploit the
underlying structure of the phase errors; i.e., φm,n = − 4π fm,n

c ∆Rm. In what follows, we will also present
other refined versions, building on the second solution of [25], while exploiting prior knowledge of the
structure of the phase error.

The l1 norm can be approximated as [26–29]:

‖α‖1 ≈
L

∑
l=1

(
|αl |2 + δ

)1/2
(34)

In order to overcome the nondifferentiably of the l1 norm at the origin. Here, δ is a small
non-negative parameter. Using this approximation, the minimisation problem in (31) becomes

{α̂, Λ̂} = arg min
α,Λ

{
‖S−ΛFα‖2

2 + λ
L

∑
l=1

(
|αl |2 + δ

)1/2
}

. (35)

The solution of (35) tends to the solution of (31) as δ approaches zero. Therefore, a small value
of δ should be used to ensure the validity of this approximation. The quasi-Newton approach can be
adopted to solve the modified l1 regularised optimisation (35), as below.

The gradient of the objective function of (35) is given by

∇(α) = H(α)α− 2 FHΛHS, (36)

where the superscript H denotes the Hermitian transpose operation. Here, H is the Hessian matrix
given by

H(α) = 2 FHΛHΛF + λW(α) = 2FH F + λW(α), (37)

where

W(α) = diag
{

. . . ,
(
|αl |2 + δ

)−1/2
, . . .

}
. (38)

Since the Hessian matrix is a function of the unknown α, the minimisation (35) is solved iteratively.
Given the estimates α̂(i) and Λ̂(i) from a previous iteration i, the new solutions at iteration i + 1 are
obtained in the following two steps.

1. Calculate α̂(i + 1) by setting ∇(α) = 0 given H(α̂(i)) and Λ̂(i):

α̂(i + 1) = 2 (H(α̂(i)))−1FH(Λ̂(i))HS

=

(
FH F +

1
2

λW(α̂(i))
)−1

FH(Λ̂(i))HS.
(39)

2. Calculate Λ̂(i + 1) given α̂(i + 1). The phase error matrix Λ̂(i + 1) is obtained by solving:

Λ̂(i + 1) = arg min
Λ

‖S−ΛFα̂(i + 1)‖2
2 (40)

or equivalently
Λ̂m(i + 1) = arg min

Λm

‖Sm −ΛmFmα̂(i + 1)‖2
2 (41)



Sensors 2020, 20, 665 9 of 20

for m = 2, . . . , M. Note that Λ1 = IN1 (since ∆R1 = 0); thus, no estimation is required for Λ1.

The algorithm may be halted when the objective function falls below a threshold, or when a
maximum number of iterations is reached, or when the relative change in the objective function falls
below a threshold.

Various methods for calculating the phase error matrix Λ̂(i + 1) in Step 2 are given in the
following sections.

4.1. Unstructured Approach

Ignoring the underlying structure of the phase errors, i.e., φm,n = − 4π fm,n
c ∆Rm, Λ̂m can be

considered as a diagonal matrix with arbitrary elements φm,n:

Λm = diag{. . . , exp{jφm,n}, . . . }n=1,...,Nm . (42)

Therefore, φm,n can be estimated as [25]

φ̂m,n(i + 1) = tan−1 ={Sm,nŶ∗m,n(i + 1)}
<{Sm,nŶ∗m,n(i + 1)}

(43)

where ={·} and <{·} denote operations to extract the imaginary and real parts of a complex number,
and tan−1 stands for a four-quadrant arctangent operation. Here, Ŷm,n(i + 1) is the nth element of
Ŷm(i + 1) which is defined as Ŷm(i + 1) = Fmα̂(i + 1). As a result, we obtain:

Λ̂m(i + 1) = diag{. . . , exp{jφ̂m,n(i + 1)}, . . . }n=1,...,Nm . (44)

4.2. Gauss–Newton Approach

Taking into account the underlying structure of the phase errors, Λm(∆Rm) is a function of ∆Rm,
and the minimisation (41) can be re-expressed as

∆̂Rm(i + 1) = arg min
∆Rm

‖Sm −Λm(∆Rm)Fmα̂(i + 1)‖2
2. (45)

By letting em = Sm −Λm(∆Rm)Fmα̂(i + 1), we have

em = [. . . , em,n, . . . ]Tn=1,...,Nm
(46)

where

em,n = Sm,n −Um,n exp
{
−4π j fm,n

c
∆Rm

} L

∑
l=1

α̂l(i + 1) exp
{
−4π j fm,n

c
xl

}
(47)

and
Um,n = exp{jφm,n}. (48)

Here α̂l(i + 1) is the lth element of α̂(i + 1). As we are estimating real quantities, it is more
convenient to reformulate the problem as the minimisation of a real function in order to apply the
Gauss–Newton. The details of the Gauss–Newton algorithm for updating ∆̂Rm(i + 1) are given in
Appendix A.

