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Abstract: Consumer-grade RGBD sensors that provide both colour and depth information have many
potential applications, such as robotics control, localization, and mapping, due to their low cost and
simple operation. However, the depth measurement provided by consumer-grade RGBD sensors is
still inadequate for many high-precision applications, such as rich 3D reconstruction, accurate object
recognition and precise localization, due to the fact that the systematic errors of RGB sensors increase
exponentially with the ranging distance. Most existing calibration models for depth measurement
must be carried out with different distances. In this paper, we reveal the mechanism of how an
infrared (IR) camera and IR projector contribute to the overall non-centrosymmetric distortion of a
structured light pattern-based RGBD sensor. Then, a new two-step calibration method for RGBD
sensors based on the disparity measurement is proposed, which is range-independent and has full
frame coverage. Three independent calibration models are used for the calibration for the three
main components of the RGBD sensor errors: the infrared camera distortion, the infrared projection
distortion, and the infrared cone-caused bias. Experiments show the proposed calibration method
can provide precise calibration results in full-range and full-frame coverage of depth measurement.
The offset in the edge area of long-range depth (8 m) is reduced from 86 cm to 30 cm, and the relative
error is reduced from 11% to 3% of the range distance. Overall, at far range the proposed calibration
method can improve the depth accuracy by 70% in the central region of depth frame and 65% in the
edge region.

Keywords: RGBD sensor; calibration model; disparity

1. Introduction

The consumer-grade RGBD sensor has the potential to be used in many fields, such as 3D
reconstruction [1,2], camera simultaneous localization and mapping (SLAM) [3], robotics exploration [4],
and obstacle avoidance [5], due to its low cost and ability to provide depth with pixel-corresponded
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RGB information. Based on the ranging principle, consumer-grade RGBD sensors can be categorized
into three groups: time-of-flight (ToF)-based RGBD sensors (i.e., Kinect V2 [6]), structured light pattern
(SLP)-based RGBD sensors (i.e., Kinect V1 [6], Structure Sensor [7], Asus Xtion [8], Intel RealSense [9]),
and stereo vision-based RGBD sensors (i.e., ZED camera [10]). Although all RGBD sensors provide
the same data format, SLP RGBD has become one of the most popular RGBD solutions due to its
low requirement for computational power [11]. Despite the wide use and popularity, the SLP-based
RGBD sensor has one significant drawback: the errors in depth frame exponentially increase with
ranging distance [6]. Existing applications of consumer-grade SLP RGBD sensor are mainly for gaming
purposes, not for those requiring high-precision, such as SLAM and visual odometery [12]. With
high-precision applications, the accuracy of depth measurement is crucial as errors in depth will be
accumulated during the frame matching process, which will significantly affect the quality of final
3D point cloud and position products and may cause a frequent loss tracking problem. Thus, proper
calibration of depth measurements is required for SLP RGBD sensors [13].

The SLP RGBD sensor calculates ranging information based on the disparity di (pixel difference,
di = |xi − x0|) between the reference pixel x0 location of the pre-structured pattern Xp in the reference
plane Π0 and the measure pixel location xi of captured pattern Xi on the object plane Πobj. in the
received image frame, as shown in Figure 1a. The reference pixel x0 of the pre-structured pattern is
fixed in the image plane ΠC. The pre-structured pattern as shown in Figure 1b, is a fixed pattern of
light and dark speckles. The depth is calculated by triangulation against the pre-structured pattern. If
the captured feature xi can be matched to the reference pixel x0, the disparity di can be obtained. For a
commercial SLP RGBD sensor, information including the actual pattern xp in the projector plane ΠP

and the distance Z0 from the IR projector to the reference plane Π0 remains undisclosed.
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Figure 1. (a) Projection model of structured light depth sensor; (b) example of pre-structured pattern [14].

For the object Xi, the depth Zi can be expressed as:

Zi =
1

1
Z0

+ 1
fcw di

(1)

where,

Z0 is the reference distance from the sensor to the reference plane Π0;
fC is the focal length of IR camera;
w is the baseline between the IR camera and IR projector;
di is the disparity for xi.
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For commercial RGBD sensors, such as Structure Sensor and Kinect V1, the actual disparity di
in pixel unit is not available to the users. Instead, a normalized disparity d′i value from 0 to 2047 is
outputted. Normalized disparity is expressed as Equation (2), m, n are the normalized parameters that
remain unknown:

d′i = m·di + n (2)

Combine (1) and (2):

Zi =
1

1
Zo
−

n
fcwm + 1

fcwm d′i
=

1
α+ βd′i

(3)

where: α = 1
Zo
−

n
fcwm , β = 1

fcwm , α & β are fixed parameters of a RGBD sensor, and are provided by the
manufacturer to calculate the depth Zi from the normalized disparity d′i .

Early works on SLP RGBD calibration [6,15] described the systematic error in the depth frame as
a function of radial distortion parameters and adopted the classic RGB camera distortion model [16] to
correct the radially symmetric error on the SLP-based RGBD sensor. However, they failed to address
the fact that the distortion increases with distance. Zhang and Zhang [17] proposed a depth dependent
calibration model that separately fits a linear equation of the actual depth and the rotation angle for each
pixel. The limitations for this method are the instability of the algorithm, the requirement of accurate
initial parameters to avoid divergence, and the high computational cost. Similarly, Canessa et al. [18]
proposed a labour intense empirical calibration model by using the sample images captured from 0.6
to 2 m to fit a second degree polynomial model for each pixel. Recently, Darwish et al. [19] proposed
a calibration model, treating the depth distortion of a RGBD sensor as a combined centrosymmetric
error of the IR camera distortion and IR projector distortion with same optical centre. A look up table
of calibration parameters was calculated at different distance, i.e., from 0.5 to 3 m with 0.5 m interval.
With insufficient investigation of the mechanism of how the IR camera and IR projector contribute
to the overall non-centrosymmetric distortion of the RGBD sensor, and also being a distance-based
calibration model, this method suffers large offsets in the edge area of depth frame and requires a look
up table for parameters in different distance. Similar problems can be found in [20].

