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Abstract: Due to the development of the Internet of Vehicles (IoV) and advanced driver-assistance
systems (ADAS), the Ethernet has become one of the most important communication protocols for
the future of automotive networks. This is because the existing communication protocols (such
as FlexRay) do not provide sufficiently high bandwidth requirements. The main challenge for the
automotive industry will be to transfer and extend standard IP and Ethernet into vehicles and still
fulfill the automotive requirements. The automotive gateway not only links two or more protocols
and exchanges the data using each, but also monitors and ensures functional safety. This paper
proposes a FlexRay/Ethernet gateway by considering the development conditions of embedded
systems and the security in the field of vehicle networking. The proposed method is implemented
on the Field Programmable Gate Array (FPGA) system to evaluate running time and to analyze the
overhead of the security mechanism. For one-to-one mapping logic, the execution times of FlexRay
to the Ethernet path and Ethernet to FlexRay path are constant, at 4.67 µs and 6.71 µs, respectively.
In particular, cybersecurity can be integrated as an extension of the gateway with low latency and
power consumption.
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1. Introduction

FlexRay [1] is a standard of in-vehicle network (IVN) communication systems that provides
high-speed serial communication and is often used for new safety features. FlexRay supports a
time-triggered scheme and an optional event-triggered scheme. The advantage of event-triggered
communication is better bandwidth utilization, since communication only occurs if needed. The upper
bound of the data rate is 10 Mbps, and it provides two channels for redundancy. The Internet of Vehicles
(IoV) is a new concept that is an extension of the Internet of Things (IoT). The IoV allows valuable
information from other vehicles or the environment to be obtained. An increasing number of electronic
control units (ECUs), sensors, and cameras will be equipped in the vehicle for driver-assistance
applications. It has been observed that the security and reliability of in-vehicle communication are of
paramount importance because malicious attacks can endanger human lives. Therefore, both higher
bandwidths and increased security are required.

Ethernet is an important communication protocol, and it has several advantages, such as low
cost, high bandwidth, and mature technology. An Ethernet-based vehicle network can communicate
between a vehicle and other vehicles. Therefore, Ethernet must become one of the main protocols
for IVNs and the IoV in the future [2]. However, the existing Ethernet protocol must be modified
to support the delivery of time-critical traffic information and time-sensitive functionality for IVNs.
The gateway is an important and indispensable component for IVNs and the IoV. It means that for
the introduction of Ethernet, a gateway to currently existing automotive networking technologies,
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is required for achieving a smooth migration. Therefore, a gateway is an essential component for
communication between FlexRay and Ethernet and also helps to further strengthen security. In this
paper, in addition to discussing the implementation of the FlexRay/Ethernet gateway system, we also
analyze the cost of the system security constraints on latency and power consumption.

2. Related Works

2.1. Gateways

In the automotive industry, embedded system architectures are set in vehicles. The gateway in
IVNs is designed to check internal and external messages and route data from one control protocol
to another. There are two kinds of vehicular network structures: centralized gateway and backbone
network. In a typical centralized gateway structure, communication protocols IVNs are interconnected
by a central gateway. The central gateway is usually implemented by processor to perform the tasks of
packing and unpacking messages, and lookup [3]. The scalability of the centralized gateway is related
to the switching mechanism. In the routing (switching) table, the valid IDs (devices) with priority
and destination addresses are listed. When the number of ports is increased, the routing table will be
expanded, and there will be some overhead costs in terms of latency and hardware resources.

First, an accelerated routing mechanism using a Field-Programmable Gate Array (FPGA) to
reduce the latency for a gateway was proposed in [4]. The authors also built several demonstrations
with different bus systems. They proposed that a modular gateway prototype based on an FPGA is a
powerful alternative for automotive gateways. To minimize the bandwidth requirements, a scheduling
algorithm, earliest deadline first (EDF), was proposed in [5]. EDF forwarding was able to achieve
real-time capability using fewer resources. In addition, the authors adopted a frame aggregation
mechanism to reduce the overhead of framing.

