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Abstract: In real industrial applications, bearings in pairs or even more are often mounted on the
same shaft. So the collected vibration signal is actually a mixed signal from multiple bearings. In this
study, a method based on Hybrid Kernel Function-Support Vector Regression (HKF–SVR) whose
parameters are optimized by Krill Herd (KH) algorithm was introduced for bearing performance
degradation prediction in this situation. First, multi-domain statistical features are extracted from
the bearing vibration signals and then fused into sensitive features using Kernel Joint Approximate
Diagonalization of Eigen-matrices (KJADE) algorithm which is developed recently by our group.
Due to the nonlinear mapping capability of the kernel method and the blind source separation ability
of the JADE algorithm, the KJADE could extract latent source features that accurately reflecting the
performance degradation from the mixed vibration signal. Then, the between-class and within-class
scatters (SS) of the health-stage data sample and the current monitored data sample is calculated
as the performance degradation index. Second, the parameters of the HKF–SVR are optimized by
the KH (Krill Herd) algorithm to obtain the optimal performance degradation prediction model.
Finally, the performance degradation trend of the bearing is predicted using the optimized HKF–SVR.
Compared with the traditional methods of Back Propagation Neural Network (BPNN), Extreme
Learning Machine (ELM) and traditional SVR, the results show that the proposed method has a
better performance. The proposed method has a good application prospect in life prediction of
coaxial bearings.

Keywords: rolling bearing; performance degradation; hybrid kernel function; krill herd
algorithm; SVR

1. Introduction

Roller bearings are key components of rotating machinery and they are widely used in aerospace,
railway and other industries [1]. Economic losses and major safety accidents can be avoided in industry
through an accurate evaluation of the bearing degradation status of the equipment and a timely
detection of bearing failures [2]. Two issues are key in the performance degradation evaluation of
rolling bearings. One is to extract the performance degradation indicators [3] and the other is to
establish effective prediction models [4]. Performance degradation index extraction is essential for
bearing performance degradation assessment. In current studies, kurtosis, root mean square and
peak indicators are used as indicators of bearing performance degradation [5]. However, completely
reflecting the entire degradation process of the bearing using a single indicator parameter is difficult.
Therefore, multi-domain features are extracted from the time domain and frequency domain. Then,
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these features are fused to remove the redundant features and used to characterize the bearing
degradation process [6]. This process facilitates bearing degradation evaluation. Feature fusion
techniques are generally divided into linear and nonlinear feature fusion methods [7]. Given that the
vibration signal of the bearing is usually nonlinear, the nonlinear method has unique advantages in
the fusion of bearing features [8]. For example, Zhang et al. used the Kernel Principal Component
Analysis (KPCA) algorithm to fuse features [9].

Recently, a new algorithm named Kernel Joint Approximate Diagonalization of Eigen-matrices
(KJADE) is invented by our group for feature fusion. This method is a combination of the kernel
method and the traditional JADE algorithm [10]. Due to the nonlinear mapping capability of the kernel
method and the blind source separation ability of the JADE algorithm. KJADE could extract latent
source features that accurately reflecting the performance degradation from the mixed vibration signal.

On the other hand, an effective prediction model is critical to accurate performance evaluation [11].
In recent years, data-driven prediction models have been widely applied to performance degradation
assessment [12]. Artificial neural network [13] and support vector regression are the two of most
widely used prediction models for bearing performance degradation evaluation and residual life
prediction [14]. These two models are based on statistical learning theory and data-driven model [15].
Liu et al. used neural network method to predict the performance degradation of rolling bearings [16].
Qian et al. used recurrence quantification analysis and auto-regression model for bearing degradation
monitoring and state prediction [17]. Shen et al. used Support Vector Regression (SVR) and statistical
parameters of wavelet packet paving to diagnose faults of rotating machinery [18]. Wang et al.
used two novel mixed effects models to predict the performance of rolling element bearings [19].
Zhang et al. used SVR to achieve bearing remaining life prediction [20]. Ling et al. used Improved
Empirical Wavelet Transform-Least Square Support Vector Machine (IEWT-LSSVM) and bird swarm
algorithm to predict wind speed [21]. However, predicting bearing degradation is difficult owing
to the non-linearity of bearing data. Due to the nonlinear mapping capability, the kernel methods
have attracted the attention of many researchers in recent years. However, different kernel functions
have different characteristics [22]. Choosing different kernel functions is crucial for dealing with
different problems [23]. To deal with this method, in recent years, different forms of hybrid kernel
functions have been studied. Zhou et al. used LSSVM with mixed kernel function build predictive
model [24]; Cheng et al. used mixed kernel function support vector regression for global sensitivity
analysis [23]. Wu et al. used mixed-kernel based weighted extreme learning machine for the influence
of the imbalance datasets problem [25]. Although the hybrid kernel function is applied to many
fields but the parameters of the kernel function have a great influence on the prediction results
and these parameters are difficult to decide. In this study, Hybrid Kernel Function-Support Vector
Regression (HKF–SVR) is proposed to predict bearing performance degradation. Taking into account
the uncertainty of the model parameters, the krill herd (KH) algorithm is then used to optimize the
parameters of the model.

