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Abstract: Oil palm ripeness’ main evaluation procedure is traditionally accomplished by human 

vision. However, the dependency on human evaluators to grade the ripeness of oil palm fresh fruit 

bunches (FFBs) by traditional means could lead to inaccuracy that can cause a reduction in oil palm 

fruit oil extraction rate (OER). This paper emphasizes the fruit battery method to distinguish oil 

palm fruit FFB ripeness stages by determining the value of load resistance voltage and its moisture 

content resolution. In addition, computer vision using a color feature is tested on the same samples 

to compare the accuracy score using support vector machine (SVM). The accuracy score results of 

the fruit battery, computer vision, and a combination of both methods’ accuracy scores are evaluated 

and compared. When the ripe and unripe samples were tested for load resistance voltage ranging 

from 10 Ω to 10 kΩ, three resistance values were shortlisted and tested for moisture content 

resolution evaluation. A 1 kΩ load resistance showed the best moisture content resolution, and the 

results were used for accuracy score evaluation comparison with computer vision. From the results 

obtained, the accuracy scores for the combination method are the highest, followed by the fruit 

battery and computer vision methods. 

Keywords: oil palm; moisture content; fruit battery method; load resistance voltage; color feature; 

SVM 

 

1. Introduction 

Palm oil is the most productive vegetable oil in the world. It accounts for about 30% of the total 

production of vegetable oils and fats in the world. Palm oil has proven to be useful and is used in 

various products such as soap, margarine, cosmetics, and surfactants [1]. 

Currently, traditional human graders play an important role in distinguishing oil palm ripeness 

in plantations. During the pre-harvesting stage, human graders evaluate the oil palm fresh fruit 

bunches (FFBs) based on the number of detached fruits that fell to the ground and the surface color 

of oil palm FFBs to determine their ripeness stage [2]. For the post-harvesting stage, a human expert 

inspects the color of the oil palm FFBs’ surface to reject unripe and over-ripe FFBs so that they do not 

proceed to the oil extraction process [3]. According to Siregar [4], oil extraction rate (OER) decreases 

by 0.13% if unripe fruits are present, up to 1% during oil extraction. Furthermore, the National 

Economic Advisory Council (NEAC) in Malaysia reported that if OER rises by 3%, it brings economic 
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profit of RM 8 billion [5]. In other words, if there is a 0.13% drop in OER due to misjudgment, it will 

cause the equivalent of RM 340 million in economic loss. Therefore, it is essential to use an automated 

detection classification method to prevent losses and increase productivity. 

Several detection methods have been introduced, and computer vision is one of the main 

methods that are widely used for this application. Other than red-green-blue (RGB), color evaluation 

methods are also used such as hue, saturation and intensity (HSI) [6]. Research conducted by Cherie 

et al. [7] under three spectrum regions tested ultraviolet, visible, and near infrared to evaluate the oil 

palm FFB harvesting decision. Besides that, Hazir et al. [8] introduced a multi-parameter fluorescence 

sensor to investigate the potential of flavonoids and anthocyanins parameters as a predictor to 

classify the degree of oil palm FFB ripeness. 

Conventionally, the computer vision evaluation is paired with the automated artificial 

intelligence system by computer to accurately grade the oil palm fruit ripeness stages. The methods 

mentioned are based on image processing, which requires complicated procedures and strictly 

controlled conditions for measurement, such as no environmental light and constant settings of 

measurement devices. Therefore, they require image color correction calibration, which uses an 

image processing software and manually picks up pixel values on a color chart that is placed next to 

a target object in an image. 

There are also various microwave sensors that have been tested for the same purpose, as Ahmad 

et al. [9] suggested, such as coplanar and microstrip sensors. The measurement system was tested 

with a microstrip ring resonator that operated between 2.2 and 3 GHz on oil palm FFB seeds and 

fruits with various maturity stages. However, the fruit sample preparation is very time-consuming, 

since the oil palm FFB mesocarp need to be separated from its seeds, and the mesocarp is mushed 

into semi-solid sample. 