Recently, many studies have been published on the vehicular gateway [6–8]; comparisons of
platforms and functions of security are shown in Table 1. A variety of gateways [6] have been proposed
that use heterogeneous network protocols, including CAN, FlexRay, and Ethernet. The authors
proposed a reusable, verifiable gateway framework that could be easily developed and verified using
graphical user interface (GUI)-based configuration software. However, the verification environment
provided by the proposed gateway framework has not yet been verified. A configurable low-latency
gateway architecture on a hybrid FPGAs was proposed in [7]. A translation mechanism based on
a virtual MAC address was used. The virtual MAC address corresponds to a data type and a set
of receivers that are pre-loaded into the lookup and packing/unpacking module together with the
FlexRay message-type identifier. Furthermore, every slot also contains a preemption indicator (PI),
which allows preemption of long messages by high-priority messages and can be used to implement
Ethernet priority schemes, such as time-sensitive networking. A synchronization mechanism was
developed in [8] for FlexRay and Ethernet AVB networks that guarantees a high quality of service (QoS).
The authors also designed a corresponding embedded system-based gateway system to implement the
proposed synchronization mechanism. This gateway, which is an Ethernet-backbone network, will be
used in future automotive systems.

Table 1. Comparisons of platforms and their security functions.

Method Development Board Manufacturer Platform Clock Security Mechanism

Kim [6] MPC5668EVB NXP 116 MHz not included
Shreejith [7] ZC702, ZC706 Xilinx 200 MHz not included

Lee [8] TC275EVB Infineon 200 MHz not included
This paper XC7Z020 Xilinx 100 MHz included

However, these methods have weaknesses in terms of cybersecurity. The two major objectives
of gateways for IVNs and the IoV include a conversion device between different protocols and a
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supervisory role to ensure the packets are correct, and a gateway host to control and monitor the
gateway system that is aimed at improving the security of the Ethernet/FlexRay gateway. We previously
proposed a gateway system between the Ethernet and FlexRay in [9]. In this current paper, we describe
the proposed gateway system in more detail, providing information about each module of the
gateway host, risk-control strategies, and the embedded system used for implementation of the
proposed gateway.

2.2. Automotive Ethernet and Security

Next-generation automotive systems will provide more advanced applications; therefore,
extending the Ethernet into vehicles will bring many benefits. Integrating Ethernet for in-vehicle
communication, reliability, and security are the main concerns [10]. Because Ethernet was not originally
designed to be a real-time system, deploying Ethernet into vehicles requires additional features to the
original protocols to ensure safety and reliability [11]. Along with the increasingly complex interfaces
and automotive Ethernet to connect IVNs to the outside, dangerous attacks can be easily implemented
on IVNs. IVN security is essential, and the topic is of interest in the field.

The security concept for vehicular gateways is designed to provide security to vehicles and to
ensure individual privacy in a heterogeneous network. For example, vehicles could exchange useful
messages such as road conditions and accident notifications in order to assist in safe navigation and
traffic management. The nodes in such critical applications are very vulnerable to vicious attacks;
the Sybil attack can be classified as one of the most dangerous attacks on the IoV [12]. In this
scenario, a vehicle can appear to have more than one identity. In other words, other vehicles in the
network are unable to determine the information originator. One type of Sybil attack is the Node
Impersonation Attack [13]. Each vehicle’s IVN has a unique identity, and vehicles use their identities
while communicating with other vehicles. However, if a vehicle changes its identity without informing
the managing unit, it can introduce itself as a different vehicle, such as in a Sybil attack. The malicious
vehicle can send incorrect information about the road conditions to the surrounding managing unit.
Recently, research has focused on security risks to IVN protocols, such as CAN [14]; few studies
have investigated detection and prevention mechanisms on FlexRay. The targets of an automotive
gateway are seamlessness and improved security. Therefore, we designed the gateway host on the
FPGA hardware to process data across these heterogeneous networks with low latency and increased
cybersecurity awareness.