The rest of this paper is arranged as follows: The second part provides a brief introduction of the
KH algorithm and the HKF–SVR. The third part introduces HKF–SVR for the prediction of bearing
performance degradation. The fourth part presents two case studies using the proposed method and
other methods. The final part presents the conclusions and acknowledgments.

2. Theoretical Background

2.1. KH Algorithm

The KH algorithm is a bionic intelligent optimization algorithm for the simulation of krill foraging
behavior [26]. The local optimal solution is found by attracting or repelling each adjacent krill, the
model is simple and fast. At the same time, the krill herd algorithm has good robustness and faster
convergence by using group search, compared with other algorithms. Due to using the Lagrange model,
the performance of the algorithm is better than other bionic optimization algorithms [27]. Similar
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to most intelligent optimization algorithms, the KH algorithm generally uses real-coded methods
to generate initial populations randomly. The evolution of particles is influenced by three motion
components (neighbor induction, foraging movement and random diffusion). The population is
increasingly diversified by crossing or mutating individuals until the set termination conditions are
met. The KH algorithm is as follows:

Assume that the position of each krill at time t is x(t) and the position after ∆t time is x(t + ∆t). On
the basis of the basic theory of the KH algorithm [28], the position update of each krill is affected by
three speeds, namely, the speed of movement induced by the surrounding krill Ni, the foraging speed
of the krill individual Fi and the random diffusion movement Di. Here, Ni is expressed as follows:

Ni = Nmaxαi + wnNold
i , (1)

where Nmax is the maximum induction velocity, ai is the induction direction, ωn ∈ (0,1) is the inertial
weight and Nold

i is the velocity vector of the last induced motion. ai is affected by the surrounding krill
and the current optimal particles, as shown in the following formula:

αi = αlocal
i + α

target
i

αlocal
i =

NP∑
j=1

K̂i, jx̂i, j

K̂i, j =
Ki−K j

Kworst−Kbest

x̂i, j =
x j−xi

‖x j−xi‖+ε

, (2)

where αlocal
i is the direction of induction by the surrounding krill, αtarget

i is the direction of induction
by the current globally optimal individual, K̂i, j is the force of the surrounding krill, x̂i, j is the current
particle’s orientation to the neighbor and NP is the population. Ki and K j are the fitness values of
the current particle and the neighboring particle, respectively. Kworst and Kbest are the fitness values
of the worst individual and the optimal individual in the current population, respectively. The krill
individual foraging speed Fi can be expressed by the following formula:

Fi = V fβi + w f Fi
old, (3)

where V f is the maximum foraging speed, βi is the foraging direction and ω f ∈ (0,1) is the foraging
inertial weight. 

βi = β
f ood
i + βibest

i
β

f ood
i = 2(1− I

Imax
)K̂i, f oodX̂i, f ood

X f ood =

N∑
i=1

Xi
Ki

N∑
i=1

1
Ki

, (4)

where β f ood
i and βibest

i are the directions induced by the best individuals of food and particles themselves;
X f ood is the position of food in which K̂i, f ood is the influence of food on current particles and X̂i, f ood is
the orientation of current food to particles. The random diffusion motion Di is expressed as:

Di = Dmax(1−
t

tmax
)δ, (5)

where Dmax. is the maximum random diffusion velocity and δ is the random diffusion direction.
The previous theory indicates that the position update of each krill individual is affected by the

above three speeds, namely, the motion of the surrounding krill, the krill’s foraging speed and the
random diffusion motion. The speed and position update of the particles are expressed as follows:
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dxi
dt

= Ni + Fi + Di (6)

xi(t + ∆t) = xi(t) + ∆t
dxi
dt

, (7)

where ∆t represents the time interval.