A visual camera or a RGB camera often have a centrosymmetric or near centrosymmetric distortion
pattern. When the distortion model is adopted in RGBD sensor calibration, the assumption that the
distortion of SLP RGBD is also centrosymmetric and can be modeled by a classic distortion model
is accepted by many researchers [15,20–22]. However, compared to visual distortion that can use
one model to represent the distortion, current calibration models for SLP RGBD sensors are much
more complex due to the additional work such as fitting the model separately based on distance, the
requirement of good initial parameters, and the larger number of parameters to provide full range
coverage. The complexity of current calibration models as discussed later in this paper is mainly
due to the negligence of the fundamental difference between the visual camera and the SLP RGBD
sensor. One significant difference between visual camera and SLP RGBD sensor is that the distortion in
the depth frame of the RGBD sensor is caused by both camera lens and projector lens while image
distortion is only caused by the camera lens. In fact, due to the combined effects of camera and
projector, the depth distortion is non-centrosymmetric rather than the centrosymmetric distortion in
the visual camera. Therefore, the existing methods that only use a centrosymmetric distortion model
to calibrate the depth distortion, for example the method of Darwish et al. [19], will inevitably suffer
large offset in the frame edge area. The edge area is extremely sensitive to the high order part in the
visual camera distortion model [16]. Furthermore, the target measurement of SLP RGBD sensors to
apply the distortion model should be disparity rather than depth, as disparity is the raw measurements
of distance measurement. A camera distortion model was originally designed for calibrating the
distorted pixel caused by camera lens. Although a similar distortion pattern can be discovered in
depth frames, it is actually a reciprocal product of the pixel difference (disparity) between the captured
pattern and reference pattern. By analyzing the distortions of the camera and the projector separately,
this paper proposes a new distortion model to calibrate disparity which can be applied to full range
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depth frames of SLP-based RGBD sensors. Compared to the current methods, the proposed method is
distance independent.

This paper firstly makes a comprehensive discussion of the sources and forms a mechanism
of depth distortion of the SLP RGBD sensors. By compositing the calibration model that is strictly
based on actual physical model of camera distortion and projector distortion, we propose a new
method which can effectively and accurately calibrate the full range depth data. The proposed method
calibrates the whole range depth with just one model and one set of parameters. Compared to the
existing model that requires to separately fit calibration parameters for different distance range or a
look up table of parameters, the proposed method largely improved the efficiency of the calibration
procedure. By applying the proposed calibration model, we can accurately improve the ranging
accuracy by 70% in the central area and 65% in the edge area of the depth frame. Two distortions
and one infrared cone related bias will be used to model the overall systematic error of SLP sensors.
The two distortions are a pincushion distortion caused by the projector lens and a barrel distortion
caused by infrared camera lens, shown in Figure 2. A bias caused by the infrared cone that cannot
illuminate the homogeneously for a unified pattern recognition performance [6,23] is also modeled
in the proposed calibration method. As the systematic error is extremely sensitive to how these two
distortions and the bias overlapped, accurately determining the forming mechanism of the overall
distortion is crucial for calibration.
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Then a two-step calibration procedure is proposed to overcome the problem that the
commuter-grade RGBD sensor often remains a black box to the users. SLP RGBD sensors such
as Kinect V1 [24] and Structure Sensor [7] only provide a normalized disparity unit, but the raw
disparity measurement and the normalization parameters for disparity remain unknown. Other
information, such as original reference pattern and the actual measurement of the captured pattern,
is also unavailable to users. Such black box environment is extremely problematic for the sensor
calibration. Although the camera distortion and camera internal parameters can be calibrated by
traditional checkboard method [25], the projector distortion cannot be easily calibrated with existing
methods [26–28] which all require knowing the original reference pattern and take measurement of
the casted pattern in real world. The two-step calibration procedure is proposed to achieve a precise
calibration procedure in such black box environment for RGBD sensor. The two-step calibration
procedure includes: (1) the IR camera related distortion is calibrated with classic checkboard method;
(2) the projector distortion in normalized disparity is modeled by a new combined objective function.

The calibration method is evaluated by two experiments in an indoor environment. One is
an experiment designed to test the performance of the calibration model. A set of test data with
ground truth error is acquired in three different scenes: (1) flat surface, (2) non-flat surface, and (3) flat
surface with distance variation. The ground truth error is obtained by plane fitting and compared
with the modeled error generated from the proposed method. Comparison results demonstrate
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that the proposed method can precisely model the systematic error caused by non-centrosymmetric
distortion of the RGBD sensor. The other one is an evaluation of proposed method in actual point
cloud collected in the indoor environment. By comparing the calibrated and uncalibrated point cloud
in the whole working range of the tested SLP sensor, the improvement of the calibration model can be
demonstrated clearly.

2. RGBD Distortion Model

To calibrate the SLP based RGBD sensor, it is important to understand how the error is introduced
in the RGBD sensor and how that error affects the depth measurements. The radical systematic error
appeared in the depth frame is mainly a combined result of the distortions caused by camera lens and
projector lens. The infrared cone also causes a certain radical error to the depth frame. In this section,
the mechanism of the non-centrosymmetric distortion of RGBD sensor will be revealed.

The distortion appearing in the disparity measurement of SLP RGBD sensor can be traced back to
the two optical lenses in its hardware, the projector lens and camera lens. The projector lens causes
a pincushion distortion as shown in Figure 2a; and the camera lens causes a barrel distortion as
shown in Figure 2b. As the pattern is casted in IR and can’t be captured by normal digital camera,
Figure 2a is captured by a calibrated IR camera called MIQUS M3 [29]. Figure 2b is captured by the IR
camera. Both pincushion and barrel distortion are optical distortions, therefore, they occur as a result
of optical design and lens error. They both appear and overlap in the disparity measurement of a SLP
RGBD sensor.

The data accessed by users are the normalized disparity unit, which is a normalized pixel difference
between the pre-stored reference pattern and the captured pattern. The most basic observation of
SLP RGBD sensor is the disparity di between the pre-stored distortion-free reference pixel xo and the
captured distortion affected measure pixel xi. The distortion first appeared in the measured pixel xi
and then passed down to the disparity and normalized disparity.

The pincushion distortion occurred when the pre-stored pattern was casting through the
projector lens into the object scene. As shown in Figure 2a, the reference pattern (rectangle
shape) would be distorted into a pincushion shape (marked as yellow in Figure 2a). When the
pincushion distortion pattern in the object space was then captured by the IR camera’s complementary
metal–oxide–semiconductor (CMOS) sensor [30], the camera lens would cause additional barrel
distortion (Figure 2b) to the already distorted casted pattern. As a result, the captured patterns, which
is used to calculate disparity, contains the distortion caused by both IR projector lens and IR camera
lens and two types of distortion overlapped in the image plane. Since the disparity, or normalized
disparity, are the linear products of the captured pattern, the distortion model that is applicable to
capture pattern in pixel unit can also be applied in the disparity or normalized disparity.