3. Proposed Methodology

The functionality of the gateway is to play a role similar to an interface between a FlexRay bus and
an IEEE 802.3-based Ethernet network. The design of an automotive FlexRay/Ethernet gateway system
is shown in Figure 1. The concept of this system is to implement the data-packing and data-unpacking
FlexRay messages in Ethernet packets, a transmission control protocol/internet protocol (TCP/IP) stack,
and an Ethernet controller.

In general working conditions, the Ethernet utilizes specific addresses (the MAC addresses)
to identify the destination and source, and a transformation based on a virtual MAC address
that corresponds to a data type and a set of receivers with the FlexRay message type identifier is
used. However, in more concrete cases, attack and overloading problems always happen in the
heterogeneous network. When a malicious vehicle (non-valid device) wants to provide incorrect
messages, the switching mechanism will reject the messages. Additionally, when messages collide on
the network, the processing is done according to the priority queue in the routing table.
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Figure 1. An overview of the implemented system. TCP/IP is transmission control
protocol/internet protocol.

3.1. System Architecture

The architecture of the proposed FlexRay/Ethernet gateway and data path is shown in Figure 2.
It is composed of three units: the FlexRay controller, the Ethernet controller, and the Gateway host.
FlexRay and Ethernet communication are essential for gateway implementation. The gateway host
is designed to load the four modules to receive data and translate the Ethernet event frame to the
in-vehicle system event and vice versa. The secure data transmission mechanism (SDTM) is used to
further improve the security of the gateway system.

Figure 2. The proposed FlexRay/Ethernet gateway architecture and data path.

3.2. The Gateway Host

The gateway host consists of four modules, which are a Receive module, Security module,
Transform module, and Transmission module, with a secure data transmission mechanism (SDTM)
to further improve the security of the system. Moreover, the SDTM is divided into two parts, one
for the Security module of the Gateway Host and another for the encryption of the Ethernet frame.
The original protocol of the FlexRay frame and Ethernet frame have been some check mechanisms,
such as CRC and UDP/TCP header check, which can be adopted in the proposed SDTM and is a part
of the gateway. The CRC checks are implemented in the FlexRay controller and Ethernet controller,
respectively. The UDP/TCP header check mechanisms are implemented in the TCP/IP networking
stack. When the security verification results fail, the gateway host will drop an incoming frame.
The main function module of the gateway host is described as follows: In the receive module, there are
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two different buffer registers of FlexRay and Ethernet in the module. The registers buffer frames from
the Rx bus and extract the important parts of the Header segments, the Payload data segments, and
the Trailer segments of the frames.

The security module is a part of the SDTM; there are four check mechanisms in the proposed
Security module. First, there is a cyclic redundancy check (CRC) to ensure that safety measures on the
data link layer integrate FlexRay and Ethernet bus technologies. Both consist of protection of header
and payload information as part of each frame using checksums, such as the CRC. Second, if Ethernet
is used in combination with the IP, additional mechanisms are incorporated to aid in security concerns.
Part of the IP header information (e.g., Source Address, Destination Address) is protected by a 16-bit
checksum. In Ethernet architectures, real-time data is exchanged by the widely used User Datagram
Protocol (UDP) in addition to the IP. UDP adds an additional 16-bit arithmetic checksum to protect
the underlying IP header. Both the sequence number and the acknowledgment number of the TCP
header are necessary roles in the three-way handshake of TCP protocol operations. Therefore, these
error detection mechanisms are adopted in the proposed Security module.

Third, the sequence number of the TCP header has dual roles. In the initial sequence number,
the synchronization (SYN) flag is set to 1 in the TCP header. The actual first data byte of the sequence
number and the acknowledged number in the corresponding acknowledgement (ACK) are then this
sequence number plus 1. If the SYN flag is clear (i.e., 0), then this is the accumulated sequence number
of the first data byte of this segment for the current session [15]. Fourth, the acknowledgment number
of the TCP header can also be adopted in the proposed check mechanism. If the ACK flag is set,
the value of this field is the next sequence number that the sender is expecting. If this is the case,
this acknowledges receipt of all prior bytes. The first ACK sent by each end acknowledges the other
end’s initial sequence number itself, but no data.