Using ∆̂Rm(i + 1), we obtain the phase error matrix as

Λ̂m(i + 1) = diag

{
. . . , exp

{
−4π j∆̂Rm(i + 1)

c
fm,n

}
, . . .

}
n=1,...,Nm

. (49)
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4.3. Linear Regression-Based Approach

By noting that φm,n = − 4π∆Rm
c fm,n, the gradient − 4π∆Rm

c can be calculated via a linear least
squares estimator using φ̂m,n obtained from (43) [30]. Specifically, we have[

−4π∆̂Rm(i + 1)
c

, φ̂†
m(i + 1)

]T

= (AT
m Am)

−1 AT
mbm(i + 1) (50)

where

Am = [. . . , Am,n, . . . ]Tn=1,...,Nm
, with Am,n = [ fm,n, 1] (51a)

bm(i + 1) = [. . . , φ̂
unwrapped
m,n (i + 1), . . . ]Tn=1,...,Nm

. (51b)

Note that φ̂
unwrapped
m,n (i + 1) is the unwrapped version of φ̂m,n(i + 1) and φ̂†

m(i + 1) is an estimate
for the initial phase φ†

m(i + 1) which results from the unwrapping process. From (50), ∆̂Rm(i + 1) is
obtained and can then be used for computing Λ̂m(i + 1) as in (49).

4.4. Differenced-Phase-Based Approach

Subtracting the estimated phase errors of two successive frequency bins, we obtain:

− 4π( fm,n+1 − fm,n)

c
∆Rm = φm,n+1 − φm,n. (52)

Therefore, ∆Rm can be estimated as [30]

∆̂Rm(i + 1) = − c
4∆ fm(Nm − 1)

Nm−1

∑
n=1

∆φm,n(i + 1) (53)

where

∆φm,n(i + 1) = tan−1 sin(φ̂m,n+1(i + 1)− φ̂m,n(i + 1))
cos(φ̂m,n+1(i + 1)− φ̂m,n(i + 1))

. (54)

Note that the four-quadrant arctangent has been used here to handle the phase wrapping.
An estimate of the phase error matrix Λ̂m(i + 1) is now obtained as in (49) using ∆̂Rm(i + 1) in (53).

5. Simulation and Discussion

Numerical simulations are presented in this section to evaluate the performance of the methods
described in previous sections.

5.1. Scenario 1: Two Sub-Bands

We consider a synthetic scenario with two sub-bands at carrier frequencies of f1 = 6 GHz and
f2 = 8 GHz, each having a bandwidth of B = 300 MHz and 64 frequency steps (i.e., N = N1 = N2 =

64). The range profile is discretised over a grid with a length of (N − 1)c/(2B) = 31.5 m and a grid
step of ∆Grid = c/(10B) = 0.1 m. We consider a far-field target consisting of six point scatterers which
are aligned with the grid. Figure 1 plots the true range profile of the target. We set ∆R2 = 2.78∆Grid for
the case of existing phase errors. The signal-to-noise ratio is set to 10 dB.

Figure 2 compares the reconstructed range profiles obtained by the conventional OMP algorithm
without and with the presence of phase errors. The OMP is terminated when the signal residual
reaches the noise level or after 15 iterations have been carried out. We observe that OMP successfully
reconstructs the range profile of the target by correctly identifying the scatterers of the target with
accurate range and coefficient estimates when no phase errors exist. However, OMP provides
unsatisfactory results in the presence of phase errors, where the reconstructed image is observed
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as exhibiting many spurious scatterers. Similar observations are obtained for the results obtained by
the conventional l1-norm regularised optimisation solver (without phase error correction), as shown
in Figure 3. Here, we set δ = 10−5 and λ = 0.001 max |cl | where cl is the lth element of c = FH S̃.
The l1-norm regularised optimisation solver is stopped if the relative change in the l2-norm of the range
profile vector α falls below 10−5 or after it reaches 500 iterations. The performance degradation of
these conventional sparse reconstruction techniques is not unexpected, since they were not originally
developed to cope with dictionary mismatch arising from the presence of the phase errors.
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Figure 1. True range profile of synthetic target under consideration.
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(a) Without the presence of phase errors.
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(b) With the presence of phase errors.