Considering both camera and projector distortions, the measured disparity in pixel can be
described as:

dM = di + δ
ep
c + δ

ep
p (4)

where,

dM is the measurement value of disparity in pixel;
di is the true value of disparity in pixel with no error;
δ

ep
c is the distortion error caused by camera lens in pixel;
δ

ep
p is the distortion error caused by projector lens in pixel.

According to Zhang [17], the optical distortion of the optical lens can be modeled as:

xu = xd + (xd − xc)
(
K1r2 + K2r4 + · · ·

)
+

(
P1

(
r2 + 2(xd − xc)

2
)
+ 2P2(xd − xc)(yd − yc)

)
yu = yd + (yd − yc)

(
K1r2 + K2r4 + · · ·

)
+

(
2P1(xd − xc)(yd − yc) + P2

(
r2 + 2(yd − yc)

2
)) (5)

where,
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(xd, yd) = distorted image point as projected on image plane;
(xu, yu) = undistorted image point as projected by an ideal pinhole camera;
(xc, yc) = distortion centre;
Kn = nth radial distortion coefficient;
Pn = nth tangential distortion coefficient; and

r =
√
(xd − xc)

2 + (yd − yc)
2.

Camera distortion is normally barrel distortion with a negative term for K1, and projector distortion
is often pincushion distortion with a positive K1.

Both the camera-caused barrel distortion and projector-caused pincushion distortion are
uncorrelated to the distance. The camera-caused barrel distortion in the disparity is a fixed
centrosymmetric distortion with a centre at the optical centre of the IR image plane for the whole
distance. For the pincushion distortion of the projector lens, it can be proved that the casted projector
distortion’s effect in the image plane is uncorrelated with distance, and same as the barrel distortion
caused by the camera lens, the pincushion distortion on the image plane should be a fixed distortion
for all distances. It is because the ratio between the original pincushion distortion in projector plane
and the captured pincushion distortion in image plane is a constant value for all the distances. Figure 3
illustrates that the pixel distortion d in projector plane ΠP caused by the projector lens in the object
scene has a fixed relationship with the pincushion distortion dC that appeared in the image plane ΠC.
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Where,

( fP , fC) is the focal length of projector lens and camera lens;
(OP, OC) is the optical centre of the projector lens and camera lens;
Πobj is the object plane;

ΠP is the projector pattern plane;
ΠC is the camera image plane;
(p′, p) is the undistorted and distorted pattern location in projector pattern plane ΠP;
(P′, P) is the undistorted and distorted pattern location casted into the object plane Πobj.;(
p′C, pC

)
is the undistorted and distorted pixel captured by camera in image plane ΠC;

d is the pixel difference in projector plane ΠP;
dC is the pixel difference in image plane ΠC;
D is the location difference in object plane Πobj.;
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w is the baseline between camera centre and projector centre;
Z is the distance from baseline to object plane.

As shown in Figure 3, pixel difference d is the pincushion distortion in the projector plane ΠP.
When this distortion is projected into the object plane Πobj, it is presented as the location difference
D between the actual casting location P and the undistorted location P′. As here we are discussing
the projector distortion’s effect on the image plane, the camera distortion is not considered for better
visualization. In actual sensor measurement, the projector distortion and camera distortion are
overlapped in image plane and have a combined effect on the distorted pixel pC. With no camera lens
barrel distortion considered, the location difference D in the object plane Πobj. will be captured as the
pixel difference dC in image plane ΠC. From Figure 3, the following equation can be obtained: d

D =
fP
Z

dc
D =

fc
Z

(6)

Combine the two parts in Equation (6), the following relationship can be obtained:

dc =
fc
fP

d (7)

Since fC
fp

is a constant value, therefore, no matter what the distance Z is, the pixel shift dC in
the image plane ΠC caused by the projector lens follows the same model as the original pincushion
distortion in the projector plane ΠP and just with an additional scale fC

fp
. The scale fC

fp
can be put into

the parameters K1 K2 P1 P2 of Equation (5) as new parameters K′1 K′2 P′1 P′2 in the distortion model.
Therefore, the distortion impact from projector in image plane ΠC follows the same pincushion model
in projector plane ΠP and is not correlated to the distance from the projector to the object.

Both camera barrel distortion and projector pincushion distortion are centrosymmetric distortion
in the normalized disparity unit. The camera barrel distortion is constant at the optical centre of
the IR image plane for all the distance range. For the pincushion distortion appeared in the image
plane, although it is still a centrosymmetric distortion, it has varying distortion centre

(
xp

0, yp
0

)
based

on the distance Z. In the SLP RGBD sensor’s chipset, the disparity is only calculated from the pixel
difference in the x axis, and for this reason, the y coordinates yp

0 of the pincushion distortion centre are

always equal to 0. The x coordinates of
(
xp

0, yp
0

)
varies based on the distance. Based on the geometry

shown in Figure 4, the image coordinates of projector centre
(
xp

0, yp
0

)
in image plane can be calculated

as Equation (8).  xp
0 =

fcw
Z

yp
0 = 0

(8)

Although both the barrel distortion and pincushion are centrosymmetric distortion in the disparity
unit, the combined overall distortion is a non-centrosymmetric distortion due to the pincushion
distortion’s varying centre. If the centrosymmetric barrel distortion and pincushion distortion have
the same distortion centre in the image plane, as shown in Figure 5a,b, then the overlapped distortion,
shown in Figure 5c, is also a centrosymmetric distortion with the distortion in the optical centre of the
image frame. According to Equation (8), the pincushion distortion centre

(
xp

0, yp
0

)
in the image frame is

always different from the barrel distortion centre. Although the pincushion distortion in a shifted centre
is still a centrosymmetric pattern (Figure 5d), its overlapping result with a barrel distortion of different
distortion centre will become a non-centrosymmetric pattern, as shown in Figure 5e. Therefore, the
overall distortion in the SLP RGBD sensor has a non-centrosymmetric pattern. The typical distortion
pattern is similar to that illustrated in Figure 5e, with distortion centre (the least distorted part) shifted
from the optical centre to the side of the projector module and the far side away from the projector
centre suffering more severe distortion than the other side.
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Figure 5. Different overlapping distortion in image plane. (a) Centrosymmetric barrel distortion with
centre in the optical centre of image frame; (b) centrosymmetric pincushion distortion with centre in
the optical centre of image frame; (c) centrosymmetric overlapped distortion with centre in the optical
centre of image frame; (d) centrosymmetric pincushion distortion with centre shifted to the side of
image frame; (e) non-centrosymmetric overlapped distortion with barrel distortion centre in the optical
centre of image frame and pincushion distortion centre in the shifted side of image frame.