The central component of the gateway architecture is the transform module, transforming the
frame tasks to each other. The methods of the FlexRay/Ethernet frame [1,16] transformation are shown
in Figures 3 and 4. The transform module consists of the following three segments: header-generated
logic, payload data queue logic, and trailer generate logic. The data path from FlexRay to Ethernet
is shown in Algorithm 1. Since the length of Ethernet frames is more than ten times that of the
FlexRay frames, the Transform module adopts one-to-one mapping logic to encapsulate the frames.
The verification of the security mechanism is status-receiving process, frame CRC, and (FlexRay) ID
authentication. On the other hand, the purpose of encryption of the Ethernet frame is to protect
the privacy of secure data during communication with external devices or further prevent attacks.
The encrypted message from the network must be read and decrypted using the current configuration of
the cipher primitives before the information can be used by the application in the Ethernet node. In the
other case, the messages are from Ethernet to FlexRay, as shown in Algorithm 2. The Transform module
must divide the payload segment from an Ethernet frame into several frame packages (maximum of
six) with the same header and trailer. The message identifier is directly based on the message received,
and the length of Ethernet data is double that of FlexRay data. The virtual MAC address corresponds
to the data type and the FlexRay ID parameter forming one-to-one mapping to a virtual MAC address.

The transmission module packs the parts from the transform module into new frames, buffers the
frames, and schedules the output frames to the Tx bus according to their priorities. The protocol data
unit (PDU) is useful for network protocols that support a longer frame length than CAN, such as
FlexRay and Ethernet. In the case of Ethernet, a frame can include multiple PDUs because the minimum
frame length of the Ethernet is too long to store single data. PDU-based routing consists of direct and
indirect routing. Direct PDU-based routing immediately transmits a received PDU to the destination
network, but it can route part of the frame to a destination network without copying the entire frame.
A received PDU that is configured to direct PDU routing is immediately forwarded to the destination
interface module, such as the CAN or FlexRay interface.
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Algorithm 1. Data path from FlexRay to Ethernet

Inputs: Frame of FlexRay
Outputs: Frame of Ethernet

1: Initialize all registers
2: Establish TCP connection between Gateway and Ethernet End
3: While (FlexRay frame received) do
4: Fetch ID, Length, and Data in FlexRay frames and storage to buffers
5: Send ID, Length, and data to Security module
6: if (ID is found in the routing table and security verification checks pass) {
7: According to the Routing table, the SA and DA is set
8: Set length of Ethernet = (length of FlexRay) × 2
9: Set Ethernet_Data = FlexRay_Data

/*encryption processing of SDTM*/
10: Encryption of the data field in the Ethernet frame
11: Set Ethernet controller frame buffer
12: Send Ethernet frame to Ethernet End
13: }
14: else{/* security verification failure*/
15: The Gateway host drops the frame
16: Return
17: }
18: End While

Figure 3. FlexRay frame transformed to Ethernet frame.
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Figure 4. Ethernet frame transformed to FlexRay frame.

Algorithm 2. Data path from Ethernet to FlexRay

Inputs: Frame of Ethernet
Outputs: Frame of FlexRay

1: Initialize all registers
2: Establish TCP connection between Gateway and Ethernet End
3: While (Ethernet frame received) do
4: Fetch SA, DA, Length, and Data in Ethernet frames and storage to buffers
5: Send SA, DA, Length, and Data to security module
6: if (SA is found in the routing table and security verification checks pass) {
7: Set the FlexRay_ID according to the routing table

/* divides the payload segment from Ethernet frame into several frames */
8: if (length of Ethernet > 255 Bytes) {
9: Divide the Data into several Data and calculate length of each Datum
10: Calculate the number of divided data (n)
11: }
12: else{/* security verification failure*/
13: The Gateway host drops the frame
14: Return
15: }
16: Generate Header CRC
17: Forach (n)
18: FlexRay_Data = Divided (Ethernet_Data)
19: Set FlexRay controller frame buffers
20: Send FlexRay frames to FlexRay Node
21: }
22: End While
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3.3. Implementation of the Proposed Gateway

The automotive gateway links two or more protocols and exchanges the data between protocols.
Therefore, there are at least two protocol controllers in the gateway system. The gateway integrates
those controllers, and the data transmits components or buses. The proposed gateway system is
implemented on a Xilinx Zedboard, as shown in Figure 5. The Zedboard is a heterogeneous system
architecture; it integrates Programmable Logic (PL) and Processing System (PS) with ARM9 cores.
The proposed gateway host and FlexRay controller are implemented on PL fabric, and the Ethernet
node is implemented by both PS and PL.