2.2. HKF–SVR

SVR is a well-known method to solve the regression problem [29]. Assume the data set is {xi, yi},
where xi is the input sample and yi is the corresponding output value. Then, SVR can be represented
by linear function f (x) = ωx + b. The SVR function can be represent by introducing ε insensitive
loss function:

yi −ω · xi − b ≤ ε , i = 1, 2, · · · , n
−yi +ω · xi + b ≤ ε

, (8)

next we can get the Convex optimization problem by minimizing the 1
2‖ω

2
‖.

min 1
2‖ω‖

2 + C
n∑

i=1
ξi + ξi

∗

s.t
{

yi −ωxi − b ≤ ε+ ξi i = 1, 2, · · · , n
−yi +ωxi + b ≤ ε+ ξ∗i

, (9)

where C > 0 is the regularization parameter controlling the punishment degree for the sample beyond the
error. the relaxation variables ξi ≥ 0 and ξ∗i ≥ 0. According to the optimization conditions, we can obtain
the dual problem of the support vector regression machine [30] and satisfy the constraint conditions.

maxω(a, a∗) = −ε
n∑

i=1
yi(a∗i − ai) −

1
2

n∑
i, j=1

(a∗i − ai)(a∗j − a j)(xi.x j)

s.t.


n∑

i=1
(ai − a∗i ) = 0

0 ≤ ai, a∗i ≤ C

(10)

where ai and a∗i are the Lagrange multipliers. Finally, the regression function [31] is obtained as follows:

f (x) =
n∑

i=1

(α∗i − αi)〈xi · x〉+ b∗. (11)

Different kernel function have different effects on the predicted results [32]. Before the kernel
function is constructed, the mapping of input space to feature space must be known. However, if
we want to know the mapping of input space to map space, the distribution of data in the input
space should be clarified. In most cases, the specific distribution of acquired data is consistently
unknown. Thus, constructing a kernel function that fully conforms to the input space is generally
difficult. Well-known kernel functions include linear, polynomial, radial basis and sigmoid kernel
functions [33]. The linear kernel function is mainly used for linear problems and it has some merits,
such as few parameters, fast calculation speed and improved effect for linear separable data. The
polynomial kernel function is a global kernel function with many parameters. The radial basis kernel
function is a locally strong kernel function that maps a sample into a high-dimensional space and the
most widely used of all kernel functions; it has fewer parameters compared with the polynomial kernel
function [34]. Thus, the radial basis kernel function is used in most cases.

In this study, a hybrid kernel function is proposed for support vector regression and the model
parameters are optimized by the KH algorithm. For the rolling bearing performance degradation
prediction, the polynomial and Gaussian kernel functions are selected to construct the hybrid kernel
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function for SVR and the parameters and the hybrid coefficient of the hybrid kernel function are
optimized by the KH algorithm. The constructed HKF–SVR is shown as follows:

Kh = λKpoly + (1− λ)Krb f , (12)

where Kpoly is polynomial kernel function, λ ∈ (0, 1) is a hybrid coefficient, Krb f is the radial basis kernel
function and Kh is a hybrid kernel function.

The parameters of HKF–SVR include the polynomial kernel function’s highest degree d, a gamma1
parameter, the coef0 of the kernel function, the gamma2 parameter of the RBF kernel function, a
penalty coefficient c and a hybrid coefficient λ. The error between the real and predicted values is
used as the objective function. The specific parameters and ranges are shown in the Table 1 below. The
optimization flow chart of the above parameters by KH algorithm is shown in Figure 1. The specific
process is described as follows:

(1) The number of iterations t, the number of krill and the maximum number of cycles are initialized.
(2) The value range of parameters is set and the set of parameters is randomly generated as the

initial position.
(3) Particle motion and generalization error calculation are conducted.
(4) If the error at a given moment meets the requirements or reaches the number of iterations, Step 7

is performed.
(5) The number of iterations t = t + 1.
(6) The current particle position and velocity are updated on the basis of Equations (6) and (7), new

training parameters are found and then Step 3 is repeated.
(7) The optimal parameters are obtained.