Furthermore, the new inductive method was also proposed with a different structure: circular, 

single, dual, and triple coil structure [10]. This sensor was developed based on the fact that the 

resonant frequency of the sensor increases as the fruit ripens and inversely, the capacitance value 

decreases as the fruit ripens [11]. However, these inductive methods are time-consuming and require 

specific equipment for measurement and analysis. 

For this study, a fruit battery is proposed as new detection method together with computer 

vision. The fruit battery method measures the load resistance voltage when copper and zinc 

electrodes are embedded in the oil palm fruit. The value of load resistance voltage is different 

between unripe and ripe fruit principally due to the presence of ions in the form of fruit moisture 

content, which serves as the electrolyte. The advantage of the fruit battery method is that it is possible 

to construct a simple and inexpensive detection device, since ripeness can be determined by simply 

measuring the load resistance voltage. In a previous study, suitable electrode conditions for the fruit 

battery method for depth and distance were discovered. It was concluded that 3 mm depth and 2 mm 

distance between electrodes are the best parameters when evaluating load resistance voltage results 

and shape of oil palm fruit [12]. 

The objective of this study was to determine the best load resistance value that produces the 

highest sensitivity for the fruit battery method when tested with fruit sample at different maturity 

stages. Besides that, this study also aimed to evaluate the accuracy score for fruit battery and compare 

it with the computer vision method’s accuracy score applied to the same fruit sample. 

2. Materials 

2.1. Sample Preparation 

The sample collection and experiment were conducted for three months from 15 September 2017 

to 15 December 2017. The location where samples were obtained is at the Universiti Putra Malaysia 

oil palm plantation. Oil palm ripeness is determined by moisture contents, as shown in Table 1. From 

Table 1, when moisture content is 30% or less, it is labeled as “Ripe”. Meanwhile, when moisture 

content is between 30 and 53%, it is labeled as “Under-ripe”, and moisture content of more than 53% 

is labeled as “Unripe”. Table 1 is derived from the fact that FFBs that have 30% moisture content have 
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the maximum oil content [4], and FFBs start to mature when moisture content is estimated at 53%, as 

shown in Figure 1 [11]. From Figure 1, oil palm fruit mainly consists of moisture and lipids. The 

percentages of moisture and lipids in unripe fruit are 80.1 and 5.9%, respectively, while in ripe fruit 

they are 24.3 and 58.3%, respectively. It can be seen that the lipid content increases, and moisture 

content decreases, as the fruit matures. 

Table 1. Oil palm fruit ripeness based on moisture content. 

Ripeness Category Moisture Content 

Ripe <30% 

Under-ripe 30–53% 

Unripe >53% 

 

Figure 1. The composition of unripe and ripe fruit [11]. 

2.2. Moisture Content Determination 

The oil palm fruit sample tested underwent moisture content determination measurement. The 

determination evaluation was performed on the day of sample collection after measurements were 

taken. An infrared moisture meter FD-610, Kett (Kett Electric Laboratory, Tokyo, Japan) was used to 

measure moisture content. The measurement heating temperature condition was 105 °C with 60 

minutes drying time. 

3. Methodology 

A total of 52 fruit samples were collected and used for this experiment. Among 52 fruit samples 

collected, 21 ripe, 15 under ripe, and 16 unripe fruits were identified according to their moisture 

content from Table 1. Photographs were taken of all samples using an augmented reality (AR) marker, 

and they were then tested with the fruit battery method. Lastly, moisture content was determined 

using the infrared moisture analyzer. 

Firstly, load resistance determination was tested using only ripe and unripe fruits. Twenty-one 

ripe and 16 unripe fruits were tested with load resistance ranging from 10 Ω to 1 MΩ to obtain the 

differences between ripe and unripe samples and observe the best load resistance to be chosen for 

moisture content resolution analysis. Moisture content resolution analysis used all 52 fruits collected 

to identify the best load resistance that produced the highest sensitivity. The best load resistance 

results were used for accuracy score evaluation together with the computer vision. 