Figure 5. The design of proposed gateway system based on Zynq-7000 AP SoC. The Ethernet node is
implemented by both PS and PL.

The FlexRay node is composed of the FlexRay controller and FlexRay transceiver. The FlexRay
controller adopted in the proposed gateway system is intellectual property developed by the PATAK
Engineering Company [17]. We modified the source code (hardware description language, i.e.,
Programmable Logic) for experiment planning. There are two communication paths (Receive path and
Transmission) between the gateway and the FlexRay controller. The interconnection of the gateway
control I/O port and the FlexRay controller are internal ports, such as Data input, Data output, and clock
(CLK). The external ports such as Tx, Rx, and Tx_Enable are connected via the FPGA Mezzanine Card
(FMC) pins on the ZedBoard for external communication. Furthermore, we designed and implemented
a FlexRay transceiver board to connect the external transceiver to verify the proposed gateway system
with the ZedBoard. Therefore, the FlexRay controller directly connects to the gateway and transmits
the FlexRay data to the transceiver with FMC ports.

In the Ethernet node, the PL fabric used implement a 10/100/1000 Ethernet port for a network
connection using a Marvell 88E1518 PHY (Physical), and the PHY interfaces to the Zynq-7000 AP
SoC via an RGMII. A simple TCP/IP stack is implemented on the Ethernet controller to handle the
Ethernet data with the Marvell PHY, and the AXI buses are used to communicate with the gateway,
which is also on PL fabric. In this system, the TCP/IP can be defined as a four-layer model, as shown in
Figure 6. The Application layer, Transport layer, and Internet layer are implemented using the LwIP
Application on a PS. The Lightweight IP (LwIP) [18] is an open-source TCP/IP networking stack for
resource-limited systems, such as embedded systems. The Link layer is composed of a MAC layer
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and a Physical layer, which are implemented by a Gigabit Ethernet MAC Controller on a PS and an
Ethernet PHY interface on PL, respectively.

Figure 6. The design of the TCP/IP model on a ZedBoard.

3.4. Design of the Secure Data Transmission Mechanism

There are several intrinsic vulnerabilities with IVNs [19]. Owing to these vulnerabilities,
adversaries can easily implement various attacks on IVNs, including frame sniffing, frame falsifying,
replay attack, frame injection, and DoS attack. Corresponding countermeasures can be used to protect
the IVN from these kinds of attacks, such as encryption and authentication, development of the
Intrusion Detection System (IDS) [20], and separation of potential attack interfaces from the IVN.
Building the lookup table for the virtual MAC and the Ethernet MAC is a lightweight authentication
scheme for IoV. The security mechanism will drop the packet from a malicious vehicle with a non-valid
ID; therefore, the incorrect messages are excluded to avoid these attacks.

To ensure information security, the protection mechanisms have to be integrated into the IVN.
The proposed secure data transmission mechanism (SDTM) is intended to enhance IVN security by
encryption and authentication. The proposed SDTM is divided into two parts: one for the encryption
processing of the Ethernet frame and another for the Security module of the Gateway Host. On the other
hand, this paper identifies three applicability criteria, which show the security levels and applications
in vehicle systems of the risk-control strategies. In what follows, we explain these criteria and discuss
their consequences; an overview of the proposed applicability criteria and the corresponding Security
mechanism for risk-control strategies is shown in Table 2.

Table 2. Risk-control strategies.