Normalize the disparity in Equation (4) using Equation (2):

d′M = m
(
di + δ

ep
c + δ

ep
p

)
+ n = d′i + mδep

c + mδep
p (9)

where,

d′M is the measurement value of normalized disparity;

m, n are the normalize parameter of disparity;
di is the true value of disparity in pixel with no error;
δ

ep
c is the distortion error caused by camera lens in pixel;
δ

ep
p is the distortion error caused by projector lens in pixel;

d′i is the true value of normalized disparity.
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Based on the Brown’s model [31], δep
c and δ

ep
p can be expanded to radial distortion part and

tangential distortion part as:  δ
ep
c = δrad.

c + δ
tang.
c

δ
ep
p = δrad.

p + δ
tang.
p

(10)

The distortion model can be expressed as: δrad. = xi
(
K1r2 + K2r4 + K3r6

)
δtang. = P1

(
r2 + 2xi

2
)
+ P2xiyi

(11)

where,

δrad.
c is the radial distortion of the IR camera;

δ
tang.
c is the tangential distortion of the IR camera;
δrad.

p is the radial distortion of the IR projector;

δ
tang.
p is the tangential distortion of vIR projector;

r =
√

x2
i + y2

i xi = xm
i − x0, yi = ym

i − y0;

(x0, y0) is the camera or projector centre;(
xm

i , ym
i

)
is measured image coordinate;

K1, K2, K3 is the parameters of radial distortion model;
P1, P2 is the parameters of tangential distortion model.

In this way, Equation (10) can be further expanded as: δ
ep
c = xc

i

(
Kc

1r2
c + Kc

2r4
c + Kc

3r6
c

)
+ Pc

1

(
r2

c + 2xc
i
2
)
+ Pc

2xc
i yc

i

δ
ep
p = xp

i

(
Kp

1r2
p + Kp

2r4
p + Kc

3r6
p

)
+ Pp

1

(
r2

p + 2xp
i

2
)
+ Pp

2xp
i yp

i

(12)

where,

Kc
1, KC

2 , KC
3 , PC

1 , PC
2 are the distortion parameters of the IR camera;

rc =
√

xc
i
2 + yc

i
2; xc

i = xm
c − xc

0; yc
i = ym

c − yc
0;(

xc
0, yc

0

)
is the centre point of camera;

(xm
c , ym

c ) is the measured image position;
KP

1 , KP
2 , KP

3 , PP
1 , PP

2 are the distortion parameters of the IR projector;

rp =

√
xP

i
2
+ yp

i
2
; xp

i = xm
p − xp

0; yp
i = ym

p − yp
0;(

xp
0, yp

0

)
is the centre point of projector distortion model in image coordinates;(

xm
p , ym

p

)
is the measured image position without the influence of camera distortion.{

xm
p = xm

c + δ
ep
c

ym
p = ym

c + δ
ep
c

(13)

Combine (9), (10) & (12), the proposed calibration model in normalized disparity can be expressed
as:

δdi = d′M − d′i = mxc
i

(
Kc

1r2
c + Kc

2r4
c + Kc

3r6
c

)
+ mPc

1

(
r2

c + 2xc
i
2
)
+ mPc

2xc
i yc

i

+mxp
i

(
Kp

1r2
p + Kp

2r4
p + Kc

3r6
p

)
+ mPp

1

(
r2

p + 2xp
i

2
)
+ mPp

2xp
i yp

i

(14)

Therefore, for the SLP-based RGBD sensor, the distortion error in disparity consists of two parts,
one is a barrel distortion caused by camera lens with fixed location at optical centre. The other is
pincushion distortion caused by the projector lens with a varying location over the camera image plane.



Sensors 2020, 20, 639 10 of 23

In practice, since the actual distance Z of projector to the object scene is often unknown, the proposed
calibration model uses the measured distance ZM in Equation (8) to calculate the distortion centre(
xp

0, yp
0

)
as an alternative.

3. Calibration of Structured Light Pattern (SLP) RGBD Sensor

In the SLP sensor, both camera distortion and projector distortion occur. In the image plane, the
camera distortion is fixed as its optical centre, and the projector lens distortion has a varying optical
centre in the image plane according to the distance from projector to the object. Therefore, if the
distortion model for the camera and projectors is known, the combined distortion can be calculated
proximately by the measured distance. The distortion calibration for infrared camera can be conducted
in the traditional ways. But for the raw observation, the structured pattern of infrared projector of
RGBD sensor is inaccessible, and there is no way to determine the projector distortion model by using
the existing method [32] that requires a known reference pattern and ability to take measurement of
the actual distorted casted pattern in the object space. The RGBD sensor only provides a normalized
disparity unit that contains the combined distortion. To calibrate such combined non-centrosymmetric
distortion, a two-step calibration procedure is proposed.

A two-step calibration procedure is designed to specifically calibrate the SLP-based RGBD sensors.
The RGBD sensor used in this paper is the Structure Sensor from Occipital [7], shown in Figure 6. It
is a SLP-based RGBD sensor released in 2013. Structure Sensor shares the same ranging principle
with Kinect V1 and Asus Xtion that are all based on the PrimeSense technology for SLP ranging [11].
The calibration procedure developed in this paper is also applicable for other PrimeSense-based SLP
RGBD sensor. To obtain the parameters of the proposed calibration model (Equation (14)), the standard
checkboard calibration method for the RGB camera is first used to get the parameters related to the
infrared camera lens. Direct sunlight or infrared light is used to illuminate the checkboard. Then a test
field is set up to calibrate the distortion related to the infrared projector. Sample data is captured at a
different distance and plane fitted to estimate the distortion parameters. The camera distortion and
projector distortion are combined based on the varying focal centre relating to the measured distance.
At a different distance, there will be different combined effects on the depth frame due to the shifting
location of the projector focal centre on the image plane. The remaining error after modelling the
camera distortion and projector distortion is regarded as bias caused by the infrared cone.
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3.1. Data Acquisition and Data Processing