For the computer vision method used in this study, we used an automatic and low-cost color 

correction method using augmented reality (AR) technology [13] and classified samples with the 
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machine learning algorithm. The proposed method requires no strict calibration and adjustment at 

the measurement stage and automatically picks up pixel values of a color chart with an AR marker 

based on the relative position from the marker. For the present study, the accuracy scores obtained 

were saturated between 80 and 90%. This is due to the FFB surface color that exhibits similar color 

distinctiveness even though their ripeness stages are not distinct. Therefore, in order to improve its 

accuracy, an add-on feature of color feature identification was used simultaneously to increase the 

accuracy of classifying oil palm ripeness stages. 

The following subsections explain further the computer vision and fruit battery methods applied 

in this study. 

3.1. Basic Concept of Fruit Battery Method 

This paper proposes the fruit battery method to distinguish oil palm fruit ripeness by utilizing 

the principle of the fruit battery. Figure 2a shows a schematic diagram illustrating the principle of a 

fruit battery using an oil palm fruit. Equations (1) and (2) express the chemical equation of the fruit 

battery. A fruit battery basically generates electromotive force when two electrodes with different 

standard electrode potential are pierced through the fruit surface. Figure 2a shows that when a 

copper and a zinc electrode pierce through the fruit, the zinc atom undergoes oxidation reaction 

where it loses an electron, since zinc is located higher in electrochemical series than copper. The 

copper electrode accepts the electron from the zinc electrode, and the electron is combined with a 

positive hydrogen ion from the fruit, producing a hydrogen molecule as shown in  

Equations (1) and (2). The movement of an electron generates current flow, thus producing electricity 

and behaving like a battery, hence the name fruit battery. 

Zn (s) → Zn2+ (aq) + 2e− (1) 

H+ (aq) + 2e− → H2 (g) (2) 

Figure 2b shows an equivalent circuit of a fruit battery. The equivalent circuit of the fruit battery 

can be expressed by an electromotive force Vi (V) and an internal resistance Ri (Ω). Thus, the ripe and 

unripe oil palm fruit internal resistance is high or low depending on the fruit’s moisture content. The 

differences in internal resistance causes the load resistance voltage VL (V) differences, as shown in 

Equation (3). The fruit battery method aims to detect the difference in electrolyte load resistance 

voltage between unripe and ripe fruit. 

R
V V

R R

L
L  i

i L

= 
+

 (3) 
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Figure 2. (a) Schematic diagram of the fruit battery and (b) simple equivalent circuit of the fruit 

battery. 
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3.2. Selecting Load Resistance Value 

To determine a suitable load resistance for distinguishing oil palm ripeness stages for the fruit 

battery method, two experiments were conducted. The first experiment aimed to calculate the 

differences of the load resistance voltage. The load resistance voltage differences show the behavior 

of load resistance with oil palm fruit from different maturity stages with different moisture content. 

The second experiment aimed to derive the resolution of the estimated moisture content for the field 

test. The resolution of (A/D) converter and the value of slope of regression formula between the load 

resistance voltage and moisture content were derived to determine the moisture content resolution. 

3.3. The Changing Rate of the Load Resistance Voltage 

Figure 3 and Table 2 show the experimental setup schematic and experimental condition, 

respectively. The load resistance voltage was measured using a digital multimeter Pro’s Kit, 3PK-

600T (Prokit's Industries, Taiwan) when electrodes were embedded into oil palm fruit, as shown in 

Figure 3. Zinc and copper were used as the electrode, and the dimensions of the electrodes were 16 

mm long, 6 mm wide, and 0.5 mm thick. As determined from a previous study, the best distance 

between the electrodes is 2 mm with 3 mm depth [12]. The total sample used was 37 fruits, where 21 

and 16 fruits were identified as ripe and unripe fruit, respectively. In those conditions, the load 

resistance RL (Ω) tested varied from 10 Ω to 1 MΩ. 

 

Figure 3. Fruit battery experimental setup. 

Table 2. Experimental setup. 