Security
Level

Applications
(Examples)

Security Mechanism

Receive
Status

Frame
CRC

UDP
Header

MAC
Address/ID

High Powertrain systems
X-by-wire enable enable enable enable

Medium Collision avoidance system
Electronic stability control enable enable enable disable

Low suspension
Traction control system enable enable disable disable

• Risk-control strategies

There are multi-level security strategies in the proposed method based on the application of
FlexRay data signals. Multilevel security protocols were also adopted in [21]. Wang et al. noted that
adding security mechanisms can protect the IVN by collaborating with current in-vehicle security
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schemes. These discrepancies were made according to the applications in in-vehicle systems. At the
highest level, all of the security mechanisms are enabled, and the applications are often used for new
safety features, such as X-by-wire [22] and powertrain systems. When the proposed gateway is used
in the collision avoidance system or electronic stability control, the security level is set to medium,
and the checking of the MAC address and ID mechanism is disabled. In the low-security level mode,
only the checking states of receive interfaces and checking frames of CRC mechanisms are enabled.
The flow chart of the security module is shown in Figure 7. The processing of the checking UDP header
is implemented in the LwIP stack only applicable in the Ethernet to FlexRay path, and the packets are
dropped upon verification failure.

Figure 7. Flow chart of the security module.

In such cases, when the gateway receives a frame from FlexRay or Ethernet, the status-receiving
process is an error; when the gateway receive a frame from FlexRay or Ethernet, the frame CRC is not
correct; when the gateway receives a frame from Ethernet, the sequence number and acknowledgment
number of the TCP header, which is related to TCP protocol operation, is an error; when the gateway
receives a frame from FlexRay, the MAC address is not in the whitelist. Then, the receiving process
will drop an incoming message and no further processing is required.

• Encryption methods

Although currently most IVNs do not use encryption, this might be a very important aspect in the
future [23]. There are three encryption methods that are used in the proposed SDTM: Data Encryption
Standard (DES), Advanced Encryption Standard (AES), and AES Counter with CBC-MAC (AES-CCM).
A comparison of encryption methods is shown in Table 3.

Table 3. Comparison of encryption methods.

Encryption
Methods

Parameters

Data Block
(Bits)

Key Length
(Bits)

Rounds
(Times)

Mode of
Operation

DES 64 56 16 N/A
AES 128 128/192/256 10/12/14 ECB-mode

AES-CCM 128 128/192/256 10/12/14 CCM-mode

• DES is a classical symmetric-key algorithm for the encryption of electronic data with a 56-bit key
size. The operation speed of encryption is the fastest of the three encryption methods, but the
DES key is easy to break in a short period of time.
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• AES supersedes the DES with a 128-bit key size. It is a subset of the Rijndael block cipher. Research
into attacks on AES encryption has continued since the standard was finalized in 2000, which
means the security is sufficient for modern vehicle communications.

• AES-CCM is one of the authenticated encryption schemes as specified by the National Institute
of Standards and Technology (NIST) [24]. The CCM mode is a mode of AES operation for
cryptographic block ciphers and is used to protect the static segment of FlexRay, which is
recommended by the IEEE 802.11 standard. Thus, the AES-CCM is considered the future
encryption method in the IoV [25].

4. Experimental Results

The performance of the proposed FlexRay/Ethernet gateway is evaluated in this section.
The process of transforming FlexRay and Ethernet frames was proven by the experiment results.

4.1. Experimental Platform and Environment

The experimental environment and EDK tools with the proposed gateway architecture are shown
in Table 4. The proposed gateway was implemented using a Xilinx ZedBoard (Zynq XC7Z020-1CLG484).
The ZedBoard implemented a 10/100/1000 Ethernet port for network connection using a Marvell
88E1518 PHY and two Gigabit Ethernet Controllers (10/100/1000 Ethernet MAC compatible) on PS
fabric. The whole ZedBoard connection used to implement a gateway is shown in Figure 8.

Table 4. Experimental environment.