In order to calibrate the SLP RGBD sensor, a calibration field is set in an open space. Figure 7
shows the test field used in this paper. The wall in the test filed is served as the control plane for
calibration. The control plane is a plane with image identifiable markers and serves as the ground
truth for calibration. The 3D coordinates of the image markers are measured by total station, an
electronic surveying instrument that can measure high-precision 3D coordinates in mm level accuracy.
Those image identifiable markers can provide a calibration dataset of image coordinates with its
corresponding 3D coordinates in objective space. The calibration dataset is captured at a different
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distance to have a full coverage of the SLP RGBD sensor’s whole working range. In our test, the
calibration dataset is captured from 0.5 m to 6.5 m with an interval about 0.5 m to cover the working
range of the Structure Sensor. Since the wall with calibration mark covers less image area when the
distance from the sensor to the wall increases, more than one station should be set for longer distance
to make sure the calibration markers can cover the whole image.
Sensors 2020, 20, x FOR PEER REVIEW 11 of 23 

 

 

Figure 7. Test field for calibration. 

The data acquisition and processing procedure is as follows:  

1. Establish a control plane by placing the control markers with known coordinates measured by 

total stations.  

2. Fit the plane equation of the control plane.  

3. Place the Structure Sensor in front of the control wall and take multiple observations (100 

observations) at each designed distance (from 0.5 m to 6.5 m with an interval of about 0.5 m), as 

shown in Figure 8a,b.  

4. Calculate the pixel-wise average depth frame for each distance to reduce the effect of random 

noise in each pixel.  

5. Use the perspective-n-point algorithm [33] to calculate the camera extrinsic parameters for each 

distance based on the correspondences between the control wall and the depth frame. 

6. Unify the coordinates system between Structure Sensor and the control wall based on the 

calculated camera extrinsic parameters in 5. 

7. Calculate the ground truth depth for each distance based on the fitted control plane equation.  

8. Calculate the ground truth disparity based on the processed ground truth depth. 

9. Use the ground truth disparity to calculate the disparity error of the averaged disparity 

measurement in each distance. 

The disparity error obtained after the data processing is used for model parameters estimation. 

The plane-fitted method is used to fit the equation of the control plane to provide adequate data for 

the parameter estimation. Figure 8b shows the different stations settled for data acquisition (camera 

markers) and the fitted planes based on different measurements (different colour on the control wall). 

The fitted plane can provide a significant amount of data for the estimation. If only the control 

markers measured in different distance are used for parameters estimation, the valid point that can 

be used for estimation is still too sparse to provide the full frame coverage, as shown in Figure 8c. By 

using the control markers, only 864 pixels within the frame have the associated disparity error and 

are valid for estimation, which covers about 0.28% of the whole 640 × 480 frame. By using the plane 

fitting to calculate the ground truth disparity for each control plane pixel, we can improve the number 

of valid pixel to 293.196, which cover about 94.44% of the whole frame. Furthermore, each pixel as 

shown in Figure 8d has multiple disparity errors that are measured from different distance. The 

comparison between Figure 8c,d shows a significant improvement of the valid data for calibration 

parameters’ estimation by the plane-fitting method. By minimizing the disparity errors for each pixel, 

we can further reduce random noise for a better parameter estimation. 

Figure 7. Test field for calibration.

The data acquisition and processing procedure is as follows:

1. Establish a control plane by placing the control markers with known coordinates measured by
total stations.

2. Fit the plane equation of the control plane.
3. Place the Structure Sensor in front of the control wall and take multiple observations (100

observations) at each designed distance (from 0.5 m to 6.5 m with an interval of about 0.5 m), as
shown in Figure 8a,b.

4. Calculate the pixel-wise average depth frame for each distance to reduce the effect of random
noise in each pixel.

5. Use the perspective-n-point algorithm [33] to calculate the camera extrinsic parameters for each
distance based on the correspondences between the control wall and the depth frame.

6. Unify the coordinates system between Structure Sensor and the control wall based on the
calculated camera extrinsic parameters in 5.

7. Calculate the ground truth depth for each distance based on the fitted control plane equation.
8. Calculate the ground truth disparity based on the processed ground truth depth.
9. Use the ground truth disparity to calculate the disparity error of the averaged disparity

measurement in each distance.

The disparity error obtained after the data processing is used for model parameters estimation.
The plane-fitted method is used to fit the equation of the control plane to provide adequate data for
the parameter estimation. Figure 8b shows the different stations settled for data acquisition (camera
markers) and the fitted planes based on different measurements (different colour on the control wall).
The fitted plane can provide a significant amount of data for the estimation. If only the control markers
measured in different distance are used for parameters estimation, the valid point that can be used for
estimation is still too sparse to provide the full frame coverage, as shown in Figure 8c. By using the
control markers, only 864 pixels within the frame have the associated disparity error and are valid
for estimation, which covers about 0.28% of the whole 640 × 480 frame. By using the plane fitting to
calculate the ground truth disparity for each control plane pixel, we can improve the number of valid
pixel to 293.196, which cover about 94.44% of the whole frame. Furthermore, each pixel as shown in
Figure 8d has multiple disparity errors that are measured from different distance. The comparison
between Figure 8c,d shows a significant improvement of the valid data for calibration parameters’
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estimation by the plane-fitting method. By minimizing the disparity errors for each pixel, we can
further reduce random noise for a better parameter estimation.Sensors 2020, 20, x FOR PEER REVIEW 12 of 23 
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3.2. Model Parameter Estimation

With the fitted plane ax + by + cz + d = 0 and the camera pose (R, t
∣∣∣R ∈ SO(3), t ∈ R3) are

in the same reference system, the ground truth disparity error can be calculated through the
following procedure.