Item Type/Value 

Electrode material Zinc, copper 

Electrode dimension 16 mm × 6 mm × 0.5 mm 

Distance between electrodes 2 mm 

Depth of electrodes 3 mm 

Load resistance, RL (Ω) 10, 100, 1 k, 10 k, 100 k, 1 M 

In order to determine the value of load resistance that can effectively differentiate the value 

between unripe fruit and ripe fruit, the average load resistance voltage of both unripe and ripe fruit 

was calculated. The average load resistance voltage was calculated in order to determine the value of 

load resistance voltage that differentiates the value between unripe and ripe sample. Then, load 

resistance voltage differences percentage of the load resistance voltage between unripe and ripe fruit 

was calculated using Equation (4):  
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where dVL is the load resistance voltage difference between unripe and ripe, VLRipe is the ripe fruit’s 

load resistance voltage, and VLUnripe is the unripe fruit’s load resistance voltage. Large |dVL| means 

larger resolution, and this improves the load resistance sensitivity to distinguish the differences 

between ripe and unripe fruits. 

3.4. Resolution of Estimated Moisture Content 

To derive the resolution of the estimated moisture content, the slope value of regression formula 

was determined using least squares method. A total of 52 oil palm fruit samples were used in this 

experiment. The best value of load resistance that was determined from a previous experiment was 

selected for this experiment. 

Then, a scatter plot between moisture content and the load resistance voltage was plotted, and 

the regression formula between them was derived. Next, the values obtained were compared to each 

other and evaluated. The load resistance voltage was measured three times and the results were 

averaged. 

3.5. Computer Vision 

For computer vision, a color chart and an oil palm fruit sample were taken together using a 

camera with a pixel resolution of 3264 × 2448 on a smartphone iPhone 5S (Apple Inc, Cupertino, CA, 

USA), as shown in Figure 4a. At this time, the picture was taken under a fluorescent light, and the 

color correction was conducted to decrease the influence of variation of photographing condition by 

using the color chart [14]. The color chart with AR marker was used to automatically correct the color 

condition of images.  

Figure 4b shows the AR marker based on color chart that has 16 color chips for color correction. 

The color chips are located around the marker, and each position of a color chip was automatically 

identified when the marker was detected. The proposed method requires a reference color chart 

image that is taken in the ideal lighting condition. Target images for color correction are images that 

include a target object, such as oil palm fruit and the AR color chart. 

 
 

(a) (b) 

Figure 4. (a) Experimental setup of computer vision and (b) augmented reality (AR) marker-based 

color chart for automatic color correction. 

In the correction process, a transformation matrix (regression coefficient matrix) in Equation (5) 

was calculated by linear multiple regression analysis as the pixel values of the color chips were closest 

when using 16 RGB values from the color chips on the reference image and the target image. The 

color of the target image was changed by multiplying the transformation matrix 𝑎 by the all pixel 

matrix 𝐶 as shown in Equation (5). The advantages of the proposed color correction method are a 

reduction in the influence of the environmental lighting and a less complicated data acquisition 

procedure. 

Color chart
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Smartphone
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[

𝐶𝑅
′

𝐶𝐺
′

𝐶𝐵
′

] = [

𝑎1 𝑎4 𝑎7 𝑎10
𝑎2 𝑎5 𝑎8 𝑎11
𝑎3 𝑎6 𝑎9 𝑎12

] [

𝐶𝑅
𝐶𝐺
𝐶𝐵
1

] (5) 

𝐶′: A corrected pixel value; 𝐶: An original pixel value; 𝑎: A transformation matrix. 

After taking the picture, the average RGB value of oil palm fruit was extracted, as shown in 

Figure 5. To extract the average RGB value, the picture taken was imported, and the background was 

changed to black. In the background removal, a pixel value was set to 0 when the condition  

(R-value > 90, G-value > 90 and B-value > 90) is satisfied. Then, the average RGB value of the oil palm 

was calculated using Equation (6). The color feature Rave/Gave extraction was done by using Numpy, 

a numerical calculation library in Python. 

Total pixel value
Average pixel value = 

Total number of pixel
 (6) 

We used the ratio R/G because we set the reference wavelength to increase the stability. In the 

field of remote sensing and plant physiology, the ratio of light intensity of wavelengths is often used 

to make vegetation indices such as normalized difference vegetation index (NDVI) [15] and green 

normalized difference vegetation index (GNDVI) [16]. 