Figure 2. Performance of conventional OMP.
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(a) Without the presence of phase errors.
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(b) With the presence of phase errors.

Figure 3. Performance of conventional l1-norm regularised optimisation solver.

Figure 4 shows the reconstructed range profile obtained by the POMP. POMP constructs candidate
dictionaries based on a grid of ∆R2 with a grid step size of ∆Grid/100. The same stopping criteria of
OMP is used for POMP. We observe that POMP produces a range profile which is almost identical to
the ground truth, thereby demonstrating the effectiveness of POMP in terms of dealing with the phase
errors between different sub-bands.
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Figure 4. Performance of POMP in the presence of phase errors.

Figure 5 shows the results obtained by different l1-norm regularised optimisation solvers with
phase error correction, as presented in Section 4. The same parameters and stopping criteria of the
conventional l1-norm regularised optimisation solver as described above are used in the simulations.
Although these algorithms exhibit some improvements over the conventional l1-norm regularisation
(i.e., without phase error correction), they provide poorer results compared to that of POMP. Specifically,
the peaks of the reconstructed range profiles obtained by these algorithms only appear close to but not
exactly at the true scatterer positions. In addition, the magnitudes of the peaks are much smaller than
the ground truth values.
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(b) With structured GN-based error correction
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(c) With structured LR-based error correction
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Figure 5. Performance of l1-norm regularised optimisation solver with phase error correction.

The inferior performances of these algorithms can be explained by noting that the l1-norm
regularised optimisation in (31) is a nonconvex problem due to the phase error matrix Λ. Figure 6 plots
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the objective function of (31) as a function of ∆R2 assuming that α is perfectly known. We observe
that this objective function has many local maxima and minima, confirming the non-convexity of the
l1-norm regularised optimisation in (31). The reason for this non-convexity is explained in Appendix B.
Due to this nonconvexity, the iterative solvers presented in Section 4 are prone to converge to local
minima; thus, limiting the effectiveness of this approach.
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Figure 6. Illustration of the nonconvexity of the l1-norm regularised optimisation problem (31).
The objective function of (31) is plotted against ∆R2 assuming that α is perfectly known.

The performance of the OMP, POMP, and l1-norm regularised optimisation methods are now
compared using the earth mover’s distance (EMD) between the true and reconstructed range profiles.
EMD [31] is a metric estimating the distance between two distributions or equivalently the minimal
amount of work required to transform one distribution to the other. Figures 7 and 8 show the
EMD performance of the OMP, POMP, and l1-norm regularised optimisation methods, averaged
over 100 Monte Carlo runs, versus different levels of SNR (signal-to-noise ratio) and phase error,
respectively. It is observed that the POMP method yields the smallest EMD values amongst all
algorithms considered. Since a smaller value of EMD corresponds to a higher level of similarity
between the true and reconstructed range profiles, this observation indicates that the reconstructed
range profile obtained by POMP is closer to the ground-truth range profiles than those obtained from
the OMP and l1-norm regularised optimisation methods. This verifies the performance advantage of
the POMP method from a statistical point of view.
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Figure 7. Earth mover’s distance (EMD) performance of the OMP, POMP, and l1-norm regularised
optimisation methods versus various of SNRs (∆R2 = 2.78∆Grid).
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Figure 8. EMD performance of the OMP, POMP, and l1-norm regularised optimisation methods versus
various levels of phase error (SNR = 10 dB).

5.2. Scenario 2: Four Sub-Bands

We now consider another scenario with four sub-bands at carrier frequencies of f1 = 6 GHz,
f2 = 8 GHz, f3 = 10 GHz, and f4 = 12 GHz, each having a bandwidth of B = 300 MHz and
64 frequency steps (i.e., N = N1 = N2 = N3 = N4 = 64). The range errors are set to ∆R2 = 2.78∆Grid,
∆R3 = 1.33∆Grid, and ∆R4 = 3.69∆Grid. Other simulation parameters and the true range profile of the
target remain unchanged as in the previous simulation example.