Table 1. Optimized parameters.

Description Notation

Polynomial kernel function parameter g1
Polynomial kernel function parameter coef0
Polynomial kernel function parameter d
Gaussian kernel function parameters g2

SVR penalty coefficient c
Kernel function hybrid coefficient λSensors 2020, 20, x FOR PEER REVIEW 6 of 19 
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3. HKF–SVR Method for Bearing Performance Degradation Prediction

In most real industrial applications, bearings in pairs or even more are mounted on the same shaft.
For example, as shown in Case I, there are four bearings on one shaft. So, in this situation, the vibration
signal acquired by the sensor mounted on each bearing block will be mixed by the signals propagated
through the shaft from the other three bearings. In this study, our recently developed KJADE algorithm
is studied on this issue. KJADE is a combination of kernel method and the traditional JADE algorithm.
Through the kernel method the latent feature vector can be extracted in the high-dimensional feature
space. On the other hand, due to the super blind source separation ability of the JADE algorithm, the
correlative feature that could reflect the health status of the monitored bearing can be extracted. The
integration evaluation factor of SS is then employed to further evaluate the performance degradation in
real time. After that, considering the ability of mixed kernel function to deal with nonlinear problems
and the regression prediction ability of SVR, the HKF–SVR is proposed to predict bearing performance
degradation. Taking into account the uncertainty of the model parameters, the KH algorithm is then
used to optimize the parameters of the model.

The steps of the whole method are shown in Figure 2 and described as follows:

(1) Multi-domain features extraction. The performance degradation process of bearings has a certain
non-linearity. It is difficult for a single feature to accurately reflect the degradation process. In
order to comprehensively reflect the bearing state, in this study, eight time-domain features and
eight frequency-domain features F1-F16 shown in Tables 2 and 3 are extracted from the mixed
bearing vibration signal. Where the F1-F8 stand for mean, root mean square value, square root
amplitude, absolute mean, skewness, waveform indicators, pulse indicator and margin index,
respectively. F9-F12 stand for mean frequency, standard deviation of frequency, center frequency,
frequency RMS and F13-F16 stand for the degrees of dispersion or concentration of the spectrum
where si is a spectrum for i = 1, 2, . . . , N (N is the number of spectrum lines) and fi is the frequency
value of the i-th spectrum line, which indicates the degree of dispersion or concentration of the
spectrum and the change of the dominant frequency band. Assume that the sample of the healthy
state is X, the sample of the current monitoring data sample is Y. The two samples are both
divided into ni segments {X1, X2, . . . , Xni} and {Y1, Y2, . . . , Yni} and then the 16 features of each
segment are calculated as the original feature vectors {Fx} = {Fx

1,1, Fx
1,2, . . . , Fx

1,ni; Fx
2,1, Fx

2,2,
. . . , Fx

2,ni; . . . ; Fx
16,1, Fx

16,2, . . . , Fx
16,ni }16 × ni and {Fy} = {Fy

1,1, Fy
1,2, . . . , Fy

1,ni; Fy
2,1, Fy

2,2, . . . ,
Fy

2,ni; . . . ; Fy
16,1, Fy

16,2, . . . , Fy
16,ni}16 × ni.

(2) Feature fusion using KJADE. In this step, KJADE is used to further extract latent sensitive source
features that could accurately reflect the performance degradation of the monitored bearing from
the features {Fx} and {Fy} extracted in the previous step. To facilitate visualization of results, the
dimension of the latent sensitive source feature vector is set to be 3. So, after this step, the latent
sensitive source features are transformed to be {Fx} = {Fx

1,1, Fx
1,2, . . . , Fx

1,ni; Fx
2,1, Fx

2,2, . . . , Fx
2,ni;

Fx
3,1, Fx

3,2, . . . , Fx
3,ni }3 × ni and {Fy} = {Fy

1,1, Fy
1,2, . . . , Fy

1,ni; Fy
2,1, Fy

2,2, . . . , Fy
2,ni; Fy

3,1, Fy
3,2,

. . . , Fy
3,ni }3 × ni.