 

Figure 5. The flowchart of extracting color feature procedure. 

3.6. Accuracy Scores 

The accuracy score for three stages of ripeness was derived by support vector machine (SVM). 

Accuracy score was used as a metric to evaluate classification model in this study. Table 3 shows the 

experimental condition setup for SVM. From Table 3, the classification by SVM was performed with 

three features, that is: Color, Rave/Gave; fruit battery, VL; and combined computer vision with fruit 

battery method, VL-Rave/Gave. 

The hyperparameters for the grid search are C = 1, 10, 100; Gamma = 1, 0.1, 0.01; Kernel = Linear, 

rbf; and the number of divisions of k-fold cross validation are 8. Hence, the combination produces 18 

sets of accuracy scores where each feature is compared for the best score. 
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Table 3. Classification condition setting for support vector machine (SVM). 

Item Type/Value 

Feature 

Fruit battery: VL 

Computer vision: Rave/Gave 

Combination: VL-Rave/Gave 

Score Accuracy 

Cost parameter 1, 10, 100 

Gamma 1, 0.1, 0.01 

Kernel Linear, rbf 

Number of partitions of k-fold cross validation 8 

4. Results and Discussions 

4.1. The Load Resistance Voltage Differences 

Figure 6a shows the average value of the load resistance voltage when it changes. As shown in 

Figure 6a, in the range of 10 Ω to 10 kΩ, there is a tendency that the value of the unripe load resistance 

voltage is larger than ripe fruit. However, the difference between unripe and ripe does not occur at 

100 kΩ and 1 MΩ. Figure 6a also shows the load resistance voltage differences between unripe and 

ripe fruit.  

From Figure 6b, 10 Ω is 76%, 100 Ω is 77%, 1 kΩ is 74%, and about 76% change of rate is obtained 

in the range of 10 Ω to 1 kΩ. For values larger than 1 kΩ, 10 kΩ is 57%, 100 kΩ is 27%, and 1 MΩ is 

12%. When the load resistance increased, the change rate decreased. This is because the load 

resistance voltage is the ratio of load resistance and the internal resistance, as mentioned in  

Equation (4). The oil palm ripeness evaluation was performed by measuring the difference between 

internal resistance of unripe and ripe fruits. However, if the load resistance was too high compared 

to the internal resistance, the difference between unripe and ripe fruit’s internal resistance was too 

small to be detected. 

From the results obtained, shown in Figure 6b, the changing rate of the load resistance voltage 

between unripe and ripe in the range of 10 Ω to 1 kΩ is the highest at about 76%, compared to the 

resistance values of 10 kΩ, 100 kΩ, and 1 MΩ tested. Hence, for the following section, the suitable 

load resistance was chosen from 10 Ω, 100 Ω, and 1 kΩ by calculating the resolution of estimated 

moisture content. 

  

(a) (b) 

Figure 6. (a) The load resistance voltage of unripe and ripe as a function of load resistance and (b) the 

changing rate of load resistance voltage between unripe and ripe fruits. 
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4.2. Resolution of Estimated Moisture Content 

Based on results from Figure 6b, load resistance value from 10 Ω, 100 Ω, to 1 kΩ were tested, as 

shown in Figure 7. The moisture content varies directly with load resistance voltage. As the oil palm 

fruit ripens, the load resistance voltage decreases. Figure 7 shows the prediction scatter plot together 

with its regression equation for each resistance value tested. 

Higher resolution means that the device is sensitive to detecting small change of the measurand 

in input. Thus, higher moisture content resolution with less than 1% can produce more accurate 

results with higher sensitivity. From Figure 7, it is observed that the 1 kΩ resistance gradient value is 

0.517 %/mV, whereas 10 Ω and 100 Ω have resolution of moisture content exceeding 1% with 

31.8%/mV and 3.83%/mV, respectively. Thus, 1 kΩ is the best load resistance value among them as it 

has the highest moisture content resolution. 