Figure 9 compares the reconstructed range profiles obtained by the conventional OMP algorithm
and the POMP algorithm presented in Section 3.2. OMP results in an unsatisfactorily reconstructed
range profile with many spurious peaks, as expected, because it ignores the phase errors between
different sub-bands. In contrast, the POMP is capable of reconstructing the true range profile with a high
accuracy thanks to the use of dictionary learning with a pruning process. Note that, given the inferior
performance of the l1-norm regularised optimisation approach compared to POMP, as demonstrated in
the previous simulation scenario, this approach is excluded from the comparison here.
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(a) Range profile reconstructed by OMP
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(b) Range profile reconstructed by POMP

Figure 9. Performance comparison between OMP and POMP for Simulation Scenario 2 (with four
sub-bands).
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6. Conclusions

This paper explores the use of the POMP algorithm and l1-norm regularisation solvers for the
problem of sparsity-driven HRRP with bandwidth stitching in the presence of phase errors. We observe
that the l1-norm regularisation solvers do not provide significant performance improvement over
the conventional sparse reconstruction algorithms due to the nonconvexity of l1-norm regularised
optimisation when phase errors exists. In contrast, POMP is observed to be capable of effectively
dealing with the phase errors and thus be able to reconstruct the range profile of the target with high
accuracy. Simulation results show a significant performance improvement by POMP over OMP and
the conventional and refined l1-norm regularisation. In future work, we propose using experimental
data for a more general scenario where the true scatterers constituting the target are located in off-grid
positions with respect to the dictionary grid, and the true range errors have off-grid values. We shall
also consider the more general case of frequency-dependence of scatterer RCS (radar cross-section).
A potential approach for this is to exploit the framework of spectral compressive sensing [32,33].
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Appendix A. Derivation of Gauss–Newton Algorithm for Estimation of ∆̂ Rm(i + 1)

We rewrite em,n as

em,n = Sm,n − exp
{
−4π j fm,n

c
∆Rm

}
Zm,n (A1)

with

Zm,n = Um,n

L

∑
l=1

α̂l(i + 1) exp
{
−4π j fm,n

c
xl

}
. (A2)

By noting that

exp
{
−4π j fm,n

c
∆Rm

}
Zm,n

= ZR
m,n cos

{
4π fm,n

c
∆Rm

}
+ ZI

m,n sin
{

4π fm,n

c
∆Rm

}
+ j
(

ZI
m,n cos

{
4π fm,n

c
∆Rm

}
− ZR

m,n sin
{

4π fm,n

c
∆Rm

}) (A3)

where ZR
m,n and ZI

m,n are the real and imaginary components of Zm,n, we can decouple and stack the
real and imaginary components of em to form a real-valued vector as

εm =

[(
eR

m

)T
,
(

eI
m

)T
]T

(A4)

where

eR
m =

[
. . . , eR

m,n, . . .
]T

n=1,...,Nm
(A5)

eI
m =

[
. . . , eI

m,n, . . .
]T

n=1,...,Nm
(A6)

and
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eR
m,n = ZR

m,n cos
{

4π fm,n

c
∆Rm

}
+ ZI

m,n sin
{

4π fm,n

c
∆Rm

}
(A7)

eI
m,n = ZI

m,n cos
{

4π fm,n

c
∆Rm

}
− ZR

m,n sin
{

4π fm,n

c
∆Rm

}
. (A8)

Using (46)–(A8), the minimization (45) becomes

∆̂Rm(i + 1) = arg min
∆Rm

‖ε(∆Rm)‖2
2. (A9)

By adopting the Gauss–Newton algorithm, ∆̂Rm(i + 1) can be computed from ∆̂Rm(i) as

∆̂Rm(i + 1) = ∆̂Rm(i)−
(

JT
m(i)Jm(i)

)−1
JT

m(i)ε(∆̂Rm(i)) (A10)

where ε(∆̂Rm(i)) is an estimated version of ε computed from ∆̂Rm(i) and Jm(i) is the Jacobian of
ε(∆Rm) with respect to ∆Rm evaluated at ∆Rm = ∆̂Rm(i).