(3) Performance degradation index calculation. The integration evaluation factor of SS between
the {Fx} and {Fy} obtained in the previous step is calculated as the comprehensive performance
degradation index. First, the between-class scatter matrix is calculated as follows:

Sb =
C∑

i=1

pi||mi −m||2. (13)

Then, the inter-class scatter matrix is calculated as follows:

Sw =
C∑

i=1

pi
1
ni

ni∑
k=1

||xi
k −mi||

2, (14)
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where C is the number of categories, mi is the feature mean in category i, m is the mean of the
entire feature sample. Finally, the SS is calculated using the following equation:

SS = trace(Sb/Sw). (15)

After this step, the SS that standing for the performance degradation index of the current
monitored data sample can be obtained.

(4) Prediction model constructed through HKF-SVR. In practical engineering application, after
continuous monitoring for a period of time, a continuous monitoring vibration data can be
obtained. One SS value corresponding to each monitoring moment can be obtained by using steps
1–4 and the performance degradation prediction model can be conducted by using HKF-SVR.

(5) Performance degradation prediction using the constructed model. The performance degradation
of the next moment can be predicted using the constructed model obtained in the previous step.
Meanwhile, the model is updated in real time with the current and historical data.
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4. Case Studies

4.1. CASE I

In this case, the full-life-cycle bearing vibration signals provided by the Intelligent Maintenance
System (IMS) Center of the University of Cincinnati are analyzed using the proposed method. The
experimental platform is shown in Figure 3. The four Rexnord ZA-2115 bearings are mounted on the
same shaft. The rotational speed of the experimental shaft was maintained at 2000 rpm, the radial
load was 6000 lbs., the sampling frequency was 20 kHz and the data length was 20,480 points. The
PCB 353B33 quartz sensor was mounted in the horizontal and vertical directions of each bearing and
data were collected by the NI data acquisition card DAQ6062E. The acquisition interval between each
signal was 10 min.
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The entire experiment was completed in three groups. In the first group of experiments, 2156
documents were obtained intermittently. The inner ring of bearing 3 was damaged and the rolling
elements of bearing 4 were damaged due to bearing disassembly. In the second set of tests, a total of
984 documents were collected and the outer part of bearing 1 was faulty. In the third set of tests, 4448
documents were obtained and the outer ring fault occurred in the third bearing. Bearings 3 and 4 in the
first group of experiments and bearing 1 in the second group of experiments were analyzed. As shown
in Figure 4, (a) is the full-life-cycle vibration signal of bearing 3, (b) is the full-life-cycle vibration signal
of bearing 4 and (c) is the full-life-cycle vibration signal of bearing 1.

The lifetime data with inner-ring fault, roller fault and outer-ring fault are shown in Figure 4a–c,
respectively. The first sample is taken as a healthy sample and the subsequent samples are analyzed as
the current monitoring samples. During the analysis, 16,800 points are taken for each analysis sample
and divided into 30 segments, so ni = 30 in the step. The method in step one of the third part of this
paper is used to extract the 16 dimensions features of the original signal, as shown in Tables 2 and 3
and then KJADE and SS are used to calculate performance degradation indicators. Then HKF-SVR
was used to construct a prediction model to predict performance degradation at the next moment.

On the basis of the method proposed in Section 3, the hybrid kernel function of the support vector
regression machine was constructed using polynomial and radial basis kernel functions. After the
model was established, the parameters of the model were optimized by the KH algorithm. The initial
parameters are shown as follows: an initial population of 20, five iterations, a maximum cycle number
of 20, a maximum induction velocity Nmax = 0.01, a maximum random diffusion velocity Dmax = 0.005
and a maximum foraging speed Vf = 0.02. These parameters are the optimal parameters obtained
through comparative testing. Finally, the HKF–SVR model was obtained to predict the degradation
trend of bearing performance.
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In this study, the root mean square error (RMSE) was used to evaluate the pros and cons of the
method and the results were compared with those of the traditional support vector regression method.
The calculation formula of the RMSE is as follows:

RMSE =

√√
1
n

n∑
i=1

(yi − ŷi)
2. (16)

The proposed method was compared with the SVR and support vector regression optimized
by the KH algorithm. The results showed that the method could track the performance degradation
trend of a bearing; a good prediction result was also obtained. Figures 5–7 show the performance
degradation prediction graphs of bearing 1 in the second experiment group and bearings 3 and 4 in the
first experiment group, respectively.
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The results indicate that the method proposed in this study can effectively predict the performance
degradation trend for bearings 1, 3 and 4. Meanwhile, the RMSE values shown in Table 4 indicate that
the prediction error of the proposed prediction method is smaller than the other two methods. Thus,
this method has advantages over the other two methods.