 

Figure 7. The prediction scatter plot between load resistance voltage and moisture content, (a) 10 Ω, 

(b) 100 Ω, and (c) 1 kΩ.  
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4.3. Comparison Evaluation of Fruit Battery Method and Computer Vision 

The results in the previous section emphasize fruit battery evaluation and moisture content 

determination and getting the best resolution out of the load resistance tested. The best load 

resistance of 1 kΩ was selected to be used for comparison and combining features with the computer 

vision. The fruit battery load resistance voltage was measured with the electrode distance and depth 

of 2 mm and 3 mm, respectively, with the value of load resistance of 1 kΩ. The average load resistance 

voltage of three measurements is used for data evaluation. 

Table 4 shows the accuracy scores and standard deviation with its corresponding cost parameter, 

gamma, and kernel for the fruit battery method. The maximum accuracy scores are 0.9038 (90.4%). 

However, there are three results with 0.9038 accuracy score. The first result has cost parameter = 1, 

gamma = 1, standard deviation = 0.0712. The second results have the same standard deviation as the 

previously mentioned parameter, but with cost parameter = 10 and gamma = 0.1. The third has cost 

parameter = 100 and gamma = 1, but the standard deviation is 0.766. The best value among these three 

same accuracy scores is the standard deviation with the lowest value, since low standard deviation 

means that the data are spread out closer to the mean [17]. 

Table 5 shows the SVM analysis results for the computer vision method, where the highest 

accuracy score is 0.8654 (86.5%). This score has cost parameter = 1, gamma = 1, kernel = rbf with 

standard deviation = 0.0925. 

Table 6 presents the results for the fruit battery and computer vision combination accuracy score. 

The maximum accuracy score obtained for the combination scores is 0.9423 (94.2%) with cost 

parameter = 10, gamma = 0.1 and standard deviation = 0.0804. 

Table 4. Accuracy score and standard deviation of each feature for fruit battery method. 

Cost Parameter Gamma Kernel Accuracy Score Standard Deviation 

1 1 linear 0.7308 0.1028 

1 1 rbf 0.9038 0.0712 

1 0.1 linear 0.7308 0.1028 

1 0.1 rbf 0.6923 0.079 

1 0.01 linear 0.7308 0.1028 

1 0.01 rbf 0.6923 0.079 

10 1 linear 0.8269 0.1471 

10 1 rbf 0.8846 0.0648 

10 0.1 linear 0.8269 0.1471 

10 0.1 rbf 0.9038 0.0712 

10 0.01 linear 0.8269 0.1471 

10 0.01 rbf 0.6923 0.079 

100 1 linear 0.8462 0.109 

100 1 rbf 0.9038 0.0766 

100 0.1 linear 0.8462 0.109 

100 0.1 rbf 0.8846 0.0648 

100 0.01 linear 0.8462 0.109 

100 0.01 rbf 0.8077 0.1334 
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Table 5. Accuracy score and standard deviation of each feature for computer vision method. 

Cost Parameter Gamma Kernel Mean Standard Deviation 

1 1 linear 0.6538 0.1042 

1 1 rbf 0.8654 0.0925 

1 0.1 linear 0.6538 0.1042 

1 0.1 rbf 0.6538 0.1042 

1 0.01 linear 0.6538 0.1042 

1 0.01 rbf 0.6346 0.0959 

10 1 linear 0.6538 0.1042 

10 1 rbf 0.8269 0.1263 

10 0.1 linear 0.6538 0.1042 

10 0.1 rbf 0.6731 0.1413 

10 0.01 linear 0.6538 0.1042 

10 0.01 rbf 0.6538 0.1042 

100 1 linear 0.6538 0.1042 

100 1 rbf 0.8269 0.1263 

100 0.1 linear 0.6538 0.1042 

100 0.1 rbf 0.8269 0.1429 

100 0.01 linear 0.6538 0.1042 

100 0.01 rbf 0.6538 0.1042 

Table 6. Accuracy score and standard deviation of each feature for the combination of fruit battery 

and computer vision method. 