The expression for the Jacobian Jm of ε(∆Rm) with respect to ∆Rm is given by

Jm =

[(
JR

m

)T
,
(

J I
m

)T
]T

(A11)

where

JR
m =

[
. . . , JR

m,n, . . .
]T

n=1,...,Nm
(A12)

J I
m =

[
. . . , J I

m,n, . . .
]T

n=1,...,Nm
(A13)

and

JR
m,n =

4π fm,n

c

(
−ZR

m,n sin
{

4π fm,n

c
∆Rm

}
+ ZI

m,n cos
{

4π fm,n

c
∆Rm

})
(A14)

J I
m,n = −4π fm,n

c

(
ZI

m,n sin
{

4π fm,n

c
∆Rm

}
+ ZR

m,n cos
{

4π fm,n

c
∆Rm

})
. (A15)

Appendix B. Analysis of the Nonconvexity of the l1-Norm Regularised Optimisation Problem (31)

From Equation (31)
{α̂, Λ̂} = arg min

α,Λ

{
‖S−ΛFα‖2

2 + µ‖α‖1

}
, (A16)

or
{α̂, Λ̂} = arg min

α
arg min

Λ

{
‖S−ΛFα‖2

2 + µ‖α‖1

}
. (A17)

‖S−ΛFα‖2
2 = {S−ΛFα}H {S−ΛFα} (A18)

‖S−ΛFα‖2
2 = SHS− 2<e[(FHΛHS)Hα] + αH FH Fα. (A19)

Only the term (FHΛHS)Hα is dependant on ∆R2, so the objective function is minimised with
respect to ∆R2 when the correlation between FHΛHS and α is maximised. Now

FHΛHS = FH
1 S1 + FH

2 ΛH
2 S2 (A20)

And the terms FH
1 S1 and FH

2 ΛH
2 S2 represent the conventional pulse compression (i.e.,

transformation from frequency domain to range domain) for each of the radars with a range offset
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∆R2. These are non-sparse and low resolution due to the oversampling in range. So FHΛH(∆R2)S
represents the linear superposition of the two conventional range profiles. When these range profiles
from the two radars are correctly aligned in range, they will better correlate with the true range profile
α. Also if the range offset ∆R2 is such that a scatterer for one radar is superimposed upon a different
scatterer for the other radar, a local minimum will occur. That explains Figure 6 and the reason for
its non-convexity.

Appendix C. Analysis of Operation Count for POMP

Consider first the case of M = 2. Let the size of the grid for the parameter ∆R2 be L∆ = 2N∆ ,
so that a dictionary is constructed for each of these 2N∆ values of ∆R2. OMP is implemented with
the number of dictionaries halved at each stage; hence, the name “pruned” OMP. At stage k of OMP,
the number of complex multiplications and divisions for a single dictionary is denoted Comp(k).
Here k = 1, . . . , N∆ + 1 with 2N∆−k+1 dictionaries considered at stage k. The purpose of this section is
to estimate the dependence of the computational cost of POMP on the size of the dictionary Lx and the
grid size L∆ for the parameter ∆R2.

With reference to Table 1, the significant costs for POMP are associated with the Identify and
Update steps. At each stage of OMP for a given dictionary, the Identify step performs atom/residual
correlations which require ∼ O(NmLx) complex multiplications. The Update step performs a linear
least squares estimation requiring Gaussian elimination which, at stage k of OMP, has an operation
count ∼ O(k3).

Due to the halving of the number of dictionaries at each stage, the total operational count required
until only one dictionary is left (although more OMP steps may be required for that dictionary until
the residual is sufficiently small) is therefore of order

N∆+1

∑
k=1

(NmLx + k3)2N∆−k+1 (A21)

or

(2N∆+1 − 1)NmLx + (N∆ + 1)3 + 2N∆+1
N∆

∑
k=1

k3zk (A22)

with z = 1
2 .

The finite sum ∑n
k=1 k3zk is referred to as a low-order polylogarithm, for which a formula may be

derived [34]. This formula can be shown to have a leading term of order n3zn+3 so that the overall
operation count for POMP is∼ O((2N∆+1− 1)NmLx + N3

∆). As the size of the grid for ∆R2 is L∆ = 2N∆ ,

N∆ =
log L∆
log 2 , and the operation count in terms of L∆ is ∼ O

(
L∆NmLx +

(
log L∆
log 2

)3
)

. We see that to

leading order the computational cost is proportional to the size of the grid for ∆R2.
For the case of general M this cost is multiplied by (M− 1).
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