Proposed Architectures Implementation
Platform/OS EDK/Tools Resource

Measurement

FlexRay Node Xilinx Zedboard
Zynq-7000 AP SoC Xilinx Vivado 2018.1 Xilinx Vivado 2018.1

utilization report

Proposed
Gateway host

Xilinx Zedboard
Zynq-7000 AP SoC

Xilinx Vivado 2018.1
Xilinx ISE 14.7

Xilinx Vivado 2018.1
utilization report

Ethernet End Windows 7 Professional
Intel Core i7 3.6 GHz

Network Debug
Assistant
Wireshark

N/A

Figure 8. Overview of the hardware platform setup.



Sensors 2020, 20, 641 12 of 15

4.2. Execution Time Management and Analysis

To measure the execution time of the proposed gateway system, we considered the verification
tools and transmitting messages. The Network Debug Assistant was applied to build the TCP
communication (client or server on PC) with the LwIP via an RJ45 cable. The Network Debug Assistant
not only has a three-way handshake process, which is necessary for TCP communication, but we
could also utilize it to send packets to the ZedBoard to evaluate the performance of messages from
the Ethernet to the FlexRay path. On the other hand, the Wireshark [26] network protocol analyzer
tool was used to capture, filter, and inspect the Ethernet packets that were sent from the ZedBoard to
evaluate the messages from the FlexRay to the Ethernet path.

Furthermore, we employed an 8-byte message in the evaluation of the FlexRay ECU to an Ethernet
network. This feature, according to the related work, showed that the 8-byte message size represented
more than 70 percent of the traffic on FlexRay-based vehicular systems. Multiples of such messages
are packed together to form valid Ethernet payloads of 64 bytes. The controller of the hardware-based
gateway has a fetch-and-pack task that is activated whenever an 8-byte FlexRay frame is received at
the network interface. The task reads the message into the Ethernet buffer if the packet is ready to be
transmitted; otherwise, it executes other tasks and waits for the next interruption.

The execution times of FlexRay to Ethernet and Ethernet to FlexRay are shown in Table 5.
The latency measurement is denoted as follows: the message is transmitted from the FlexRay path
to the Ethernet path; the starting is the FlexRay node, which sends out messages; the gateway host
receives the FlexRay frame, and then each module starts to extract the data from the frame; the ending
point is the Ethernet controller. In the other path, the latency components are Ethernet end (means that
the execution time of LwIP application in SDK.), Gateway host, and FlexRay Node.

Table 5. Execution Time (µs) of the message path.

Messages Path
Latency Components

FlexRay Node
(PL)

Gateway Host
(PL)

Ethernet End
(LwIP in PS)

Total
Run Time

FlexRay -> Ethernet (with AES-CCM) 8.25 4.67 5.55 18.47
Ethernet -> FlexRay 7.96 6.71 1.36 16.03

For these experiments, the proposed gateway host was executed multiple times for every
FlexRay/Ethernet frame, consuming considerable processor cycles during the movement of data,
and there are 256 valid-IDs in the routing table to one-to-one mapping. The running time of the
Ethernet to the FlexRay path in the Gateway host was more than that of the FlexRay to Ethernet
path because the payload segment from the Ethernet frame was divided into several frames, as seen
in Algorithm 2. Furthermore, it was found that the execution time of the FlexRay to Ethernet path
in the Ethernet End was more than that of the Ethernet to FlexRay path; this was because of the
encryption (with the AES-CCM method) of the data field in the Ethernet frame, as shown in Algorithm
1. Furthermore, the security model maybe suit for critical situations according to the human response
time (200 ms in general).

4.3. Cost of Security Mechanism

The proposed SDTM consists of the Security module and the encryption processing of an Ethernet
frame. The key challenge is to integrate this complex security architecture in a manner that introduces
minimal latency (for the network or application) and without affecting protocol guarantees. In the
experiments of the proposed SDTM, we measured the time cost of the encryption processing and then
analyzed the overhead of the security mechanism.

As presented in Section 3.4, the methods of DES, AES, and AES-CCM can be adopted in the
encryption processing of messages from the FlexRay to the Ethernet path. For security managed
through hardware, the encrypted message received from the network must be read and decrypted
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using the current configuration of the cipher primitives before the information can be used by the
application. For a message from the FlexRay to Ethernet path per 8 bytes of data, the encryption
methods (DES, AES, and AES-CCM) take 1.17 µs, 1.23 µs, and 3.28 µs, respectively. When we applied
the AES-CCM method in the encryption processing, the method used 17.7% of the total execution time
of the FlexRay to Ethernet path.