Cost Parameter Gamma Kernel Mean Standard Deviation 

1 1 linear 0.75 0.0959 

1 1 rbf 0.9038 0.1204 

1 0.1 linear 0.75 0.0959 

1 0.1 rbf 0.75 0.0959 

1 0.01 linear 0.75 0.0959 

1 0.01 rbf 0.6923 0.0419 

10 1 linear 0.8654 0.1266 

10 1 rbf 0.8654 0.1289 

10 0.1 linear 0.8654 0.1266 

10 0.1 rbf 0.9423 0.0804 

10 0.01 linear 0.8654 0.1266 

10 0.01 rbf 0.6923 0.0419 

100 1 linear 0.8846 0.0965 

100 1 rbf 0.8462 0.1575 

100 0.1 linear 0.8846 0.0965 

100 0.1 rbf 0.9231 0.1101 

100 0.01 linear 0.8846 0.0965 

100 0.01 rbf 0.8654 0.1248 

Table 7 shows the summary of maximum accuracy score and its standard deviation when each 

feature quantity is used: fruit battery, computer vision, and combination. The accuracy score is 90.4% 

for the fruit battery method VL, 86.5% for the color feature Rave/Gave, and 94.2% for the combined 

feature VL-Rave/Gave. The standard deviation is 0.0712 for load resistance voltage, 0.0925 for color 

features, and 0.0804 for combined features. The combination of the fruit battery method and 

computer vision method to classify the oil palm fruit ripeness stage results shows accuracy score 

improvement. The computer vision method tested on the same sample as the fruit battery method 

shows lower accuracy score compared to the fruit battery method. On the other hand, by combining 

both features, the accuracy score increased to 94.2%. 
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The combination method proved to be helpful, since the fruit battery method detects the change 

in the fruit’s chemistry, and the computer vision using color feature detects the changes in color due 

to changing chlorophyll and anthocyanin content on the fruit’s surface [8]. From this study, it is 

shown that the combined feature can classify the oil palm fruit maturity stages with higher accuracy 

compared to one-dimensional features. 

Table 7. Maximum accuracy score and standard deviation of each feature. 

Feature 
Accuracy 

(%) 

Standard 

Deviation 

Fruit battery method using load resistance voltage, VL 90.4 0.0712 

Computer vision using color feature, Rave/Gave 86.5 0.0925 

Combined feature (fruit battery and computer vision), 

VL-Rave/Gave 
94.2 0.0804 

Based on the results obtained from the experiments, a fruit battery prototype to test the oil palm 

fruit maturity was fabricated using open source hardware Raspberry Pi 3 Model B as shown in  

Figure 8. The 12-bit A/D converter was connected to Raspberry Pi 3 Model B with 0.8 mV A/D 

converter voltage resolution and 3.3 V drive voltage. 

 

Figure 8. The prototype device that estimates oil palm fruit’s moisture content using Raspberry Pi 3 

Model B. 

From Figure 4, the computer vision method used in this study involved an AR color chart, and 

the sample was taken together in one photo. However, this method is prone to inconsistency and 

error due to lighting, type of camera, camera operating setting as well as the photo compression and 

so forth, where the color may not be consistent and accurately captured by device in comparison to 

real life. Hence, for further future improvement for computer vision, it is crucial to apply color 

calibration in order to determine the accuracy of the image data collected. The color calibration RPS-

3D colorimetric shows the ability to reduce the environmental effect that is essential in analyzing data 

that involves camera vision [18]. Besides that, in order to improve the data accuracy, the number of 

samples needs to be bigger for better sample population representation. 

5. Conclusions 

This research studied the fruit battery load resistance determination that produces low 

resolution for high-sensitivity results. According to the results, the best load resistance obtained is  

1 kΩ with high changing rate between unripe and ripe fruit at 74% and moisture content resolution 

at 0.517%/mV. The accuracy scores for fruit battery and computer vision are 90.4 and 86.5%, 

respectively. By combining the fruit battery and computer vision methods, the calculated accuracy 

score increased to 94.2%. Since this method is simple and cheap, it can be an additional or alternative 

source of oil palm fruit maturity checking in the oil palm mill during inspection as well as during 

A/D converter

MCP3204 

Raspberry Pi 3

Display

Oil palm 

fruit
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harvesting. Regardless, this research opens up a new study for oil palm fruit ripeness classification 

methods. 
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