In the reference system of the fitted plane, the projection location Xi ∈ R3 of the depth pixel (u, v)
on the fitted plane ax + by + cz + d = 0 can be given by:

Xi =

 (P0 − L0)·
⇀
n

⇀
l ·
⇀
n

⇀l + L0 (15)

where P0 can be any point on the fitted plane, L0 is the coordinates of the camera centre t,
⇀
n is the

normal vector of fitted plane, and
⇀
l is the line vector of the line pass through the camera centre t and

depth pixel (u, v).
Then the ground truth depth Zi for the pixel (u, v) in the depth frame can be calculated as:

Zi =

∣∣∣col3(R)·Xi − col3(R)·t
∣∣∣√

col3(R)·col3(R)
(16)
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where col3(R) stands for the third column of rotation matrix R. Based on Equation (3), the ground truth
disparity d′i can be given as:

d′i =
1− αZi
βZi

(17)

Therefore, based on Equation (9), the disparity error δd of the depth pixel (u, v) can be obtained as:

δd = m
(
δ

ep
c + δ

ep
p

)
= d′M − d′i (18)

The disparity errors obtained at different distances in the data acquisition are visualized in the
following figure. Figure 9 shows the normalized disparity errors observed from 0.5 m to 6.5 m (with
assorted colours). The different colours in Figure 9 represent the different measurements.
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Firstly, the IR camera distortion part can be calibrated separately by the standard checkboard
calibration procedure [16]. It can be seen that the camera distortion is in both x axis and y axis of the
image plane. While in disparity, only the x axis is required as the RGBD sensor only uses the pixel
difference in the x axis to calculate the disparity. The distortion occurring in the y axis will not affect
the disparity. Therefore, only the x axis is used as variables in the proposed disparity calibration model.
Figure 10 shows the distortion model of the barrel distortion caused by camera lens that are calibrated
by the standard camera calibration procedure. Figure 10a shows the modeled disparity correction for
the whole frame coverage. The unit of x, the y axis of Figure 10a is the image pixel. The colour in
Figure 10a indicates the disparity correction in normalized disparity. Figure 10b is a 3D visualization
of Figure 10a. The x, y axis of Figure 10b is in the image pixel and z axis is in the normalized disparity.
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Figure 10. (a) Calibrated camera distortion in normalized disparity unit in image plane; (b) calibrated
camera distortion in normalized disparity unit in 3D visualization.
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The parameters of Structure Sensor’s camera radial distortion and tangential distortion are
estimated and listed in Table 1. The parameters are associated with the dimensionless normalized
image coordinates, which are calculated from pixel coordinates by translating to the optical centre and
dividing by the focal length in the pixel. Also, according to Equation (3), we can have β = 1

f wm . Since β
and the baseline w are known manufacturing parameters, and the focal length f can be obtained from
standard camera calibration, the normalized coefficient m can be calculated.

Table 1. Calibrated distortion parameters of infrared (IR) camera.

Camera Parameter
Radial Distortion Tangential Distortion Normalized Coefficient

Kc
1 Kc

2 Kc
3 Pc

1 Pc
2 m

Structure Sensor −0.0578 0.1248 1.0212 × 10−4 −0.0010 −6.0139 × 10−4 7.9418

After using the standard calibration method to model the camera-related barrel distortion, the
pincushion distortion caused by projector can be simply separated by subtracting the observed data
by the camera part (as shown in Figure 11a). As mentioned in Section 2, the remaining pincushion
distortion is a centrosymmetric distortion with a shifted distortion centre based on the distance. How
the projector caused the distortion overlay with the camera part is determined by the distance from
the sensor to the object. As shown in Equation (8), the distortion centre of projector distortion can
be calculated. The disparity errors caused by pincushion model shown in Figure 11a have different
distortion centre based on the distance from the sensor to the object scene. Actually, the distortion
parameters for these data captured at different distances are same. They have the same centrosymmetric
shape but with different distortion centre in the image plane. By knowing the exact distance from
sensor to the object scene, the shift caused by distance can be precisely calculated. All the disparity
errors captured at different distances are then aligned back to the optical centre of the image frame for
a better estimation of the distortion parameters, as shown in Figure 11b.
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Figure 11. (a) Camera distortion and unaligned projector distortion; (b) camera distortion and aligned
projector distortion.

By aligning the shifted projector distortion and taking the average disparity error in each pixel to
reduce the effects of random noise, the processed data is regarded as the projector-caused disparity
distortion. The aligned and averaged data shown in Figure 12 is the data processed to estimate the IR
projector distortion parameters. The stripe pattern that appeared in Figure 12b is a normal phenomenal
in SLP RGBD sensor [23,34]. The actual cause of this has not been revealed by the manufacture. Ref. [35]
suggests the possible cause for this stripe pattern is the rolling shutter used in the IR camera. As the
scale of the stripe pattern is much smaller than the distortion [6], the stripe pattern is uncalibrated in
the proposed method.
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Figure 12. (a) Averaged processed projector distortion in 3D visualization; (b) averaged processed
projector distortion in image plane.

Then, the Levenberg–Marquardt fitting algorithm [36] is used to minimized the cost function
in Equation (10) and to estimate the parameters of the projector distortion model. The calibrated
parameters are listed in Table 2:

Table 2. Calibrated distortion parameters of IR projector.

Projector Parameter Radial Distortion Tangential Distortion

Kp
1 Kp

2 Kp
3 Pp

1 Pp
2

Structure Sensor 0.0474 −0.0714 −0.1014 0.0019 1.4390 × 10−4

The parameter estimation result is shown in Figure 13a. The distortion model is compared with
the actual observed distortion error. The comparison between the actual projector distortion and the
modeled result (Figure 13b) shows that the calibration model can precisely match the actual disparity
error. After calibrating the distortions caused by camera lens and projector lens, there are still some
remaining errors of the observed disparity error. As shown in Figure 13b, there is still an increasing
offset to the edge area between the actual disparity error and the proposed distortion model.
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data (red markers are the actual data; colourized surface is the modelled projector error).

The remaining part of the error according to [6,23] is caused by the reason that the images cannot
be illuminated homogeneously, known as the infrared cone error. When the infrared light is emitted
by the projector and cast on to the scene, the central area of the cone will have the highest illumination
level. The illumination will decay towards the edge area. In the RGDB sensor, the illumination level
peaks at the central area and decays in the edge area. As better illumination often benefits the pattern
recognition performance [37], the offset caused by infrared cone in the central area is much smaller
than the offset in the corner. As a result, it causes a systematic error across the depth frame with small
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offset in the central area and increasing offset towards the edge, as presented in Figure 14a. To model
this systematic error caused by the infrared cone, a low order polynomial equation, shown in Equation
(19), is applied to fit the offset caused by infrared cone. In Equation (19), x, y is the normalized image
coordinates by optical centre in pixel, and p00, p10, . . . , p03 are the polynomial parameters. The modeled
result is shown in Figure 14b. The fitted parameters for Equation (19) are listed in Table 3.

f (x, y) = p00 + p10x + p01y + p20x2 + p11xy + p02y2 + p30x3 + p21x2y + p12xy2 + p03y3 (19)

Sensors 2020, 20, x FOR PEER REVIEW 16 of 23 

 

offset in the central area and increasing offset towards the edge, as presented in Figure 14a. To model 

this systematic error caused by the infrared cone, a low order polynomial equation, shown in 

Equation (19), is applied to fit the offset caused by infrared cone. In Equation (19), x, y is the 

normalized image coordinates by optical centre in pixel, and 𝑝00, 𝑝10, … , 𝑝03  are the polynomial 

parameters. The modeled result is shown in Figure 14b. The fitted parameters for Equation (19) are 

listed in Table 3.  