To analyze the overhead of security mechanisms, two cases were implemented: the proposed
gateway with and without the security mechanism. While embedding security mechanisms into the
proposed gateway systems, there were some overhead costs in terms of latency, hardware resources,
and power consumption, as shown in Table 6. Increasing the security level increased the latency due to
the complexity associated with management of the check mechanism operations. The results showed
that the proposed SDTM can be integrated as an extension of the gateway with low-latency overhead.

Table 6. Area and power overheads on the Xilinx Zynq-7000 device.

Implementation
Method

Resource
Consumption
(Reg, LUTs)

Resource
(LUTs)

Power
Consumption

Proposed gateway 1.00× (4950), 1.00× (4880) 9.3% 1.00×
Proposed gateway with SDTM 1.25× (6125), 1.24× (6182) 11.62% 1.01×

4.4. Performance Evaluation

Execution time of the proposed FlexRay to Ethernet gateway and the Ethernet to FlexRay gateway
were compared with other studies. Execution time includes the execution time of interruption,
extraction data frame, data frame transformation, security check mechanism, and transmission process.
The results for the running time of the modules are shown in Table 7. A comparison of running
time with related studies is shown in Table 8. Both related works [6,7] use multiple nodes for
experiments; the proposed centralized gateway adopted the length of data represents 8-bytes of
payload data for a one-to-one mapping logic to encapsulate the frame. Kim et al. [6] proposed a layered
architecture that was hardware- and software-independent, and that provided parallel reprogramming,
diagnostic routing, and network management. A configurable vehicular gateway was proposed
by Shreejith et al. [7], which implemented a reconfigurable dedicated switching circuit but did not
integrate security primitives.

Table 7. Detail for execution time (µs) of modules within the proposed gateway host.

Message Path Receive
Module

Security
Module

Transform
Module

Transmission
Module

Total
Runtime

FlexRay -> Ethernet 0.86 0.47 2.13 1.21 4.67
Ethernet ->FlexRay 1.14 0.61 3.72 1.24 6.71

Table 8. Comparisons of FlexRay/Ethernet gateway execution time (µs).

Message Path FlexRay -> Ethernet Ethernet -> FlexRay

Method Port Execution Time Execution Time

Kim [6] Multiple nodes 67 67
Shreejith [7] Multiple nodes 3.15 3.33

Proposed One-to-one mapping 4.67 6.71

The proposed gateway included a gateway host to control and monitor the gateway system in
order to improve the security of the Ethernet/FlexRay gateway. Although the comparisons of execution
time were not ideal, the latency overhead is constant under any conditions, architectural design
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strategies for cybersecurity and functional safety were implemented. Then, the contributions of this
paper are as follows:

(1) Using the HW/SW (hardware/software) method, data communication is implemented between
the FlexRay and Ethernet network.

(2) The risk-control strategies are related to FlexRay data signals, and the proposed Security Data
Transmission Mechanism (SDTM) is integrated as an extension of the gateway.

(3) The novelty of the vehicular gateway is to improve the security with little overhead, and it is
more suitable for IVNs and the IoV in the future.

5. Conclusions

In this paper, a gateway for the FlexRay and Ethernet interface design using an FPGA hardware
core and a CPU software core is proposed. The proposed gateway is implemented on a Xilinx ZedBoard
using IP integration and the HW/SW method. The secure data transmission mechanism (SDTM)
including security module and encryption processing is designed for the detection and monitoring
of data packets. Three risk-control strategies based on the type of FlexRay data signals are designed
for different car applications or regions of the FlexRay protocol. An experimental method to verify
performance is conducted to make connections between the proposed gateway and an external FlexRay
node or Ethernet end. In the future, the gateway should be implemented on the platform designed
to meet the requirements for modern vehicles. Additionally, the evaluation environment should
be implemented in automotive software architecture such as AUTOSAR, which is closer to the real
automotive environment.
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