Table 4. Prediction errors comparison.

Method Bearing 1 Bearing 4 Bearing 3

SVR 0.104 0.082 0.062
KH–SVR 0.079 0.069 0.047

HKF–SVR 0.026 0.027 0.022
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In order to further prove the validity of the proposed method, the comparison with the Back
Propagation Neural Network (BPNN) and Extreme Learning Machine (ELM) are carried out. The
results of the comparison are shown in Figures 8–10. It can be seen that the prediction results of the
HKF-SVR method are more accurate than the others. The RMSE values shown in Table 5 show that the
proposed method achieved the minimum prediction error.

Sensors 2020, 20, x FOR PEER REVIEW 11 of 19 

 

 

Figure 7. Performance degradation prediction of bearing 4. (a) is the result of SVR, (b) is the result of 
SVR with parameters optimized by the KH algorithm and (c) is the result of HKF–SVR with 

parameters optimized by the KH algorithm. 

Table 4. Prediction errors comparison. 

Method Bearing 1 Bearing 4 Bearing 3 
SVR 0.104 0.082 0.062 

KH–SVR 0.079 0.069 0.047 
HKF–SVR 0.026 0.027 0.022 

The results indicate that the method proposed in this study can effectively predict the 
performance degradation trend for bearings 1, 3 and 4. Meanwhile, the RMSE values shown in Table 
4 indicate that the prediction error of the proposed prediction method is smaller than the other two 
methods. Thus, this method has advantages over the other two methods. 

In order to further prove the validity of the proposed method, the comparison with the Back 
Propagation Neural Network (BPNN) and Extreme Learning Machine (ELM) are carried out. The 
results of the comparison are shown in Figures 8–10. It can be seen that the prediction results of the 
HKF-SVR method are more accurate than the others. The RMSE values shown in Table 5 show that 
the proposed method achieved the minimum prediction error. 

 
Figure 8. Performance degradation prediction of bearing 1. (a) is the result of BPNN, (b) is the result of
ELM and (c) is the result of HKF–SVR with parameters optimized by the KH algorithm.

Sensors 2020, 20, x FOR PEER REVIEW 12 of 19 

 

Figure 8. Performance degradation prediction of bearing 1. (a) is the result of BPNN, (b) is the result 
of ELM and (c) is the result of HKF–SVR with parameters optimized by the KH algorithm 

 
Figure 9. Performance degradation prediction of bearing 3. (a) is the result of BPNN, (b) is the result 

of ELM and (c) is the result of HKF–SVR with parameters optimized by the KH algorithm 

 

Figure 10. Performance degradation prediction of bearing 4. (a) is the result of BPNN, (b) is the 
result of ELM and (c) is the result of HKF–SVR with parameters optimized by the KH algorithm 

Table 5. Prediction errors comparison. 

Method Bearing1 Bearing4 Bearing3 
BPNN 0.051 0.04 0.047 
ELM 0.042 0.055 0.05 

HKF-SVR 0.026 0.027 0.022 

In order to verify the superiority of the KH method, the classic Genetic Algorithm (GA) method 
is used to optimize the parameters. The comparative results are shown in Figures 11–13. RMSE is 
used to further compare the results of the two methods, as shown in the Table 6. Through the above 
comparative analysis, it can be seen that the prediction result based on the KH method is more 
accurate. 

Figure 9. Performance degradation prediction of bearing 3. (a) is the result of BPNN, (b) is the result of
ELM and (c) is the result of HKF–SVR with parameters optimized by the KH algorithm.

Table 5. Prediction errors comparison.