𝑓(𝑥, 𝑦) = 𝑝00 + 𝑝10𝑥 + 𝑝01𝑦 + 𝑝20𝑥
2 + 𝑝11𝑥𝑦 + 𝑝02𝑦

2 + 𝑝30𝑥
3 + 𝑝21𝑥

2𝑦 + 𝑝12𝑥𝑦2 + 𝑝03𝑦
3 (19) 

To summarize, the calibration model consists of three parts (Figure 15): (1) a barrel distortion 

model calibrated with classic checkboard camera calibration, which is fixed in the optical centre; (2) 

a pincushion distortion model based on the proposed procedure, of which the effects on the disparity 

is a fixed centrosymmetric shape while this has a varying distortion centre on the image plane; (3) a 

low order polynomial equation for the error caused by infrared cone, which has the same varying 

centre as the pincushion distortion because the cone is caused by the projector when it illuminates 

the scene. Combining these three parts, we can achieve a range-independent disparity-based 

calibration model for SLP RGBD sensors. Since the calibration model is developed based on the actual 

physical model of the SLP RGBD sensor’s distortion, the proposed method is a range independent 

model. No range-based parameter selection is required in the proposed method. It can provide the 

full range coverage with one single model of 20 parameters (5 parameters for barrel distortion, 5 

parameters for pincushion distortion, and 10 parameters for the infrared cone related error). 

Considering the overlapping mechanism between the barrel distortion and pincushion, the proposed 

method can use a non-centrosymmetric distortion model to provide full frame calibration of the 

depth frame. The offset in the edge area is largely calibrated. By accurately calibrating the edge area, 

the proposed method can significantly increase the quality of the depth frame and provide additional 

information that is missed out due to the large error. 

  

(a) (b) 

Figure 14. (a) Visualization of the remaining error after eliminate camera and projector distortions; 

(b) comparison of modelled IR cone error and actual error (red markers are the actual data, colourized 

surface is the modelled IR cone error). 

Table 3. Fitted polynomial parameters for infrared cone error. 

Polynomial Parameters Value Polynomial Parameters Value 

𝒑𝟎𝟎 0.5432 𝒑𝟎𝟐 −0.6831 

𝒑𝟏𝟎 −0.0579 𝒑𝟑𝟎 0.0604 

𝒑𝟎𝟏 0.1775 𝒑𝟐𝟏 0.0535 

𝒑𝟐𝟎 0.1471 𝒑𝟏𝟐 −0.0368 

𝒑𝟏𝟏 0.0113 𝒑𝟎𝟑 −0.0515 

Figure 14. (a) Visualization of the remaining error after eliminate camera and projector distortions; (b)
comparison of modelled IR cone error and actual error (red markers are the actual data, colourized
surface is the modelled IR cone error).

Table 3. Fitted polynomial parameters for infrared cone error.

Polynomial Parameters Value Polynomial Parameters Value

p00 0.5432 p02 −0.6831
p10 −0.0579 p30 0.0604
p01 0.1775 p21 0.0535
p20 0.1471 p12 −0.0368
p11 0.0113 p03 −0.0515

To summarize, the calibration model consists of three parts (Figure 15): (1) a barrel distortion
model calibrated with classic checkboard camera calibration, which is fixed in the optical centre; (2) a
pincushion distortion model based on the proposed procedure, of which the effects on the disparity
is a fixed centrosymmetric shape while this has a varying distortion centre on the image plane; (3) a
low order polynomial equation for the error caused by infrared cone, which has the same varying
centre as the pincushion distortion because the cone is caused by the projector when it illuminates the
scene. Combining these three parts, we can achieve a range-independent disparity-based calibration
model for SLP RGBD sensors. Since the calibration model is developed based on the actual physical
model of the SLP RGBD sensor’s distortion, the proposed method is a range independent model. No
range-based parameter selection is required in the proposed method. It can provide the full range
coverage with one single model of 20 parameters (5 parameters for barrel distortion, 5 parameters
for pincushion distortion, and 10 parameters for the infrared cone related error). Considering the
overlapping mechanism between the barrel distortion and pincushion, the proposed method can use a
non-centrosymmetric distortion model to provide full frame calibration of the depth frame. The offset
in the edge area is largely calibrated. By accurately calibrating the edge area, the proposed method can
significantly increase the quality of the depth frame and provide additional information that is missed
out due to the large error.
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Figure 15. Three main parts of the distortion in the RGBD sensor.

4. Calibration Model Performance

Two experiments were designed to test the performance of the proposed calibration method with
the SLP RGDB sensor, Structure Sensor. The performance of the calibration model was evaluated by
comparing the difference between the modeled error and the actual error. Then a more straightforward
showcase of the calibrated point cloud and the uncalibrated point cloud was provided to demonstrate
the performance of the proposed calibration model.

4.1. Model Evaluation

To test the calibration method’s performance, a test dataset that followed the same setup as mentioned
in Section 3.1 was obtained in an unfamiliar environment. The proposed calibration model was put into a
test to compare the difference between the actual disparity error and the modelled error by the proposed
method. The test dataset was captured from 2 m to 7 m with an interval of about 0.5 m. The example
shown in Figure 16 is three typical results for close range (1.93 m), middle range (4.01 m) and far range
(6.38 m). The first column is the actual observed disparity error. The second column is the modeled
disparity error based on the proposed calibration model. The last column is the difference between the
first two columns. For all the figures presented in Figure 16, the x and y axis are in image pixels and the
colour indicates the value of the disparity error at that pixel location in the normalized disparity. As
shown in Figure 16, the proposed model can accurately model the actual error. The difference between
the modelled error and the actual error is minor. The root mean squared error (RMSE) of the overall
modelled error is 0.76 disparity units. While two right corners still have some large offset that cannot be
accurately modelled. It may be caused by the less enough data in the corner area.
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Figure 16. Comparison of ground truth of disparity error, the modelled disparity error based on the
proposed model, and the difference between the ground truth and the modelled data.