Method Bearing1 Bearing4 Bearing3

BPNN 0.051 0.04 0.047
ELM 0.042 0.055 0.05

HKF-SVR 0.026 0.027 0.022
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In order to verify the superiority of the KH method, the classic Genetic Algorithm (GA) method
is used to optimize the parameters. The comparative results are shown in Figures 11–13. RMSE is
used to further compare the results of the two methods, as shown in the Table 6. Through the above
comparative analysis, it can be seen that the prediction result based on the KH method is more accurate.Sensors 2020, 20, x FOR PEER REVIEW 13 of 19 
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4.2. CASE II

The bearing test platform is shown in Figure 14, which includes the ABLT tester and the signal
acquisition system based on LabVIEW and NI PXI platforms. The ABLT test machine was produced by
the Hangzhou Bearing Test Center, which consists of three systems, namely, control and drive, loading
and lubrication systems. The control and drive system enable real-time monitoring of the temperature
and vibration signals of the bearings. Four HRB6305 bearing models, which were fixed on the same
shaft and driven by an AC motor and connected by a belt, were used in this experiment. The failure
of the bearing was accelerated by loading 750 kg in the radial direction of each bearing. After some
fatigue tests, three types of faults for the inner ring, outer ring and rolling elements were obtained.
Full-life vibration signals were acquired every 5 min by the NI PXI acquisition system. All data were
collected at a frequency of 20 kHz and a bearing speed of 3000 rpm.
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The full-life original vibration signal of the rolling element is shown in Figure 15.
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Similar to Case I, the features of the time and frequency domains were extracted first. Then,
KJADE was used to fuse the original features and the performance degradation index was calculated
from inter and between class distances. Finally, the performance degradation of the rolling bearings
was predicted using the method proposed in the second part. The results are shown in Figure 16.
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The prediction results of SVR, SVR with parameters optimized by KH algorithm and HKF–SVR
with parameters optimized by KH algorithm are shown in Table 7, indicating that the method proposed
in this study is more effective than the other two methods.

Table 7. Prediction errors comparison.

SVR KH–SVR HKF–SVR

RMSE 0.225 0.077 0.035

Similar to Case I, the method proposed in this paper is compared with BPNN and ELM. As show
in Figure 17, the results also prove the effectiveness of the proposed method.Sensors 2020, 20, x FOR PEER REVIEW 16 of 19 

 

 

Figure 17. Performance degradation prediction of the rolling bearings. (a) is the result of BPNN, (b) 
is the result of ELM and (c) is the result of HKF–SVR with parameters optimized by the KH 

algorithm. 

The RMSE values of the BPNN, ELM and HKF-SVR methods are shown in Table 8. 

Table 7. Prediction errors comparison. 

 SVR KH–SVR HKF–SVR 
RMSE 0.225 0.077 0.035 

Table 8. Prediction errors comparison. 

 BPNN ELM HKF-SVR 
RMSE 0.067 0.065 0.035 

As shown in Figure 18. Meanwhile, RMSE values are shown in Table 9. From the results, we can 
also see the advantage of the proposed method. 

 

Figure 18. Performance degradation prediction of the rolling bearings, (a) is the result of HKF–SVR 
with parameters optimized by the GA and (b) is the result of HKF–SVR with parameters optimized 

by the KH. 

Figure 17. Performance degradation prediction of the rolling bearings. (a) is the result of BPNN, (b) is
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The RMSE values of the BPNN, ELM and HKF-SVR methods are shown in Table 8.

Table 8. Prediction errors comparison.

BPNN ELM HKF-SVR

RMSE 0.067 0.065 0.035

As shown in Figure 18. Meanwhile, RMSE values are shown in Table 9. From the results, we can
also see the advantage of the proposed method.

Table 9. Prediction errors comparison.

GA-HKF-SVR KH-HKF-SVR

RMSE 0.163 0.035
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Figure 18. Performance degradation prediction of the rolling bearings, (a) is the result of HKF–SVR
with parameters optimized by the GA and (b) is the result of HKF–SVR with parameters optimized by
the KH.

5. Conclusions

In this study, the HKF–SVR optimized by the KH algorithm is proposed to predict the degradation
of rolling bearing performance for coaxial bearings. It can effectively solve the problem of parameter
selection of prediction model. On the other hand, our recently developed KJADE algorithm and SS is
studied on performance degradation features extraction for coaxial bearing signals. The proposed
method is compared with the SVR, SVR optimized by the KH algorithm, ELM and BPNN. Results
have verified the effectiveness and advantage of the proposed method. The proposed method has a
good application prospect in life prediction of coaxial bearings.
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