4.2. Point Cloud Correction

A more direct method to evaluate the quality of the calibration model is the visualization of data
quality improvement of the measured point cloud. The proposed method was tested in three different
scenes: (1) flat surface; (2) non-flat (curved) surface; and (3) flat surface with distance variation, shown
in Figure 17. Darwish et al.’s calibration method [19] was selected as the reference of existing calibration
performance for the SLP RGBD sensor. As Figure 17 shows, the proposed calibration model improves
the point cloud accuracy in all three scenes. The validations in non-flat surface and the surface with
depth variation indicate the calibration model was applicable in all ranges. The 3D data between the
sampling distances can also be calibrated by the proposed method.
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Figure 17. Calibration comparison on flat surface, non-flat surface, and surface with distance variation.
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Figure 18 shows the full range improvements of the calibration model. For the full range of the SLP
RGBD sensor’s working range, the proposed method can greatly improve the quality of the measured
point cloud. The improvement of the edge area shown in Figure 18 indicates the full frame coverage of
the proposed calibration method. The calibration model is derived from the actual physical properties
of how the camera distortion and projector distortion combined in the image frame. Therefore, the
proposed calibration can accurately model the actual error to greatly improve the point cloud quality
of the low-cost sensor, especially in the far range and edge area of the depth frame.
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Figure 18. Full range result of the calibration model.

The accuracy improvement of the proposed calibration method can be demonstrated from two
different regions within the depth frame. As shown in Figure 18, the offset of the depth measurement
increases differently between the central region and edge region of the depth frame. The central region
that is near the optical centre of the camera suffers much less errors compared to the edge region.
The increasing pace of the offset in the edge region is much faster than the central part. Therefore, it
is reasonable to demonstrate the accuracy improvements for different parts of the frame separately.
Figure 19 shows how the central region and edge region are defined in the depth frame. A central
subset and an edge subset of depth measurement are selected based on Figure 19 for each tested
distance. The mean value of each subset is used for accuracy evaluation.
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Figure 19. Central region and edge region of depth frame.

Figure 20 shows the accuracy improvement of the proposed method. The x axis in all figures is
the ground truth distance in meters. The y axis in Figure 20a,b is the ranging error in meters. The y
axis in Figure 20c,d is the relative ranging error to ground truth ratio in percentages. The markers
linked with lines in the figures are the original observed data at different distances. The dot lines are
the polynomial fitted trend for its corresponding data with the same colour. Figure 20a,b show the
accuracy improvement of applying a calibration model for both central area and edge area of the depth
frame. As shown in Figure 20a, for the central region, the uncalibrated range normally has around 30
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cm ranging error at 8 m distance. After calibration, the central region will only have about 10 cm error
at 8 m distance. The accuracy is improved by about 70% in the central region. The improvement for
the edge area is more significant as the proposed model is developed from the actual mechanism of
the distortion and provides the full frame coverage. As shown in Figure 20b, the uncalibrated edge
region suffers a large error (86 cm) at 8 m distance. After calibration, the edge region calibrated depth
reduces the error form 86 cm to 30 cm at 8 m distance, which is improved by about 65%. As for the
relative error ratio (error to distance) that is shown in Figure 20c, the relative error of the central area
is largely reduced through the entire working range from an overall 4% of the distance to about 1%
of the distance. The improvement for the edge area shown in Figure 20d is more significant as the
proposed model is developed from the actual mechanism of the distortion and provides the full frame
coverage. The edge region has a large 11% relative error of the ranging distance before the calibration.
It suffers a much more severe distortion compared to the central region’s 4% relative error at the same
distance. With the calibration model, the relative error in the edge region can be reduced from 10% of
the distance to 3% of the distance. It is also indicated in Figure 20d that before calibration the relative
error/distance ratio increases with the distance. After calibration, the calibration data can provide
stable 2% to 3% ranging data in the edge region and 1% to 2% ranging data in the central region for the
full range.
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5. Conclusions and Future Work

The RGBD sensor has a promising future to replace the high-cost 3D laser scanner and be applied
in high-precision applications such as robotics, high-precision localization and mapping. The radial
systematic error in the depth frame significantly limits its potential applications. Targeting this problem,
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this paper presented range-independent disparity-based calibration method for the SLP RGDB sensor.
By revealing the real cause and forming mechanism of the non-centrosymmetric depth distortion,
the proposed calibration method targets the disparity unit rather than the depth. By applying the
calibration model in disparity and calculating the calibrated depth based on the calibrated disparity, the
calibration model is independent of distance. No additional distance-based calibration or parameters
look up table is required for the proposed method. With only one model with 20 parameters, the
proposed calibration method can provide a full range coverage for the SLP RGBD sensor. A new
non-centrosymmetric distortion calibration model for the normalized disparity is proposed in this
paper based on the discussion on the form of the mechanism of the SLP RGBD sensor distortion. The
proposed non-centrosymmetric distortion model can significantly reduce the large offset in the edge
area of the depth frame. Since the heavily distorted edge area now can be calibrated to a similar
accuracy level to the central area, more usable and valid information can be extracted and used to
benefit applications such as SLAM, robotic exploration and obstacle avoidance. A new two-step
calibration procedure is also developed in this paper to calibrate the barrel distortion caused by the IR
camera lens, pincushion caused by the IR projector lens, and the systematic error caused by the IR cone.

In the experimental results, the full frame and full-range coverage of the proposed calibration
method is demonstrated. The comparison between the calibrated and uncalibrated point cloud clearly
shows that the systematic errors in the measured point cloud have been removed by the calibration
model. The significant offset in the edge area of long-range depth is reduced by the proposed model
from 86 cm to 30 cm, which means that the relative error is reduced from 11% to 3% of the range
distance. Overall, at far range the proposed calibration method can improve the depth accuracy by
70% in the central region of depth frame and 65% in the edge region.

Further work will study the long-term stability of calibration parameters for the consumer-grade
RGBD sensor. Other potential systematic error sources, such as illumination condition, temperature,
humidity, and air refractive index, will be investigated for a more comprehensive calibration model.
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